
Grow Your Limits: Continuous Improvement with
Real-World RL for Robotic Locomotion

Laura Smith* 1, Yunhao Cao* 1, Sergey Levine1

*Equal contribution 1Berkeley AI Research, UC Berkeley
{smithlaura, caoyh2001}@berkeley.edu

Abstract— Deep reinforcement learning can enable robots
to autonomously acquire complex behaviors such as legged
locomotion. However, RL in the real world is complicated by
constraints on efficiency, safety, and overall training stability,
which limits its practical applicability. We present APRL, a
policy regularization framework that modulates the robot’s
exploration throughout training, striking a balance between
flexible improvement potential and focused, efficient explo-
ration. APRL enables a quadrupedal robot to efficiently learn
to walk entirely in the real world within minutes and continue
to improve with more training where prior work saturates
in performance. We demonstrate that continued training with
APRL results in a policy that is substantially more capable of
navigating challenging situations and adapts to changes in dy-
namics. Videos and code to reproduce our results are available
at: https://sites.google.com/berkeley.edu/aprl

I. INTRODUCTION

Confronting the noisy, diverse, and unpredictable nature
of the real world demands a high degree of robustness and
versatility from robotic systems. Designing controllers that
anticipate and handle any scenario a robot will encounter in
its lifetime, whether through manual engineering or learning,
is impractical. Legged robots in particular have incredible
mobility—they can reach territory unsuitable even for hu-
mans, for example, in search and rescue situations. Instead
of providing it with predetermined capabilities, we seek to
equip the robot with the ability to adapt on its own, on the
spot, to such unanticipated circumstances.

Reinforcement learning (RL) offers a general framework
for such a ‘self-improving robot,’ providing a data-driven
approach for learning behaviors through interaction. How-
ever, the practical application of end-to-end RL in robotic
systems is often not straightforward [1], [2], with many of
the challenges stemming from high sample complexity: RL
algorithms are notoriously data-hungry, while real-world data
collection is notoriously expensive due to human supervision
requirements, hardware damage, and other physical con-
straints. Although recent works [3]–[10] have demonstrated
encouraging progress toward end-to-end RL on real-world
systems, often by applying the latest advances in sample-
efficient RL, the efficiency and final performance of these
methods still presents difficulties for persistent and reliable
deployment on real-world platforms such as legged robots.
In this work, we consider the task of learning quadrupedal
locomotion and ask: how can we enable a robot to learn
more agile locomotion in the real world, where it must learn
and adapt efficiently amid diverse, challenging scenarios?

APRL

RL

Fig. 1: APRL uses a novel action space regularization technique based
on dynamics prediction error to modulate exploration over the course of
training. This enables real-world quadrupedal learning that can traverse
challenging terrains and continually adapt to changes in dynamics.

We present APRL, a system that addresses the real-
world challenges of efficiency and continual improvement in
robot learning via adaptive policy regularization, focusing
on quadrupedal locomotion. Our key observation is that
the policy’s search space of actions significantly affects the
robot’s learning capacity. To illustrate this, consider tasking
the robot to learn to walk without prior knowledge. With full
command of its joint range, most random behaviors will lead
to catastrophic failure, and exploration becomes practically
infeasible (see the behavior pictured on the left in Figure 1).
But manually defining an appropriate space of actions to
explore restricts the robot’s capabilities, as peak performance
might necessitate exceeding such restrictions.

Our approach is to dynamically regularize the policy,
providing it with enough freedom to explore and improve,
but not so much that its exploration is needlessly expensive.
At the start of training, APRL biases the policy toward
small-magnitude actions to avoid the robot having to learn
this through costly first-hand experience. However, as the
robot becomes more competent, it should be allowed to
explore more aggressive actions. To this end, we introduce
an adaptive penalty based on how familiar the robot is
in its current situation. This allows the robot to explore
more aggressively once it has learned about its surroundings,
and dial back its exploration if it encounters unexpected
dynamics, where we expect the policy to generalize poorly.
We measure familiarity by training a dynamics model on
the data the robot has collected and using its prediction
error to dictate the policy’s recommended search space. We
use this action regularization synergistically with resetting
the agent [11], which combats early overfitting, a common
problem sample-efficient RL algorithms are prone to. Resets

2024 IEEE International Conference on Robotics and Automation (ICRA 2024)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 10829

improve plasticity, providing more opportunities to learn
when needed, and the dynamic penalty on actions focuses
the robot’s behavior, i.e., to prevent excessive falling and
inefficient exploration.

In summary, the main contribution of our work is a system,
APRL, for efficiently learning quadrupedal locomotion di-
rectly in the real world using a novel adaptive regularization
strategy that promotes more efficient, high-performing, and
stable training. We demonstrate a 12 degree-of-freedom Uni-
tree Go1 quadruped can learn to walk forward in just minutes
starting completely from scratch, and while prior work satu-
rates in performance, APRL allows the robot to continuously
improve with time. Furthermore, the behavior learned with
APRL performs significantly better (on average by a factor
of 2) in terms of its average walking speed in challenging
situations as shown in Figure 1, such as on an incline, on a
memory foam mattress, and through thick grass, and can be
fine-tuned in each to further improve performance. Our code
to reproduce results is available on our website: https:
//sites.google.com/berkeley.edu/aprl

II. RELATED WORK

Legged locomotion has long been of interest to roboticists.
A large body of work is dedicated to developing controllers
by means of model-based optimal control [12]–[18], and
these have enabled a range of robotic locomotion skills, from
high-speed running [19] to backflipping [20] but require care-
ful modeling of the conditions in which they will perform.
Learned approaches have recently seen remarkable success,
largely by leveraging simulation to train robust behaviors—
demonstrating impressive transferability to the real world
from walking [21]–[32] to more agile behaviors like running
[33], jumping [34], [35] or bipedalism [36]–[39]. While
this approach has been sufficient in many scenarios of
interest, relying on zero-shot policy generalization has two
key limitations: it requires extensive engineering of simulated
settings, and the robot has no recourse when its policy fails.

