A Novel Sequence Weighting Method for First-Order Consensus Problems

Furugh Mirali1, Herbert Werner1

  • 1Hamburg University of Technology

Details

10:40 - 11:00 | Mon 17 Dec | Glitter | MoA03.3

Session: Agent-Based Systems I

Abstract

In this paper we present a novel method for constructing stochastic weighting matrices with the help of a finite sequence that can be chosen according to the application in a distributed manner. In addition, we propose three algorithms that determine how every agent decides on assigning these weights to its neighbours. Then, the so-called sequence weighting method is compared with other existing approaches for the special case of a one-dimensional lattice graph. For this purpose, we derive the characteristic polynomial of a quasi-Toeplitz matrix. Considering the sequence weighting method we calculate a bound for the second greatest eigenvalue that can be bounded away from 1 independent of the network size. Using a recently reported result about uniform packet loss, we show that bounds on the convergence speed not only hold in the loss-free case, but also when uniform packet loss occurs. Simulation results with non-uniform packet loss confirm a better performance using the sequence weighting method in comparison to existing strategies.