
Planning with Learned Subgoals Selected by Temporal Information

Xi Huang1, Gergely Sóti1,2, Christoph Ledermann1, Björn Hein1,2, and Torsten Kröger1

Abstract— Path planning in a changing environment is a
challenging task in robotics, as moving objects impose time-
dependent constraints. Recent planning methods primarily
focus on the spatial aspects, lacking the capability to directly
incorporate time constraints. In this paper, we propose a
method that leverages a generative model to decompose a
complex planning problem into small manageable ones by
incrementally generating subgoals given the current planning
context. Then, we take into account the temporal information
and use learned time estimators based on different statistic
distributions to examine and select the generated subgoal
candidates. Experiments show that planning from the current
robot state to the selected subgoal can satisfy the given time-
dependent constraints while being goal-oriented.

I. INTRODUCTION

Modern robotic applications aim to place the robots into a
collaborative environment rather than in a confined worksta-
tion, e.g. encapsulated by a safety fence. Such collaborative
workspaces are open, allowing humans, robots, and objects
to enter them freely. From the perspective of a robot, task-
unrelated agents entering its workspace are obstacles that
need to be detected and avoided while executing its own
task. This avoidance problem is an extension of the classical
collision avoidance for static environments, where part of the
workspace is blocked by non-moving obstacles. Previously,
being blocked or not was a static spatial property, based on
the spatial occupation and position of the obstacles. Now,
in a collaborative environment, this property becomes time-
dependent, highly increasing the complexity of the problem.

In this work, we propose to simplify the problem posed by
changing environments with the assumption that a changing
environment is static over a small period of time, where the
changes are so small that they do not affect path planning.
Hence, an overall path can be planned and executed step
by step, always assuming that the current environment state
is static. For static environments, a variety of sampling-
based planning approaches have been proven to be efficient.
Among recent methods, some try to estimate meaningful
spatial distributions for sampling [1]–[6], some propose to
approximate the cost-to-go function [7], while some neural
planners imitate the behavior of the optimal planners and
plan a path [8] or output an action directly [9]. Despite the
diversity of these methods, all these methods rely on the spa-
tial domain alone to perform their computations. However,
our approach has an assumption that the environment is fixed

The authors are with 1Institute for Anthropomatics and Robotics, Karl-
sruhe Institute of Technology, 76131 Karlsruhe, Germany, and 2Robotics
and Autonomous Systems, Institute of Applied Research, Karlsruhe Uni-
versity of Applied Sciences, 76133 Karlsruhe, Germany
x.huang@kit.edu

Fig. 1: Planning with learned subgoals: with the estimated
probabilistic distribution of planning time from the start to
subgoal candidates (orange), and from the goal to subgoal
candidates (turquoise), candidate 2 is selected. Planning
ranges are adapted to the blue dashed bounding box after
the selection for planning efficiency.

for only a small time window, imposing a time constraint
for the planning. None of the approaches above allow us to
incorporate this time constraints directly.

Therefore, in our work, we aim to integrate temporal
information into learning to make the algorithm aware of
our time budget while solving a planning problem. In this
context, temporal information refers to the planning time
used to plan from the current robot state to intermediate
subgoals. Together with this temporal information, the recent
methods, which only learn from the spatial information,
can be extended and applied to scenarios where there are
constraints regarding the planning time, such as changing
environments.

Combining the spatial and temporal information, we pro-
pose Planning with Learned Subgoals (PLS), which outputs
subgoals to incrementally lead the robot to the final goal. Un-
like the methods that use a learned spatial distribution to bias
the sampling process, the subgoals offered by our approach
are more like milestones. These milestones decompose a
complex planning problem into small and easily solvable
pieces. For small and easy problems, we can further tailor
the planning range, in which we sample and plan, to achieve
better performance. As illustrated in Fig. 1, given a planning
problem with obstacles, we generate a batch of candidates for
subgoals, marked in orange. Then, based on the estimation

2024 IEEE International Conference on Robotics and Automation (ICRA 2024)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 9306

of the planning time from the start to the candidates and
from candidates to the goal, we select the most suitable
candidate with index 2 as a subgoal according to the metrics
introduced in III-D. After the selection, the range of the
planning problem presented in III-E shrinks to the blue
dashed box for better planning performance. Experiments
show that the integration of the temporal information makes
the planning algorithm significantly more effective and can
be applied to reactive planning scenarios where the planner
has limited time to find a solution. Our contributions are
mainly:

• Leveraging a generative model to predict spatial sub-
goals that decompose a complex planning problem.

