RGB and Lidar Fusion Based 3D Semantic Segmentation for Autonomous Driving

Khaled Elmadawy1, Hazem Rashed2, Omar Nasr3, Ahmad Al Sallab2, Hanan Kamal4, Senthil Yogamani5

  • 1doWhile
  • 2Valeo
  • 3Cairo university
  • 4Cairo University faculty of engineering
  • 5Valeo Vision Systems

Details

Category

Regular Session

Sessions

11:00 - 12:00 | Mon 28 Oct | The Great Room I | MoC-T1

Regular Session on Sensor Fusion (I)

Full Text

Abstract

LiDAR has become a standard sensor for autonomous driving applications as they provide highly precise 3D point clouds. LiDAR is also robust for low-light scenarios at night-time or due to shadows where the performance of cameras is degraded. LiDAR perception is gradually becoming mature for algorithms including object detection and SLAM. However, semantic segmentation algorithm remains to be relatively less explored. Motivated by the fact that semantic segmentation is a mature algorithm on image data, we explore sensor fusion based 3D segmentation. Our main contribution is to convert the RGB image to a polar-grid mapping representation used for LiDAR and design early and mid-level fusion architectures. Additionally, we design a hybrid fusion architecture that combines both fusion algorithms. We evaluate our algorithm on KITTI dataset which provides segmentation annotation for cars, pedestrians and cyclists. We evaluate two state-of-the-art architectures namely SqueezeSeg and PointSeg and improve the mIoU score by 10 % in both cases relative to the LiDAR only baseline.

Additional Information

No information added

Video

No videos found