We instead study learning directly in the environment of
interest. Early work in this vein explored utilizing higher
level actions in trajectory space [3], [40]–[44], limiting their
applicability to skills beyond walking or running at different
speeds. Most similar to our setup are works that have studied
real-world training using low-level PD target actions, with
a 12-DoF A1 robot enabled by sample-efficient RL. Wu
et al. [45] report learning to walk without resets and to
recover from pushes in 1 hour using model-based RL. We
build our system on the simple model-free framework [46]
that demonstrated learning to walk from scratch in various
environments, each within 20 minutes [46]. While extremely
efficient, the maximum achieved velocity in this prior work
was less than 0.1 m/s, and the method did not demonstrate
transfer between or adaptation to different terrains. Our work
differs in three ways: (1) it leads to a 1.4x improvement in
the speed achieved after continued training; (2) it enables the
resulting policy to perform better when directly transferred
to more challenging situations; and (3) it demonstrates rapid

adaptation through continued training when the policy does
not generalize well in unseen settings.

A component of our approach is to use model prediction
error to regularize actions, which leads to fewer falls and
lower torques during training. For locomotion, falls lead to
physical damage and increased wall-clock training time. To
address this, for example, Ha et al. [47] use a constrained
MDP (CMDP) formulation to explicitly combat falling dur-
ing training by penalizing actions that lead to fallen states.
In Section VI, we find empirically that the CMDP approach
still requires many failures to do effective credit assignment.
Our action regularization is similar insofar as it manifests as
a penalty in the actor’s objective, but we directly regulate the
magnitude of actions the policy explores within. Therefore,
in APRL, the policy does not first need to learn to avoid
dangerous actions by taking them and experiencing failure
instead we leverage our knowledge that small actions around
the nominal pose are relatively safe, and bias the policy to
explore in this space first. While this strategy empirically
leads to fewer falls than fully unbridled exploration, our
primary goal is not to formally ensure safety but to enable
efficient learning in the real world.

III. SYSTEM DESIGN

We use the Markov Decision Process (MDP) formalism
to define our task of learning to walk. An MDP is defined
by a state space S ⊂ Rn, action space A ⊂ Rm, initial
state distribution p0(·), transition function p(·|s, a), reward
function r : S × A → R, and discount factor γ ∈ [0, 1).
RL maximizes the expected discounted cumulative return
induced by the policy π : S → A:

E
at∼π(·|st)

st+1∼p(·|st,at)

[∞∑
t=0

γtr(st, at)

]
.

We build on the actor-critic RL method and implementation
by Smith et al. [46] (details in (b)), which fits a critic
Qθ(s,a) to estimate the above quantity. The policy then uses
the critic to improve by maximizing the estimated return:

LSAC
act(ϕ) = E

s∼D
a∼πϕ(·|s)

[
Qθ(s,a)

]
.

We additionally use resets to improve plasticity [11], [48].
All neural networks are 2-layer feed-forward networks con-
structed and trained using JAX [49]. We use an Origin
EON15-X laptop with an NVIDIA GeForce RTX 2070 GPU.

a) MDP formulation: We use the Go1 quadruped from
Unitree for real-world experiments and perform analysis in
simulation using the MuJoCo Menagerie model [50]. The
robot’s task is to walk as fast as possible without falling,
where falling is defined as the robot’s roll or pitch exceeding
30 degrees from upright. The robot’s state s comprises its
root orientation, joint angles, joint velocities, root (local)
velocity, normalized foot contacts, and last recorded action.
Previous works [45], [46] used a Kalman filter to fuse
forward kinematics and acceleration to estimate the robot’s
velocity. In this work, we instead obtain velocity estimates

10830

!
train critictrain dynamics

model
train actor

gauge
familiarity update

joint limits

Fig. 2: Overview of APRL. We train the robot with a flexible constraint,
represented by blue circular sectors around the joints. The robot collects
experience, storing it in a replay buffer for training an actor and critic,
as explained in Section III, alongside a predictive dynamics model. The
model’s prediction error adjusts the constraint’s bounds, either tightening
(for high error) or relaxing (for accurate predictions). This adjustment is
incorporated into the actor’s objective, as specified in Equation 1.

from an Intel RealSense T265 camera attached to the robot’s
neck. We found the vision-based estimator to be more reli-
able and less susceptible to drift. The robot learns to output
target joint positions at a rate of 20 Hz. These targets are fed
to a PD controller, with a position gain of 20 and derivative
gain of 1, which converts them to torques. We employ two
smoothing mechanisms: a low-pass filter in the policy output
space and action interpolation in the PD controller (running
at 500 Hz). We define a reward function to maximize the
robot’s local linear velocity while maintaining an upright
orientation and include penalties on angular velocity and
torque smoothness. The definition of all reward terms can
be found on our website.

b) Replay ratio and resets: Many sample-efficient RL
methods use a high replay ratio, i.e., the ratio of gradient
updates to real-world transitions collected, to use the col-
lected data efficiently. To be able to take more updates on
the same data, they require some form of regularization,
e.g., using model-generated data [51], [52], weight-based
regularization [53], [54], ensembling at the agent level [55]
or at the critic level [56], or a combination of techniques [57].
In this work, we use a high replay ratio with a model-free

method, using Dropout [58] and LayerNorm [59] to regu-
larize the critic. Nikishin et al. [11] showed that excessive
training on early data with high replay ratio methods can
cause the networks to lose plasticity, the ability to continue
learning with more data, and propose periodic ‘resets’ of the
agent to mitigate this effect. Resetting specifically implies
reinitialization of network weights and optimizer states while
maintaining the replay buffer. We incorporate this regularizer
into our adaptive strategy as we will describe next.