• Using learned time estimators to capture the temporal
information regarding the planning time given the plan-
ning problem.

• Designing two metrics based on the time estimation to
select suitable and goal-directed subgoal candidates.

• Conducting an ablation study to compare the perfor-
mance based on different assumptions of the distribution
for time estimators.

II. RELATED WORK

Recent approaches combining machine learning and
sampling-based motion planning fall roughly into two cate-
gories, i.e., learning the heuristics or distributions and neural
planners. We review them in the following and highlight the
differences between these methods.

A. Learning heuristics

Heuristics are crucial for speeding up the planning process
in the sampling-based methods. They serve as an oracle to
guide the search or sampling [10]–[13]. Recent approaches
attempt to learn various kinds of heuristics to achieve faster
planning. Planning delay is featured as a heuristic in [14]
to keep the planner away from the local minimum, which
usually has a high delay. Uncertainty is used as a heuristic to
guide the planner to explore in [15] by updating probabilistic
models using maximum posterior every time after gaining
new information. Given a planning problem, [7] learns the
cost function as heuristics and uses the gradient of the cost
function to find a path between the start and the goal.

B. Learning distributions

While learning heuristics aims to estimate a value given
a sample or region and use this value to prioritize the
planning or searching, learning distribution directly predicts
the regions likely to solve the problem. Using a conditional
variational autoencoder (CVAE) to capture latent represen-
tations, [5] learns a sampling distribution of the optimal
path given the planning requests. [6] applies the connectivity
in graph theory to identify the critical configurations in a
roadmap. These critical configurations improve the capability
of a roadmap to solve narrow passage problems. LEGO
[16] proposes a method to collect the bottleneck configu-
rations. Then, they leverage a CVAE as a generative model
to generate bottleneck configurations during the inference.

Fig. 2: The PLS architecture. The green arrows show the
direction of gradient descent. During training, the backprop-
agation of the time estimator does not reach the encoding
blocks.

These bottleneck configurations serve the same purpose as
in [6]. The methods above learn some predefined features
and metrics using a supervised manner. The authors of [2]
notice the gap between sampling and the downstream planner
performance. They propose a generator-critic architecture,
similar to actor-critic in reinforcement learning. The critic
serves as a proxy to quantify whether the samples contribute
to finding a solution. This links the sampling distribution
directly to the planning performance, e.g., planning time
and path quality. Learning distributions from experience can
also be found in [1] [17]. While the distribution is explicitly
learned and deployed during the sampling phase, [3] learns
an agent to reject implausible samples. Implicitly, the agent
learned the knowledge of the plausible region. Rather than
learning the distribution from collected data, [18] applies the
Stein variational inference to shifting samples toward the free
space by optimizing a posteriori.

C. Neural planners

The methods above learn to predict the distribution of
the sampling or heuristics for planning and eventually use
a traditional planner to find a solution. Different from that,
neural planners try to mimic the behavior of traditional
planners and learn directly to plan. Motion planning network
[8] imitates the behavior of the RRT* planner and outputs
a complete path by planning in a bi-directional fashion. It
utilizes offline learning and active learning to reinforce the
planning performance. Motion policy networks [9] mimic the
behavior of diverse planners in both task and configuration
space, including AIT* [12] and Geometric Fabrics [19].
Instead of learning to capture the whole path, it learns to
generate the delta, i.e. the joint velocity given the current
planning problem.

