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Abstract— Perceptive deep reinforcement learning (DRL) has
lead to many recent breakthroughs for complex AI systems
leveraging image-based input data. Applications of these results
range from super-human level video game agents to dexterous,
physically intelligent robots. However, training these perceptive
DRL-enabled systems remains incredibly compute and memory
intensive, often requiring huge training datasets and large
experience replay buffers. This poses a challenge for the next
generation of field robots that will need to be able to learn
on the edge in order to adapt to their environments. In this
paper, we begin to address this issue through differentially
encoded observation spaces. By reinterpreting stored image-
based observations as a video, we leverage lossless differential
video encoding schemes to compress the replay buffer without
impacting training performance. We evaluate our approach
with three state-of-the-art DRL algorithms and find that
differential image encoding reduces the memory footprint by
as much as 14.2× and 16.7× across tasks from the Atari
2600 benchmark and the DeepMind Control Suite (DMC)
respectively. These savings also enable large-scale perceptive
DRL that previously required paging between flash and RAM
to be run entirely in RAM, improving the latency of DMC tasks
by as much as 32%.

I. INTRODUCTION

With its ability to synthesize complex behaviors in both
simulated and real environments, deep reinforcement learn-
ing (DRL) has been applied to solve a host of robotic-
specific problems ranging from dexterous manipulation [1],
to quadrupedal locomotion [2], to high-speed drone rac-
ing [3], as well as more general artificial intelligence (AI)
feats of mastering tabletop [4] and competitive video games
such as Dota 2 [5] and Minecraft [6].

Despite these achievements, DRL remains very sample
inefficient, often requiring massive amounts of training data
to learn. Because much of this persistent data is loaded into
experience replay buffers during training, DRL is extremely
memory intensive, limiting the number of computational
platforms that can support such operations, and largely
confining state-of-the-art model training to the cloud.

Interestingly, it is the observations in the replay buffer
which often consume the majority of the memory, reaching
over 90% for proprioceptive models [7]. The recent interest
in perceptive DRL models [6], [8] only further exacerbates
this problem. For example, as compared to the 224 bytes
needed to store the proprioceptive observation space for the
DeepMind Control Suite (DMC) [9] quadruped, a single
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84x84 grayscale image requires over 7kB of memory. Con-
sequently, deployment to the edge is unrealistic for such
approaches. Still, many robots, especially those involved
in tasks as consequential as search-and-rescue and space
exploration [10], will have to adapt to ever-changing environ-
mental conditions and continue to optimize and update their
internal policies over the course of their lifetime [11], often
in remote areas without access to fast network connections.
As such, approaches that reduce the overall memory footprint
of perceptive DRL are needed to enable edge deployments.

In this paper, we begin to address this issue through
differentially encoded observation spaces. That is, by rein-
terpreting stored image-based observations as a video, we
leverage lossless differential video encoding schemes to
compress the replay buffer without impacting training per-
formance. We evaluate our approach across ten Atari 2600
benchmark tasks [12] as well as two robotic control tasks
from within the DMC, using three state-of-the-art DRL
algorithms. We find that differential image encoding reduces
the memory footprint by as much as 14.2× and 16.7×
for the Atari and DMC tasks respectively. These savings
also enable large-scale DRL that previously required pag-
ing between flash and RAM to be run entirely in RAM,
improving latency for the DMC tasks by as much as 32%.
We release our software and experiments open-source at:
github.com/A2R-Lab/DiffCompressDRL.

II. RELATED WORK

Perceptive DRL: Perceptive or image-based control and
deep reinforcement learning (DRL) share common roots.
First proposed a decade ago, Deep Q-Networks (DQNs) [13]
bridged the gap between deep learning and RL, achiev-
ing super-human performance on many Atari 2600 video
games using only visual input. Many model-free, DQN-
based variants have followed [14], [15], further improving
game-playing performance directly from pixel observations.
Still, these early model-free methods remained quite data
expensive. To address this, some turned to model-based or
world-model learning in both the Atari [16] as well as robotic
control [6], [17] domains. More recently, model-free methods
have improved sample efficiency further through contrastive
learning [18] and image augmentation [19]. Despite these
improvements, perceptive DRL remains memory intensive,
owing especially to the large size of image observations. For
memory constrained systems and more complex tasks that
require larger replay buffers, it has become necessary to store
observations directly on disk, increasing the average memory
access time and thus overall model training times [8].
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Compressed Perceptive DRL: While recent image-based,
model-free DRL methods have improved performance and
sample efficiency through data augmentation [20], con-
trastive learning [18], and more robust latent observation
space representations [21], little work has been done (aside
from moving from RGB to grayscale [22]) to reduce the
size of the stored image observations. Model-based methods
offer an alternative by learning a world-model directly,
thereby reducing the dependence on large amounts of replay
experience [23], [24]. While these methods do show promise
in highly complex simulated environments [6] as well as
in some real laboratory settings [25], world-model learning
tends to still struggle when the underlying world dynamics
become highly complex [26]. For this reason, model-free
methods remain popular for robotics applications leveraging
learning in the real world [27].