IV. EFFICIENT LEARNING OF LEGGED LOCOMOTION
WITH ADAPTIVE POLICY REGULARIZATION

We present our system for efficiently learning and fine-
tuning quadrupedal locomotion in real-world scenarios using
Adaptive Policy ReguLarization (APRL). As shown in Fig-
ure 2, our framework dynamically modulates regularization
as the robot trains to provide it with adequate room to explore
and improve without suffering unnecessarily inefficient—
and often violent—training. To do so, we introduce ‘soft’

Algorithm 1 APRL pseudocode
Require: Action regularization configs: growth rate Ncurr, initial range

Astart, end range Aend, penalty weight σ, dynamics shift threshold
∆M , replay ratio rr, max gradient steps ∇M .

1: Initialize parameters of Qθ and πϕ and a replay buffer B ← ∅
2: Initialize action regularization states i = 0,Ai = Acurr i,Ae = Acurr e
3: repeat
4: Collect transition (st,a, st+1, rt) with πϕ and store in B

5: // UPDATE REGULARIZATION
6: Increment counter i← i+ 1
7: Determine progress αcurr = clip(i/Ncurr, 0, 1)
8: Calculate corresponding space Acurr ← αcurrAe + (1− αcurr)Ai
9: Calculate dynamics error ∆curr ←

(
st+1 − f̂ψ(st,at)

)2
10: if ∆curr ≥ ∆M then
11: Set i← 0, Ai ← 0.9×Acurr

12: // PERFORM UPDATES
13: for rr steps do
14: Update θ with critic loss
15: Update ψ with Ldyn(ψ) in Equation 2
16: Update ϕ with LAPRLact (ϕ) in Equation 1

17: // PERIODICALLY RESET WEIGHTS
18: if i · rr > ∇M then
19: Reinitialize θ, ϕ, ψ and reset i = 0

20: until forever

constraints on the actions (defined in (b)) that are adjusted
based on how ‘familiar’ the robot is in its current situation
(described in (c)). We also incorporate resets to improve
plasticity, i.e., the ability to keep learning from new data. In
the remainder of this section, we describe the principle un-
derlying our choice of regularization. We then detail how we
adapt the constraints based on the robot’s learning progress
and finally how we implement them in practice. Algorithm 1
summarizes the training procedure in pseudocode.

a) An efficiency-performance trade-off: Prior work has
manually defined explicit ranges for joint position actions,
especially for high-dimensional robots to avoid dangerous
behavior like self-collisions [60], [61]. Smith et al. [46]
further showed that this design factor has an enormous
effect on learning efficiency in the real world. Intuitively,
limiting the policy’s search space makes finding a solution
faster. Furthermore, legged locomotion policies are often
parameterized to output PD targets as actions [29], [32],
[39], [62], so searching in a limited region around a nominal
pose is reasonable since the policy may still learn to walk
at a low speed and is less prone to falling. These details
are important for real-world learning, as each fall incurs
nontrivial physical damage and time costs (specifically, an
additional 5-10 seconds which translates to an opportunity
cost of 100-200 time steps). Beyond falling, large changes
in PD targets translate to large torques, which can cause
significant damage to the robot over time. As we show in our
experiments, while a restricted action space makes learning
to walk remarkably efficient, it can significantly inhibit the
learned policy’s ultimate capabilities.

b) Soft policy constraints: A straightforward approach
to constraining the policy’s actions within fixed bounds is
to use a transformation that either maps any action beyond
the bounds to the corresponding extremum or bounds and

10831

scales the policy network to output actions within the defined
limits. We find that these naı̈ve implementations do not work
well in practice (see Section VI) for our application. We
instead introduce an action penalty, which can be interpreted
as a soft constraint on the policy. Specifically, each action
dimension is a target joint angle, where the minimum and
maximum correspond to the lower and upper physical limits,
respectively. We define a feasible region Aϵ that corresponds
to actions whose element-wise magnitude is no greater than
ϵ, which can write as an inequality constraint on each
dimension i: ci(a, ϵ) = |ai|−ϵ ≤ 0. Using a penalty method
amounts to training with a penalty on infeasible iterates, and
we found an L1 penalty with fixed weight σ = 10 to work
best in our case. This leads to the modified actor objective:

LAPRL
act (ϕ) = E

s∼D
a∼πϕ(·|s)

[
Qθ(s,a)− σ

∑
i

max(0, ci(a))
]
.

(1)

c) Deciding on appropriate feasible regions: We design
our method such that the robot can be more exploratory
when in a familiar setting and, conversely, more conservative
in settings different from those it has already trained on.
To do this, we use a dynamics model: we fit p̂ψ(s′ | s,a)
on the data the robot collects and use the likelihood of the
latest observed transitions to determine whether a situation is
‘familiar’. While there are several ways to capture a notion
of familiarity, e.g., using model disagreement to measure
epistemic uncertainty [63], we use misprediction for a few
reasons. First, it implicitly encourages the policy to favor
predictable behaviors. Secondly, it explicitly detects changes
in the environment dynamics, which we would like the robot
to be able to immediately react and adapt to. We represent
the dynamics model as p̂ψ(s′ | s,a) = N (f̂ψ(s,a), I), where
fψ is a neural network. Training with maximum likelihood
corresponds to a mean squared error (MSE) loss:

Ldyn(ψ) = E
(s,a,st+1)∼D

[1
2
∥(f̂ψ(s,a)− st+1∥2

]
. (2)

We use a schedule such that the joint limits are grown at
every time step by a constant increment (line 8) unless the
likelihood of the most recent data is registered as highly
unlikely by the learned dynamics model, i.e., if the MSE
incurred by the dynamics model surpasses a maximum of
∆M (lines 9-10). If this threshold is hit, we shrink the joint
limits by a multiplicative factor (line 11) to allow the robot to
react quickly in a new situation. The exact hyperparameters
used in our experiments can be found on our website.