Our approach goes beyond existing methods that focus
solely on spatial information by incorporating temporal data
into the planning process. We train models to predict the
time required for planning using a normal or log-normal
distribution. These predictions help us identify the most
useful samples produced by the generative model, ensuring
that the planning process stays within a specific time frame
while still goal-oriented. As the planning time is strongly

9307

correlative to the number of collision checks, estimating the
planning time is a new and closer way to link the samples
to the planning performance.

III. METHOD

Given a planning problem, including the start and goal
joint configuration, and the information of the surrounding
environment, the objective of this work is to generate joint
configurations of a robot manipulator as subgoals that not
only lead the robot towards the final goal configuration
but also can be planned within a given time constraints.
We address this problem by using a generative model to
output a batch of candidates for an intermediate subgoal
instead of planning a complete path. Then, we employ
the temporal estimation regarding the planning time in two
different aspects to select the proper one as the subgoal. Fig.
2 shows the architecture of PLS.

A. Dataset

To integrate both temporal and spatial factors, we have
assembled a dataset containing over one million planning re-
quests using OMPL [20]. These requests were planned using
a UR10e robot in various environments with at least one fea-
sible solution. Each request provides a unique, collision-free
starting and ending configuration that lies within [−2π, 2π]
for all joints. Each data entry in our dataset contains informa-
tion about the environment, the start and final configurations,
the intermediate waypoints between them, and the time
needed for planning from the starting point to each waypoint.
Multiple runs were conducted to obtain a comprehensive
distribution of planning times.

For the generation of spatial waypoints connecting the start
and goal configurations, we employ the AIT* optimal plan-
ner. Subsequently, we compute the time required to traverse
from the start configuration to each waypoint. We choose
RRTConnect [21] over AIT* for the computation of planning
times. This choice is informed by the characteristics of AIT*
as an optimal planner that continually refines its solutions
until the given time budget is over. Our observations indicate
that AIT* generally takes a bit more time to return an initial
solution compared to RRTConnect, which is consistent with
the results reported in the original AIT* paper [12].

B. Generating Spatial Subgoals

Planning to subsequent subgoals offers several benefits
compared to directly aiming for the global goal. First,
the planner typically needs less planning time to return a
solution. This efficiency arises from the reduced distance be-
tween the starting point and the subgoal. Empirical evidence
suggests that planning time tends to grow exponentially with
the increase in distance. The subgoals decompose complex
planning problems into pieces and are usually in closer
proximity to the current robot state. While the environment
changes, paths leading to subgoals in closer proximity are
preferable. This is because paths to global goals, which are
usually longer, are more vulnerable to becoming invalid due
to these changes. An additional advantage is that we can

Fig. 3: An example of the dataset. The start and goal
configurations are marked in cyan and green, respectively.
The subgoals, namely ground truths are shown in yellow.

accordingly shape and narrow the planning range based on
the subgoals, thereby minimizing the search effort. This is
especially beneficial in spaces with high degrees of freedom.
Note that these are advantages only under that condition that
the subgoals are plausible and goal-oriented, meaning they
can progressively guide the robot toward its final goal.

Previous works [4], [5] showcase that a conditional vari-
ational autoencoder (CVAE) [22] is capable of capturing
the environment representation and generating samples that
are similar to the dataset, e.g. generating samples along the
optimal path or in the bottleneck region. Similar to them,
we employ a CVAE to generate plausible subgoals given the
planning problem as conditions. Different from them, we
take temporal information into account and train our CVAE
in such a way that the model tends to generate subgoals
that can meet the time constraints. To achieve this goal,
during the training, we only use the waypoints in the dataset
mentioned above with a constraint for maximal planning
time of 0.05s. Theoretically, this constraint for planning time
should be small to enable reactive planning in changing
environments. Practically, however, the smaller the range is,
the fewer generated data can fit into it and thus training a
model properly becomes harder.