Video Encoding for Learning: Traditionally, video en-
coding schemes aim to reduce the visual redundancy in
digital video files without impacting human-perceived qual-
ity [28]. Modern video encoding standards such as MPEG-
4 [29] and H.264 [30] use both intra- and inter-picture
compression techniques to achieve this result. With the recent
proliferation of deep learning for computer vision, some
have begun optimizing traditional video encoding standards
for learning frameworks [31]. While these methods have
been applied to classification [32], object detection [33], and
instance segmentation [34] tasks among others, little has been
done to incorporate video compression within DRL.

III. BACKGROUND

A. Reinforcement Learning

Reinforcement learning poses problems as Markov de-
cision processes (MDPs), where an MDP is defined by a
set of observed and hidden states, S, actions, A, stochastic
dynamics, p(st+1|st, at), a reward function r(s, a), and a
discount factor, γ. The RL objective is to compute the policy,
π∗(s, a), that maximizes the expected discounted sum of
future rewards, Es,a (

∑
t γ

trt).
Perceptive RL, where states s are represented by images,

adds an additional caveat to the RL problem formulation,
as representing a state using a single image rendering of
the system is often not sufficiently descriptive [8]. To al-
leviate this issue, states are approximated by concatenating
together the f immediately preceding image frames st =
{ot−f+1, . . . , ot}, where ot is the image observation at
timestep t [13].

DRL algorithms parameterize the solution to these large
MDPs with neural networks. In this work, we leverage three
different state-of-the-art DRL algorithms: Proximal Policy
Optimization [35], Quantile Regression DQN [15], and Data-
regularized Q-v2 [8]. In the remainder of this section, we
provide more detail on each algorithm.

1) Proximal Policy Optimization (PPO): Proximal Pol-
icy Optimization [35] is an on-policy, policy gradient [36]
algorithm that employs an actor-critic framework to learn
both the optimal policy, π∗(s, a), as well as the optimal
value function, V ∗(s). Both the policy πθ and value function

Vϕ are parameterized by neural networks with weights θ
and ϕ respectively. During training, PPO needs to store the
parameters of both its value and policy networks1–usually
shallow multilayer perceptrons (MLPs)–as well as its on-
policy rollout buffer Dk. Dk stores (s, a, r) tuples, which
are refreshed during each iteration of the algorithm.

2) Quantile Regression DQN (QR-DQN): Quantile Re-
gression DQN [15] improves upon the highly influential
Deep Q-Networks (DQN) [13] algorithm, which uses expe-
rience replay to learn an optimal Q-function approximated
by a neural network Qθ. While in the original DQN paper
the authors train using a Huber loss [37] to maximize
mean return, QR-DQN uses a custom quantile Huber loss in
order to learn a distribution over expected returns. With this
change, QR-DQN is able to significantly outperform DQN on
a benchmark of Atari 2600 games. Unlike PPO, QR-DQN
stores collected experience across all iterations in a much
larger replay buffer D, functioning as a size limited queue.

3) Data-regularized Q-v2 (DrQ-v2): Data-regularized Q-
v2 [8] improves upon the Data-regularized Q [19] model-
free RL algorithm. Both algorithms use data augmentation
in conjunction with an actor-critic learning method in order
to perform image-based continuous control. DrQ-v2 applies
image augmentation through random shifts and then passes
the augmented images through an encoder network fξ to
produce the final observations, which are used by an actor-
critic DDPG [38] setup to learn the solution policy. DrQ-v2
achieves state-of-the-art model-free results on the DeepMind
Control Suite, rivaling the performance of the popular model-
based DreamerV2 [24], while doing so 4× faster (in terms
of wall-clock training time). Like QR-DQN, DrQ-v2 stores
its collected experience data in a large replay buffer D.