V. REAL-WORLD RESULTS

Our real-world experiments test whether APRL can enable
a real quadrupedal robot to efficiently learn to walk entirely
in the real world and adapt to new dynamics that are more
challenging than demonstrated by prior work. We specifically
seek to answer the following questions:

1) Can we enable a real 12 DoF quadrupedal robot to
learn to walk in a matter of minutes without a manually
defined, restricted action space?

start

start
start

Fig. 3: Environment visualization. We visualize the different environments
we test in: Grass, Ramp, Mattress, and Frozen Joint. For the environments
where there is an explicit path for the robot to traverse that we evaluate on,
we indicate the start and goal locations with white circles and gold stars.

2) Does APRL enable continued improvement as the robot
collects more data?

3) Does APRL enable the robot to learn to walk in more
challenging settings?

4) Can we use APRL to allow the robot to continue
learning amid changing dynamics?

A. Experimental Setup
We address the first two questions by comparing to the

prior work of Smith et al. [46] (labeled as Restricted [46]),
as this prior method also focuses on learning to walk directly
through real-world training, in the same, flat-ground environ-
ment training for 80k steps each (roughly 80 minutes of real-
world interaction time). To address (3) and (4), we evaluate
the learned policies in 4 new scenarios (shown in Figure 3):

• Mattress: The robot must walk across a 5 cm thick
memory foam mattress. The robot’s feet sink and the
depression of the mattress makes walking more difficult,
requiring a unique gait with more force.

• Ramp: We task the robot to walk up a slippery, 5-degree
inclined ramp. The inclination and slipperiness require
the robot to maintain good balance while giving strong
pushes on the back legs to climb up.

• Grass: We deploy the robot outdoors on grass. The
unevenness of the mud underneath and the unique
friction properties require good foot clearance and quick
response to changes in the shape of the terrain.

• Frozen Joint: We freeze the thigh joint on the rear right
leg to test adaptation to sudden shifts in dynamics in a
controlled way, where there are no natural variations in
terrain to cause differences in performance.

To account for stochasticity and variance in the real world,
we run each evaluation three times and report the mean
and standard deviation across these runs. For (3), we first
test the policies without any fine-tuning. We introduce two
additional evaluation metrics: the time each policy requires
to traverse from one end of a path to another (pictured in
Figure 3 as the white circle and gold star, respectively) and
the number of times the robot fell while doing so. For these
evaluations, we manually reset the robot onto the path if it
veers too off-course. Note that we do not include the relative
finish time and fall counts for the Frozen Joint scenario
because the dynamics shift is not in a terrain that the robot
can traverse for us to record these metrics. Lastly, for (4),
we evaluate whether a few minutes of continued training
(specifically 3000 time steps) allows the robot to improve in
these scenarios. That is, we fine-tune in the target setting,
then re-evaluate using the same protocol.

10832

Fig. 4: Qualitative comparison of policies. We compare the gaits learned,
(top) Restricted and (bottom) APRL, from scratch on flat ground by showing
a time-lapse of the policies rolled out for 5 seconds each. Our policy learned
to use its front legs to step and propel its back legs in a cantering-like manner
whereas the Restricted policy drags and slides across the ground.

Fig. 5: Qualitative comparison on new terrain. We show a 5-second time-
lapse of evaluating different policies on the mattress. The Restricted method
tries to slide on the mattress, which slows it down significantly. APRL
policies have a higher foot clearance, so they traverse it more efficiently,
and after fine-tuning, with fewer falls.

B. Results

0 20k 40k 60k 80k
Steps

0.00

0.15

0.30

0.45

0.60

Ve
lo

cit
y

(m
/s

)

Training from Scratch

Restricted [46] APRL (ours)

Fig. 6: Forward velocity
achieved during training.
The Restricted method learns
more efficiently at first but is
not able to keep improving.
Meanwhile, our method still
learns to walk quickly but
acquires a maximum velocity
of 0.62 m/s. Note that the dip
at 4k steps is due to resets
to improve plasticity (line 19
in Algorithm 1).

Training from scratch. In Fig-
ure 6, we see that even without
manually restricting the actions
the robot can take, APRL starts
learning to walk immediately
due to the immediate influence
of the regularization imposed on
the actor. We attempted to com-
pare to training without regular-
ization; however, the robot’s ac-
tions were too aggressive to col-
lect even a few thousand transi-
tions. APRL’s adaptive regular-
ization makes training possible
in a way that, importantly, al-
lows the robot to continue to improve, achieving a maximum
average velocity of 0.62 m/s. In contrast, the Restricted
method indeed learns to walk extremely quickly but plateaus
early in training, ultimately achieving a maximum average
velocity of only 0.44 m/s. This performance almost matches
its simulated counterpart (see Section VI), so we believe this
cap to be a fundamental limitation rather than a challenge
specific to the real world. APRL’s performance also closely
tracks its simulated variant’s; however, we hypothesize that
our performance is limited in the real world partially due
to space constraints, as the robot is only able to take a few
steps before reaching the workspace limits once it reaches a
higher speed. We also observe that APRL produces a visually
more naturalistic gait, shown in Figure 4 and better viewed
in video form on our project website. These results show
that APRL is significantly better equipped than naı̈ve RL to
continually improve as it collects more data, as opposed to

Mattress Ramp Grass Frozen Joint
0.0

0.1

0.2

0.3

0.4
Forward Velocity

Restricted [46]
APRL(ours) Zero-Shot

APRL(ours) + Fine-Tuning

Fig. 7: Real-world velocity comparisons (higher is better). In all scenarios
except Frozen Joint, APRL significantly outperforms the Restricted method
in terms of its velocity when tested in new scenarios. With just minutes of
fine-tuning, APRL significantly improves performance in all settings except
on the Ramp, where it is comparable.