Given a planning problem c ∈ C, including the start and
goal configuration and the surrounding environment, we aim
to generate the subgoals that can lead the robot to reach
the goal. The CVAE model samples z ∈ Rm from a m-
dimensional i.i.d. latent space and produces n-dimensional
joint configurations x ∈ Rn. The objective is to maximize
the probability that the model generates the data that are
likely to be in the dataset Xsg over the whole z-space

p(x|c) =
∫
p(x|z, c)p(z)dz. (1)

As we aim to generate data that are similar to the dataset
Xsg , the distribution of the latent variables for generating the
synthetic data p(z|x, c) should be similar to the distribution
q(z|x, c) represented by the dataset. The Kullback-Leibler
(KL) divergence between these two distributions is

D[q(z|x, c)||p(z|x, c)] = Ez∼q[log q(z|x, c)− log p(z|x, c)].
(2)

9308

In the following, we use D[·] to denote the KL divergence.
The evidence lower bound (ELBO) of log p(x|c) can be
written as:

log p(x|c) ≥ Ez∼q[log p(x|z, c)]−D[q(z|x, c)||p(z|x, c)].
(3)

While we maximize the evidence lower bound, the log p(x|c)
will increase accordingly. We suggest the reader refer to [23]
for further information regarding CVAE. The first term of the
right-hand side characterizes the likelihood of a data point
x given the z and c. Given the assumption that p(x|z, c) ∼
N (f(z, c),Σ), where Σ denotes diagonal covariant matrices
and f(z, c) is the generated sample, we have

log p(x|z, c) ∝ −||x− f(z, c)||22 (4)

The assumption p(x|z, c) ∼ N (f(z, c),Σ) has been used
for various tasks and we consider it valid within the scope
of this paper. We modify Eq. 4 to be

log p(x|z, c) ∝ −||g(x)− g(f(z, c)||22, (5)

with a non-linear function capturing both the forward kine-
matics gFK(·) and joint positions gjoint(·) of a robot using
a weighting factor α

g(x) = αgFK(x) + (1− α)gjoint(x). (6)

Our model directly outputs joint configurations. However,
predicting wrong values at the first joint and at the end-
effector can generally lead to significantly different effects.
The changes at the first joint usually will result in a larger
placement of the robot. Therefore, the gFK is a weighting
function that reflects the kinematics of the robot. However,
for a robot with a range of [−2π, 2π] at every joint, the
forward kinematics can be the same although the joint
configurations are different. To address this problem, we
introduce the positional encoding with l levels

gjoint(x) = [x, cosx, sinx, ..., cos (2lx), sin (2lx)]. (7)

Positional encoding is used in recent methods like Neural
Radiance Field (NeRF) [24] to capture the high-frequency
part of the data. In our case, positional encoding provides
the model with more information to understand the planning
problem. By assuming the prior of the latent space to be
p(z|x, c) ∼ N (0, I), the final loss of the CVAE becomes

J = ||g(x)− g(f(z, c))||22 + βD[q(z|x, c)||N (0, I)], (8)

with a weighting factor β [25]. Two neural networks are used
to capture approximate the function q(z|x, c) and f(z, c),
respectively. Using the reparametrization trick [26], we apply
stochastic gradient descent to train the networks.

C. Learning Temporal Distributions

While using a generative model to learn subgoals, it is
desired that the model can provide diverse and multi-modal
subgoals, which can solve the problem differently. On the
other hand, diversity can lead to a problem because the
planning time toward the subgoal may not fit the time con-
straints. To address this problem, we employ a time estimator

Fig. 4: Samples of planning time described by normal and
log-normal distributions. Red: statically determined. Green:
estimated by a model.

to select the proper subgoals regarding the constraints. The
time estimator takes the environment, the start configuration,
and the subgoal as input and outputs a distribution of the
planning time. This temporal distribution serves as a proxy
of the planning effort a planner needed for the problem and
it is strongly correlative to the number of collision checks.

After analyzing the data, we consider normal and log-
normal distribution. Log-normal distribution describes the
data whose logarithm is normally distributed. In other words,
given the normally distributed data X , log-normal distribu-
tion describes the data Y = eX . The data from a log-normal
distribution is always positive and skewed. As shown in Fig
4, the data has a long tail in the positive direction.

