Transfer Learning for Electromyographic Hand Gesture Signal Classification

Ulysse Cote Allard1, François Laviolette1, Benoit Gosselin2

  • 1Université Laval
  • 2Laval University

Details

Category

Poster Session

Sessions

10:00 - 17:00 | Mon 29 Oct | Foyer | A1P-G

Late Breaking News

Full Text

Abstract

This work performs electromyography-based hand gesture recognition by applying transfer learning on the aggregated data from multiple users while leveraging the capacity of deep learning algorithms to learn discriminant features from large datasets. The proposed transfer learning scheme outperforms the state-of-the-art, achieving an average accuracy of 98.31% for 7 gestures over 17 participants.

Additional Information

No information added

Video

No videos found