Mattress Ramp Grass
0.00

0.25

0.50

0.75

1.00

1.25

Relative Finish Time

Mattress Ramp Grass
0.0

2.5

5.0

7.5

10.0

12.5
Fall Counts

Restricted [46] APRL(ours) Zero-Shot APRL(ours) + Fine-Tuning

Fig. 8: Real-world finish time and fall count (lower is better). (Left) We
report the time taken to traverse a path relative to the Restricted method
and absolute fall count. On Ramp and Grass, APRL is 2x faster, and on
Mattress, APRL is almost 4x faster.

quickly reaching but plateauing with limited capabilities.
Transferring to different scenarios. We find that APRL not
only successfully enables a quadrupedal robot trained only
in the real world to walk amid a variety of conditions, but
also to keep improving as it continues to be deployed. Quan-
titatively, the policy learned with APRL even without fine-
tuning is significantly better on average at walking than the
Restricted policy in terms of average velocity (see Figure 7)
and at completing a given path faster and with fewer falls
(see Figure 8). The exception is when we freeze a joint—in
this scenario, the Restricted policy exhibits much better zero-
shot generalization. In this case, we find that with continued
training, APRL can quickly learn to overcome this gap. In
Figure 5, we show a qualitative comparison of policies where
the path can be visualized with a static camera. We encourage
the reader to view the qualitative differences in policies for
each scenario on our project website.

VI. SIMULATED ANALYSIS

In this section, we analyze APRL using a simulated
version of the task described in Section III. Although simu-
lation does not capture many of the real-world challenges
that we aim to address, we use it to perform controlled
experiments for comparison purposes and insight. We design
our simulated experiments to answer the following questions:

1) Does restricting the action space actually cap the robot’s
achievable velocity?

2) If so, does APRL overcome these limits, and how does
it compare to ‘optimal’ behavior?

3) How does APRL compare to prior work and ablations?
To answer (1), we compare learning with a fixed, limited

action range as done in the Walk in the Park system [46]

10833

0 1e5 2e5
Time Steps

0

300

600

900
Fa

lls

0 1e5 2e5
Time Steps

0

.5

1

Ve
lo

cit
y

(m
/s

)

0 1e5 2e5
Time Steps

0

.5e4

1e4

1.5e4

Re
tu

rn

Full Action Space (Oracle) Restricted [46] Safety Critic [47] APRL (Ours)

Fig. 9: Comparisons. We report each policy’s performance measured by the
falls, average velocity, and return (mean and standard error across 5 seeds)
with respect to the number of time steps. We find that APRL is the only
method that effectively balances achieving high velocity while regulating
the number of falls such that it is feasible to run in the real world.

(labeled Restricted) to learning with the full action range
without our adaptive regularization (labeled No Regulariza-
tion). As mentioned in Section V, this comparison is not
feasible in the real world but gives the policy the most
freedom to optimize, so we use its asymptotic performance
as the upper bound on the robot’s capabilities. We see in
Figure 9 that the way actions are explored profoundly affects
training performance. Restricted excels at the very start of
training, achieving a steeper learning curve and fewer falls
than No Regularization but also saturates very quickly and
does not improve beyond a velocity of about 0.5 m/s. In
contrast, the policies with access to the full joint range
eventually far exceed the Restricted policy’s performance.

For (2), we observe that APRL achieves near-optimal
performance in comparing its asymptotic performance in
terms of return and achieved velocity, with that of the non-
regularized ‘oracle’. Furthermore, it does so with signifi-
cantly fewer falls, making it feasible to run in the real world.
To answer (3), we include a comparison to the constrained
MDP formulation of Ha et al. [47] by training a critic to
predict falls and penalizing the policy for taking actions that
the critic predicts will lead to falls. We found that the safety
critic required tens of thousands of samples to converge in
our application, which was not quick enough to shape the
early stages of exploration to prevent excessive falls. In fact,
this method was especially sensitive to network initialization,
so we omit one seed that diverged for clarity. Generally, it is
quite difficult to fit a critic with time-delayed effects whereas
our method simply penalizes action magnitudes directly. This
method was shown to be effective with a significantly simpler
robot, with removed degrees of freedom, where learning a
critic may be expected to be much simpler than in our setting.