As mentioned before, the objective of learning temporal
distribution is to verify if the predicted subgoal can be
planned within the time constraints. Intuitively, the time dis-
tribution depends on the complexity of a planning problem,
which is defined by the start-goal query and the environment.
Therefore, we use the same encoded latent representations
in III-B as a starting point to learn the time distribution.
A multi-layer perceptron (MLP) takes this encoded repre-
sentation as input and outputs the parameters θ̂ of a 1-D
distribution. To match the planning time distribution for each
planning instance i in the dataset depicted III-A, we form the
loss function based on negative log-likelihood

Ji(Ti, θ̂i) = −
1

N

N∑
j=0

L(ti,j |θ̂) + w||θi − θ̂i||22, (9)

where Ti ∈ R is a random variable and ti,j ∈ Ti is a
planning time collected by the dataset. In addition to the
negative log-likelihood, we add a mean square error (MSE)
loss between the parameter θ empirically derived from the
data tj and the output of the time estimator θ̂, weighted by w.
As shown in Fig. 2, the gradient of the time estimator does
not backpropagate to the encoding blocks. We employ this
time estimator to inform the selection of subgoals, described
in the following in III-D.

D. Subgoal Selection based on Temporal Estimation

We designed two selection metrics based on the temporal
estimation to select the subgoals that are likely to be planned
within the time constraints, and that are goal-oriented, re-
spectively. Selecting goal-oriented subgoals is important,

9309

because, in an extreme case, any model that copies the start
configuration from the condition and uses it as output, would
meet the time constraints.

1) Start-to-sample metric: The start-to-sample metric es-
timates how likely the planning time from the start and
generated subgoal candidates will exceed the user-defined
time constraints. With the estimated parameters θ̂, we can
analytically determine the cumulative density function (CDF)
c(·) of the estimated distribution. As shown in Fig. 4, the
vertical dashed lines indicate the position t95 where the
c(t95) = 0.95, meaning that 95% of the values drawn from
this distribution are supposed to be smaller than t95. We see
t95 as a threshold to classify if the samples can meet the
time constraints. Depending on the needs, one can set this
confidence level to a higher value.

2) Goal-to-sample metric: While the start-to-sample met-
ric classifies if the samples can be planned within the time
constraint, it does not quantify how goal-oriented the samples
are. In search algorithms, the cost-to-go heuristics depict the
estimated cost of reaching the goal and are used to prioritize
the exploration. These heuristics usually are spatial distances
such as the Manhattan distance. Similar to the cost to go,
we can estimate the time distribution from the goal to the
subgoal candidates using the same time estimator model. We
further use the t95 to describe how are these candidates close
to the goal.

These two metrics can be applied to the selection sepa-
rately or together. In the experiment described in IV-A, we
introduce two selection criteria, named best-effort and goal-
oriented, respectively. The best-effort selection first computes
the t95 value of all subgoal candidates and randomly chooses
a candidate from the ones with t95 ≤ td, where td denotes
that the time constraints for planning. If no candidates meet
the constraints, it selects the one with the smallest t95. The
goal-oriented selection builds on the best-effort selection.
Instead of randomly choosing the qualified candidates with
t95 ≤ td, it ranks the samples by the goal-to-sample metric
and selects the one with the smallest value, i.e. the most
goal-oriented one.

E. Planning range shaping

A larger planning range usually means a larger search
space and therefore a longer planning time for sampling-
based motion planners. For some complex planning prob-
lems, we have to keep the planning range large. As the
subgoals break down the complex problems into pieces, we
are able to shape the range accordingly for every small
planning problem. This concentrates the samples in the
region where the planner can find a solution. A similar
concept can be found in batch-informed trees (BIT) [10].
The difference is that the methods in the BIT family draw the
bounds formed by high-dimensional ellipsoids after an initial
solution is found. In our case, we directly set the planning
range based on the planning problems.

For an n-DoF robot arm, we set the lower bounds bl ∈
Rn and upper bounds bu ∈ Rn for joints depending on
the mobility of each joint and the planning problem. We

constrain the search space with greater paddings for the joints
that can produce large motion, usually the ones close to the
robot base, depending on the robot’s kinematics.

IV. EXPERIMENTS AND RESULTS

A. Quantitative Evaluation

We verify and evaluate the effectiveness of our proposed
method within two steps. First, we verify that the model can
generate samples that can be planned within a short period
of time. As an ablation study, we compare the results of the
generated samples with and without the adaptive planning
range. The difference between the selctions based on normal
and log-normal distribution is shown as well. Secondly,
we examine the capability of CVAE-generated subgoals in
guiding the robot toward the final goal. In this part, we
contrast the planning time as well as the quality of the
paths formed by a sequence of subgoals against established
baselines.

For the first aspect, our focus is to verify the capability
of the model and outline the contribution of integrating the
subgoal selection based on the time estimation and the plan-
ning range shaping, respectively. The planning problems used
for the experiment are first planned with the RRTConnect
planner for 30 runs. All runs of these planning problems
result in a planning time of at least 0.05s. Therefore, we
can see that RRTConnect has 0% in the case of less than
0.05s. As summarized in Table I, we evaluate the CVAE
model using random selection and four other variants. These
variants differ from each other based on their assumption
of distributions (L or N) and the inclusion or exclusion of
planning range shaping (S). In the random selection, we
randomly select a candidate from the batch generated by
the CVAE model without selection and use it as the subgoal.

Distribution [%] Time [s]
0.05 0.1 0.2 Mean Std.

RRTConnect 0 3.8 12.9 1.153 1.86
Random 65.4 74.9 83.2 0.143 0.328
B-L-S 85.1 90.0 94.1 0.056 0.203
B-N-S 89.2 93.8 96.7 0.035 0.137
B-L 67.0 73.6 79.9 0.198 0.434
B-N 71.3 78.9 86.2 0.122 0.211

TABLE I: Planning to a subgoal. The letter ”B” denotes the
best-effort selection. The letter ”L” and ”N” indicates the
selection using the log-normal and the normal distributions,
respectively, while ”S” signifies the planning range shaping.

Succ. Distribution [%] Time [s] Length
[%] 0.05 0.1 0.2 Path Subgoal [rad]

Baseline 100 0 3 11 1.153 - 17.65
Random 61.7 82.6 87.4 91.9 0.517 0.061 50.67
B-L-S 81.5 90.1 93.2 95.9 0.208 0.029 25.79
B-N-S 69.0 95.2 97.0 98.4 0.149 0.016 23.55
G-L-S 85.2 89.3 93.3 96.2 0.172 0.030 25.51
G-N-S 82.3 88.5 92.2 96.2 0.214 0.039 25.56

TABLE II: Planning to fianl goals. For the baseline statistics,
we list the path length of the optimal planner AIT* with a
planning budget of five seconds and the planning time of
RRTConnect for the same reason mentioned in III-A.

9310

Each subgoal is planned using RRTConnect with 30 runs as
well. For the four variants, instead of the random selection,
we use the best-effort selection mentioned in III-D without
considering whether the candidates are goal-oriented, marked
as ”B” in Table I. The desired time bound td is set to be
0.05s. Three key values are defined to capture the distribution
of the planning time, namely 0.05, 0.1, and 0.2. For example,
the column of 0.05 shows the percentage of the planning time
t ≤ 0.05s. The mean and standard deviation of the planning
time are also listed. Compared to the random selection with
planning range shaping, the best-effort metric successfully
selects better candidates. Meanwhile, planning range shaping
contributes to better performance as well.

For the second aspect, we investigate if our proposed
method can progressively navigate the robot to the final goal.
Subsequently, we plan paths from the starting point or the
last subgoal to the newly generated subgoal. The process
terminates if the goal or the maximum number of generation
trials of ten is reached. We replicate this process ten times
for each problem. Other than the random and best-effort
selection mentioned in the first aspect, we add the goal-
oriented selection mentioned in III-D for further comparison,
marked as ”G” in Table II. Importantly, the success rate
of reaching the final goal is compared. Similar to the first
aspect, we investigate how the planning time distribution of
subgoal changes given different selection criteria. In addition,
we compare the mean planning time for each subgoal and the
complete path and employ path length in [rad] to depict the
path quality. As the evaluation dataset, we select the planning
problems whose planning time using RRTConnect is at least
0.05s in all runs. This leads to the result that the baseline
method has a success rate of 100%. Results are listed in
Table II.