Finally, we compare APRL’s adaptive action regularization
to alternatives to understand the importance of (a) using
a soft constraint rather than a naı̈ve hard constraint (b)
using an adaptive rather than fixed expansion rate and (c)
regularizing the policy directly rather than through the reward
function. For (a), we compare to Hard Constraint, which is
our method but instead of penalizing the policy outputs, we
clip them at the prescribed limits before applying them in the
environment. Next, for (b) we test whether the prediction
error is meaningfully regulating the speed at which the
constraint is changing by only using the constant increment
(removing line 11 of Algorithm 1) and label this as Non-
Adaptive Regularization. Lastly, for (c) we implement a

0 1e5 2e5
Time Steps

0

300

600

900

Fa
lls

0 1e5 2e5
Time Steps

0

.5

1

Ve
lo

cit
y

(m
/s

)

0 1e5 2e5
Time Steps

0

.5e4

1e4

1.5e4

Re
tu

rn

Hard Constraint
Non-Adaptive Regularization

Reward Regularization (.01)
Reward Regularization (.1)

APRL (Ours)

Fig. 10: Ablations. We compare to versions of APRL that use (a) a hard
constraint (b) non-adaptive regularization (c) regularization via the reward
function. These either have too many falls or do not progress on forward
velocity, showing the importance of all design components of APRL.

baseline in which we add a very common control cost to
the reward function and call this Reward Regularization—
we follow standard conventions and use a quadratic penalty
on the actions. From Fig. 9, we see that with non-adaptive
regularization there are too many falls, which is a major
issue for real-world deployment. This problem is exacerbated
even further when using a hard constraint. Adding the action
penalty via reward regularization causes the policy to exploit
the reward getting high return, but with no forward velocity,
so it does not actually perform the task.

VII. CONCLUSION

We presented APRL, a system for efficiently learning
quadrupedal locomotion directly in the real world that im-
proves upon prior work in terms of efficiency and final
achieved performance. APRL introduces adaptive policy reg-
ularization that encourages the policy to explore within ac-
tion limits that are commensurate to the policy’s competence
in a particular situation. APRL allows the robot to effectively
utilize its full joint range without causing excessive falling
during training. The final speed attained by our policies
improves significantly over prior work, both when training
from scratch and when fine-tuning to a new terrain.

Our method has several limitations. Although our regu-
larization technique reduces the number of falls, it does not
provide a proper “safety” mechanism in the sense that it does
not aim to prevent all failures. While this is not a major issue
for the small quadrupedal robot we use, it might be a more
severe challenge for larger robots. Our method also does not
utilize any visual perception, and incorporating this might
present additional challenges for sample complexity. Lastly,
although the final speed and gait quality acquired by our
method improves significantly over the prior approach that
learns directly in the real world, the quality of the gaits is still
lower than those that have been demonstrated in simulation.
Addressing these limitations is an important direction for
future work, but we hope that our demonstrated results
already indicate that our method represents an important step
toward robotic systems that can continually adapt in the real-
world at deployment time, such that we do not need to train
policies that never fail, but can instead allow them to learn
to avoid mistakes after they happen.

Acknowledgements
This work was supported in part by ARO W911NF-21-

1-0097, ARL DCIST CRA W911NF-17-2-0181, and ONR
N00014-20-1-2383 and N00014-22-1-2773. Laura Smith is
supported by a Google PhD Fellowship.

10834

REFERENCES

[1] H. Zhu, J. Yu, A. Gupta, D. Shah, K. Hartikainen, A. Singh, V. Kumar,
and S. Levine, “The ingredients of real-world robotic reinforcement
learning,” ArXiv, vol. abs/2004.12570, 2020. 1

[2] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine,
“How to train your robot with deep reinforcement learning: lessons
we have learned,” The International Journal of Robotics Research,
vol. 40, pp. 698 – 721, 2021. 1

[3] N. Kohl and P. Stone, “Policy gradient reinforcement learning for fast
quadrupedal locomotion,” IEEE International Conference on Robotics
and Automation, 2004. Proceedings. ICRA ’04. 2004, vol. 3, pp. 2619–
2624 Vol.3, 2004. 1, 2

[4] C. Finn and S. Levine, “Deep visual foresight for planning robot
motion,” 2017 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 2786–2793, 2017. 1

[5] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine,
“Qt-opt: Scalable deep reinforcement learning for vision-based
robotic manipulation,” Conference on Robot Learning (CoRL), vol.
abs/1806.10293, 2018. 1

[6] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-
eye coordination for robotic grasping with deep learning and large-
scale data collection,” The International Journal of Robotics Research,
vol. 37, pp. 421 – 436, 2018. 1

[7] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski,
C. Finn, S. Levine, and K. Hausman, “Mt-opt: Continuous multi-task
robotic reinforcement learning at scale,” ArXiv, vol. abs/2104.08212,
2021. 1

[8] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis,
K. Daniilidis, C. Finn, and S. Levine, “Bridge data: Boosting gen-
eralization of robotic skills with cross-domain datasets,” ArXiv, vol.
abs/2109.13396, 2022. 1

[9] M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. J. Johnson, and
S. Levine, “Solar: Deep structured representations for model-based
reinforcement learning,” in International Conference on Machine
Learning (ICML), 2019. 1

[10] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar, “Deep dynamics
models for learning dexterous manipulation,” Conference on Robot
Learning (CoRL), vol. abs/1909.11652, 2019. 1

[11] E. Nikishin, M. Schwarzer, P. D’Oro, P.-L. Bacon, and A. C.
Courville, “The primacy bias in deep reinforcement learning,” in
International Conference on Machine Learning, 2022. [Online].
Available: https://api.semanticscholar.org/CorpusID:248811264 1, 2,
3

[12] M. Kalakrishnan, J. Buchli, P. Pastor, M. N. Mistry, and S. Schaal,
“Fast, robust quadruped locomotion over challenging terrain,” 2010
IEEE International Conference on Robotics and Automation, pp.
2665–2670, 2010. 2

[13] D. Bellicoso, F. Jenelten, C. Gehring, and M. Hutter, “Dynamic loco-
motion through online nonlinear motion optimization for quadrupedal
robots,” IEEE Robotics and Automation Letters, vol. 3, pp. 2261–2268,
2018. 2