The results with the random selection indicate that a model
relying solely on spatial information is not effective in either
meeting time constraints or successfully guiding the robot
to its goal configuration. Using the temporal information to
select the candidates generally improves the performance in
both aspects. The G-L-S variant generates sub-goals that can
be planned with 0.030 seconds on average while the baseline
method needs 1.15 seconds on average. Accumulating the
planning time between all subgoals, our method achieved
a result of 0.149 seconds on average, which is still way
smaller than the baseline. Compared to the AIT* solution,
our approach exhibits a longer path length. An obvious
reason is that we use the RRTConnect algorithm without path
smoothing in the experiment, meaning that the path to the
generated subgoals is not optimal. To examine the optimality
of the subgoals, other metrics are needed.

B. Two robot arms experiment

In this experiment, we apply the models trained by dataset
mentioned in III-A to a completely different scenario. We
use two UR10e robot arms for goal reaching task, assuming
the target configuration of the upstream manipulation task is
given. These two robots are operating separately. We apply
our approach to one robot as motion planner, seeing the

Fig. 5: Two robot arms experiment. Gray: current G-robot
statek. Green: final goal. Yellow: selected subgoals by PLS.
Pink: P-robot as a moving object running a fixed trajectory.

other robot as changing environment. This motion planner
outputs a parameterized trajectory to the generated subgoals
and finally completes the goal-reaching task without causing
any collision.

As shown in Fig 5, six snapshots are captured in chrono-
logical order. During the execution, the gray robot, we call
it G-robot in the following, has to reach the final goal state
presented in green. The yellow robot visualizes the selected
subgoal. We use the log-normal time estimator and the goal-
oriented metrics (G-L-S) for the selection. Meanwhile, the
robot marked in pink, we call it P-robot in the following,
follows a fixed trajectory to move from the right to the
left. The snapshot labeled with ”1” presents the initial
setup. The first subgoal chosen generally steers the G-robot’s
end-effector toward its base link, as it appears to be the
shortest path to reach the goal when the P-robot is still at
a considerable distance. In snapshot ”2”, the model predicts
a subgoal close to the final goal region right away. As the
P-robot approaches the center of the table in snapshot ”3”,
the newly generated subgoal directs the G-robot to elevate
to avoid a collision. Finally, it maneuvers over the P-robot
and reaches the final goal region.

V. CONCLUSION

In this work, we propose PLS that aims to generate
subgoals that not only can lead a robot to its final goal
but also can be planned from the current robot configu-
ration within the desired period of time. We extend the
existing generative models that use only spatial information
by integrating temporal information to select proper subgoals
from a set of candidates. Although experiments show that
PLS can achieve shorter planning time for both subgoals
and the accumulated path, we want to address two issues
in the future, including the consideration of more temporal
information including the movement of the obstacles and the
previously generated subgoals, and the integration of time
estimation closer into the generation.

9311

REFERENCES

[1] C. Chamzas, Z. Kingston, C. Quintero-Peña, A. Shrivastava, and L. E.
Kavraki, “Learning sampling distributions using local 3d workspace
decompositions for motion planning in high dimensions,” in 2021
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021, pp. 1283–1289.

[2] Y. Lee, C. Chamzas, and L. E. Kavraki, “Adaptive experience sampling
for motion planning using the generator-critic framework,” 2022.

[3] C. Zhang, J. Huh, and D. D. Lee, “Learning implicit sampling
distributions for motion planning,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018,
pp. 3654–3661.

[4] R. Kumar, A. Mandalika, S. Choudhury, and S. S. Srinivasa, “Lego:
Leveraging experience in roadmap generation for sampling-based
planning,” arXiv preprint arXiv:1907.09574, 2019.

[5] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions
for robot motion planning,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 7087–7094.