[14] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning
with centroidal dynamics and full kinematics,” in 2014 IEEE-RAS
International Conference on Humanoid Robots. IEEE, 2014, pp.
295–302. 2

[15] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Per-
menter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-based
locomotion planning, estimation, and control design for the atlas
humanoid robot,” Autonomous robots, vol. 40, pp. 429–455, 2016.
2

[16] M. Hutter, C. Gehring, D. Jud, A. Lauber, D. Bellicoso, V. Tsounis,
J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, R. Diethelm,
S. Bachmann, A. Melzer, and M. Höpflinger, “Anymal - a highly mo-
bile and dynamic quadrupedal robot,” IEEE International Conference
on Intelligent Robots and Systems (IROS), pp. 38–44, 2016. 2

[17] G. Bledt, M. J. Powell, B. Katz, J. Carlo, P. Wensing, and S. Kim, “Mit
cheetah 3: Design and control of a robust, dynamic quadruped robot,”
IEEE International Conference on Intelligent Robots and Systems
(IROS), pp. 2245–2252, 2018. 2

[18] B. Katz, J. Carlo, and S. Kim, “Mini cheetah: A platform for pushing
the limits of dynamic quadruped control,” 2019 International Con-
ference on Robotics and Automation (ICRA), pp. 6295–6301, 2019.
2

[19] H.-W. Park, P. M. Wensing, and S. Kim, “High-speed bounding with
the mit cheetah 2: Control design and experiments,” The International
Journal of Robotics Research, vol. 36, no. 2, pp. 167–192, 2017.
[Online]. Available: https://doi.org/10.1177/0278364917694244 2

[20] Y. Ding, A. Pandala, C. Li, Y.-H. Shin, and H. won Park,
“Representation-free model predictive control for dynamic motions in
quadrupeds,” IEEE Transactions on Robotics, vol. 37, pp. 1154–1171,
2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:
229331611 2

[21] J. Tan, Z. Xie, B. Boots, and C. Liu, “Simulation-based design
of dynamic controllers for humanoid balancing,” 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 2729–2736, 2016. 2

[22] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” ArXiv, vol. abs/1804.10332, 2018. 2

[23] Z. He, R. C. Julian, E. Heiden, H. Zhang, S. Schaal, J. J. Lim,
G. Sukhatme, and K. Hausman, “Zero-shot skill composition and
simulation-to-real transfer by learning task representations,” ArXiv,
vol. abs/1810.02422, 2018. 2

[24] W. Yu, V. Kumar, G. Turk, and C. Liu, “Sim-to-real transfer for biped
locomotion,” 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3503–3510, 2019. 2

[25] A. Iscen, K. Caluwaerts, J. Tan, T. Zhang, E. Coumans, V. Sindhwani,
and V. Vanhoucke, “Policies modulating trajectory generators,” Con-
ference on Robot Learning (CoRL), vol. abs/1910.02812, 2018. 2

[26] Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. V. D. Panne,
“Learning locomotion skills for cassie: Iterative design and sim-to-
real,” in Conference on Robot Learning (CoRL), 2019. 2

[27] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, 2019. 2

[28] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
Robotics, vol. 5, 2020. 2

[29] X. Peng, E. Coumans, T. Zhang, T. Lee, J. Tan, and S. Levine, “Learn-
ing agile robotic locomotion skills by imitating animals,” Robotics:
Science and Systems (RSS), vol. abs/2004.00784, 2020. 2, 3

[30] Y. Yang, T. Zhang, E. Coumans, J. Tan, and B. Boots, “Fast
and efficient locomotion via learned gait transitions,” ArXiv, vol.
abs/2104.04644, 2021. 2

[31] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk in
minutes using massively parallel deep reinforcement learning,” ArXiv,
vol. abs/2109.11978, 2021. 2

[32] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor
adaptation for legged robots,” Robotics: Science and Systems (RSS),
2021. 2, 3

[33] G. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal, “Rapid
locomotion via reinforcement learning,” in Robotics: Science and
Systems, 2022. 2

[34] N. Rudin, H. Kolvenbach, V. Tsounis, and M. Hutter, “Cat-like
jumping and landing of legged robots in low gravity using deep
reinforcement learning,” IEEE Transactions on Robotics, vol. 38, pp.
317–328, 2021. 2

[35] G. Margolis, T. Chen, K. Paigwar, X. Fu, D. Kim, S. Kim, and
P. Agrawal, “Learning to jump from pixels,” in Conference on Robot
Learning, 2021. 2

[36] C. Yu and A. Rosendo, “Multi-modal legged locomotion framework
with automated residual reinforcement learning,” IEEE Robotics and
Automation Letters, vol. 7, pp. 10 312–10 319, 2022. 2

[37] E. Vollenweider, M. Bjelonic, V. Klemm, N. Rudin, J. Lee, and
M. Hutter, “Advanced skills through multiple adversarial motion priors
in reinforcement learning,” ArXiv, vol. abs/2203.14912, 2022. 2

[38] Y. Fuchioka, Z. Xie, and M. van de Panne, “Opt-mimic:
Imit@articleAchiam2017ConstrainedPO, title=Constrained Policy Op-
timization, author=Joshua Achiam and David Held and Aviv Tamar
and P. Abbeel, journal=ArXiv, year=2017, volume=abs/1705.10528,
url=https://api.semanticscholar.org/CorpusID:10647707 ation of opti-
mized trajectories for dynamic quadruped behaviors,” ArXiv, vol.
abs/2210.01247, 2022. 2

[39] L. Smith, J. C. Kew, T. Li, L. Luu, X. B. Peng, S. Ha, J. Tan,
and S. Levine, “Learning and adapting agile locomotion skills by
transferring experience,” Robotics: Science and Systems (RSS), 2023.
2, 3