[6] B. Ichter, E. Schmerling, T.-W. E. Lee, and A. Faust, “Learned critical
probabilistic roadmaps for robotic motion planning,” arXiv preprint
arXiv:1910.03701, 2019.

[7] J. Huh, G. Xing, Z. Wang, V. Isler, and D. D. Lee, “Learning
to generate cost-to-go functions for efficient motion planning,” in
International Symposium on Experimental Robotics. Springer, 2020,
pp. 555–565.

[8] A. H. Qureshi, Y. Miao, A. Simeonov, and M. C. Yip, “Motion
planning networks: Bridging the gap between learning-based and
classical motion planners,” IEEE Transactions on Robotics, 2020.

[9] A. Fishman, A. Murali, C. Eppner, B. Peele, B. Boots, and D. Fox,
“Motion policy networks,” in Conference on Robot Learning. PMLR,
2023, pp. 967–977.

[10] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed
trees (BIT*): Sampling-based optimal planning via the heuristically
guided search of implicit random geometric graphs,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2015, pp. 3067–3074.

[11] C. Dellin and S. Srinivasa, “A unifying formalism for shortest path
problems with expensive edge evaluations via lazy best-first search
over paths with edge selectors,” in Proceedings of the International
Conference on Automated Planning and Scheduling, vol. 26, 2016.

[12] M. P. Strub and J. D. Gammell, “Adaptively Informed Trees (AIT*)
and Effort Informed Trees (EIT*): Asymmetric bidirectional sampling-
based path planning,” The International Journal of Robotics Research,
vol. 41, no. 4, pp. 390–417, 2022.

[13] X. Huang, G. Sóti, H. Zhou, C. Ledermann, B. Hein, and T. Kröger,
“HIRO: Heuristics informed robot online path planning using pre-
computed deterministic roadmaps,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2022,
pp. 8109–8116.

[14] J. Kaur, I. Chatterjee, and M. Likhachev, “Speeding up search-based
motion planning using expansion delay heuristics,” in Proceedings of
the International Conference on Automated Planning and Scheduling,
vol. 31, 2021, pp. 528–532.

[15] B. Hou, S. Choudhury, G. Lee, A. Mandalika, and S. S. Srinivasa,
“Posterior sampling for anytime motion planning on graphs with
expensive-to-evaluate edges,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2020, pp. 4266–4272.

[16] Y. Lee, P. Cai, and D. Hsu, “MAGIC: Learning macro-actions for
online POMDP planning,” arXiv preprint arXiv:2011.03813, 2020.

[17] C. Chamzas, A. Cullen, A. Shrivastava, and L. E. Kavraki, “Learning
to retrieve relevant experiences for motion planning,” arXiv preprint
arXiv:2204.08550, 2022.

[18] A. Lambert, B. Hou, R. Scalise, S. S. Srinivasa, and B. Boots, “Stein
Variational Probabilistic Roadmaps,” in 2022 International Conference
on Robotics and Automation (ICRA). IEEE, 2022, pp. 11 094–11 101.

[19] M. Xie, K. Van Wyk, A. Li, M. A. Rana, Q. Wan, D. Fox, B. Boots,
and N. Ratliff, “Geometric fabrics for the acceleration-based design
of robotic motion,” arXiv preprint arXiv:2010.14750, 2020.

[20] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012, https://ompl.kavrakilab.org.

[21] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-

tion. Symposia Proceedings (Cat. No. 00CH37065), vol. 2. IEEE,
2000, pp. 995–1001.

[22] K. Sohn, H. Lee, and X. Yan, “Learning structured output represen-
tation using deep conditional generative models,” Advances in neural
information processing systems, vol. 28, 2015.

[23] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint
arXiv:1606.05908, 2016.

[24] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng, “Nerf: Representing scenes as neural radiance fields
for view synthesis,” Communications of the ACM, vol. 65, no. 1, pp.
99–106, 2021.

[25] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner, “beta-vae: Learning basic visual
concepts with a constrained variational framework,” in International
conference on learning representations, 2016.

[26] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

9312