10835

[40] R. Tedrake, T. Zhang, and H. Seung, “Stochastic policy gradient
reinforcement learning on a simple 3d biped,” 2004 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS) (IEEE
Cat. No.04CH37566), vol. 3, pp. 2849–2854 vol.3, 2004. 2

[41] G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi, and G. Cheng,
“Learning cpg sensory feedback with policy gradient for biped loco-
motion for a full-body humanoid,” in AAAI, 2005. 2

[42] K. S. Luck, J. Campbell, M. A. Jansen, D. M. Aukes, and H. B.
Amor, “From the lab to the desert: Fast prototyping and learning
of robot locomotion,” Robotics: Science and Systems (RSS), vol.
abs/1706.01977, 2017. 2

[43] S. Choi and J. Kim, “Trajectory-based probabilistic policy gradient
for learning locomotion behaviors,” 2019 International Conference on
Robotics and Automation (ICRA), pp. 1–7, 2019. 2

[44] Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan, and V. Sindhwani,
“Data efficient reinforcement learning for legged robots,” Conference
on Robot Learning (CoRL), vol. abs/1907.03613, 2019. 2

[45] P. Wu, A. Escontrela, D. Hafner, K. Goldberg, and P. Abbeel, “Day-
dreamer: World models for physical robot learning,” Conference on
Robot Learning (CoRL), vol. abs/2206.14176, 2022. 2

[46] L. Smith, I. Kostrikov, and S. Levine, “Demonstrating a walk in the
park: Learning to walk in 20 minutes with model-free reinforcement
learning,” Robotics: Science and Systems (RSS) Demo, 2023. 2, 3, 4,
5

[47] S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan, “Learning to walk in the
real world with minimal human effort,” ArXiv, vol. abs/2002.08550,
2020. 2, 6

[48] P. D’Oro, M. Schwarzer, E. Nikishin, P.-L. Bacon, M. G.
Bellemare, and A. C. Courville, “Sample-efficient reinforcement
learning by breaking the replay ratio barrier,” in International
Conference on Learning Representations, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:259298604 2

[49] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary,
D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-
Milne, and Q. Zhang, “JAX: composable transformations of
Python+NumPy programs,” 2018. [Online]. Available: http://github.
com/google/jax 2

[50] K. Zakka, Y. Tassa, and MuJoCo Menagerie Contributors, “MuJoCo
Menagerie: A collection of high-quality simulation models for
MuJoCo,” 2022. [Online]. Available: http://github.com/deepmind/
mujoco menagerie 2

[51] M. Janner, J. Fu, M. Zhang, and S. Levine, “When to trust your
model: Model-based policy optimization,” ArXiv, vol. abs/1906.08253,
2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:
195068981 3

[52] D. Hafner, T. P. Lillicrap, J. Ba, and M. Norouzi, “Dream to control:

Learning behaviors by latent imagination,” International Conference
on Learning Representations (ICLR), 2020. 3

[53] Z. Liu, X. Li, B. Kang, and T. Darrell, “Regularization matters in
policy optimization - an empirical study on continuous control,” arXiv:
Learning, 2020. [Online]. Available: https://api.semanticscholar.org/
CorpusID:222176807 3

[54] T. Hiraoka, T. Imagawa, T. Hashimoto, T. Onishi, and Y. Tsuruoka,
“Dropout q-functions for doubly efficient reinforcement learning,”
International Conference on Learning Representations (ICLR), 2022.
3

[55] K. Lee, M. Laskin, A. Srinivas, and P. Abbeel, “Sunrise: A simple
unified framework for ensemble learning in deep reinforcement
learning,” ArXiv, vol. abs/2007.04938, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:220424803 3

[56] X. Chen, C. Wang, Z. Zhou, and K. Ross, “Randomized ensem-
bled double q-learning: Learning fast without a model,” ArXiv, vol.
abs/2101.05982, 2021. 3

[57] Q. Li, A. Kumar, I. Kostrikov, and S. Levine, “Efficient deep
reinforcement learning requires regulating overfitting,” ArXiv, vol.
abs/2304.10466, 2023. [Online]. Available: https://api.semanticscholar.
org/CorpusID:258236460 3

[58] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014.
3

[59] J. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” ArXiv,
vol. abs/1607.06450, 2016. 3

[60] Z. Fu, A. Kumar, J. Malik, and D. Pathak, “Minimizing energy
consumption leads to the emergence of gaits in legged robots,”
Conference on Robot Learning (CoRL), 2021. 3

[61] T. Haarnoja, B. Moran, G. Lever, S. H. Huang, D. Tirumala,
M. Wulfmeier, J. Humplik, S. Tunyasuvunakool, N. Siegel,
R. Hafner, M. Bloesch, K. Hartikainen, A. Byravan, L. Hasenclever,
Y. Tassa, F. Sadeghi, N. Batchelor, F. Casarini, S. Saliceti,
C. Game, N. Sreendra, K. Patel, M. Gwira, A. Huber, N. Hurley,
F. Nori, R. Hadsell, and N. M. O. Heess, “Learning agile soccer
skills for a bipedal robot with deep reinforcement learning,”
ArXiv, vol. abs/2304.13653, 2023. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:258331581 3

[62] Z. Fu, A. Kumar, J. Malik, and D. Pathak, “Minimizing energy
consumption leads to the emergence of gaits in legged robots,”
Conference on Robot Learning (CoRL), 2021. 3

[63] P. Shyam, W. Jaśkowski, and F. J. Gomez, “Model-based active
exploration,” in International Conference on Machine Learning,
2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:
53102049 4

10836