B. Memory Requirements for Perceptive DRL

Previous work showed that for proprioceptive DRL, the
memory requirements for PPO were dominated by the obser-
vation space, consuming over 90% of the total memory [7].
Perceptive DRL does not change this and actually only makes
matters worse. For example, the DMC quadruped requires
only 224 bytes for a single proprioceptive observation,
while a single 84x84 grayscale image requires over 7kB of
memory. For the off-policy QR-DQN as well as DrQ-v2, an
even greater percentage of the overall memory requirement
is dominated by the observation space since, as mentioned
above, their replay buffers are generally orders of magnitude
larger than PPO’s rollout buffer.

C. Differential Video Encoding

Modern video coding formats and codecs, like the
H.264 [30] standard, make use of a number of compression
and quantization techniques in order to reduce the overall
size of video streams while preserving quality. One of the
compression techniques employed is differential encoding
(DE) [39], which can be used to compress both single images

1Many PPO implementations save space by using one central MLP with
two additional single-layer policy and value function model heads. We focus
on the standard PPO model approach in this section for clarity.
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Fig. 1: A graphical example of a differential image encoding taken from the Breakout Atari 2600 environment [12]. The
two images, A and B shown on the left and middle, are very similar. The only difference in the resulting B-A image, shown
on the right, occurs for the two different locations of the falling object. We can therefore encode this small difference in a
highly compressed sparse matrix format.

as well as multiple subsequent image frames by encoding the
difference in inter-pixel or pixel-block values/intensities. In
this work, we make use of a simplified version of differential
video encoding–with inspiration from standard text-based
DE used by most version control systems [40]–in order to
compress the pixel-based observations found in rollout and
replay buffers. We present our encoding scheme in detail in
the following section.

IV. METHOD

In this section, we detail a custom, lossless compression
technique for image-based observation spaces. While we
later show empirical results using PPO, QR-DQN, and DrQ-
v2, we note that this differential encoding-based scheme can
be applied to any image-based RL method in order to reduce
the size of its stored observations.

A. Differential Encoder

During DRL training, there tends to be a level of temporal
sortedness in experience replay buffers [41], [42], owing to
the fact that many model-free RL algorithms add experience
(s, a, r) sequentially as they train. Therefore, while two
states si, sj drawn at random from a replay buffer may
differ dramatically, two adjacent states si−1, si have a high
likelihood of being similar, as they may originate from the
same episode, just one control step apart. Applied to image-
based observations, this means that images oi−1 and oi will
tend to be visually quite similar.

This similarity between adjacent image frames allows for
a natural differential encoding-based compression scheme
(Figure 1), which takes the difference between oi − oi−1

and stores the result in sparse matrix format Si =
SparseArray(oi − oi−1). To decode oi, it is then only
necessary to store oi−1 and Si, as:

oi = oi−1 + Si. (1)

In order to efficiently store and access these image dif-
ferences, we define a custom sparse matrix implementation

SparseArray that stores all nonzero pixels using two
arrays inds and vals, where inds stores pixel locations
and vals stores pixel values. Because image observations in
both the Atari 2600 benchmark and DeepMind Control Suite
are stored as 84x84, 8-bit unsigned integer arrays (assuming
grayscale images), we let inds store 8-bit unsigned integers
and vals store 16-bit signed integers. Assuming oi − oi−1

results in n nonzero pixel values, we can store a 7kB input
image in 4n bytes.

While it is possible that oi − oi−1 results in an image
with a majority nonzero pixel values, in practice we find
the number of nonzero pixels n to be small. Nevertheless,
we handle this corner case explicitly in SparseArray. If
4n > 84× 84, we store the full image array in order to cap
the maximum image size at 7kB.

B. Observation Indexing
As noted in the previous section, image-based learning

methods generally store states s as a stack of the f prior
image observations. Letting f = 4 (as is the case for our
Atari 2600 experiments in Section V), this results in each
state taking up 84× 84× 4 = 28kB of memory.

Instead of storing states in this full image stack format, we
define two separate arrays obs, which stores the individual
image observations, and obs_inds, which stores pointers
into obs for each state. To reconstruct the full state si, we
simply concatenate the individual observations referenced by
obs_indsi. In most cases obs_indsi = {(i−f+1), (i−
f + 2), . . . , i} resulting in:

si = {obs(i−f+1),obs(i−f+2), . . . ,obsi}. (2)

However, in various corner cases, this is not the case,
necessitating the use of the pointer array. For example, for the
first few observations, at the start of an episode, individual
observations need to be repeated to fill a history of size f .

Through observation indexing alone, we can reduce the
memory required to store all states by almost f×, as f
pointers are a fraction of the size of the (f − 1) image
observations we no longer need to save.
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C. Observation Compressor

With both the differential image encoder and smart obser-
vation indexing, we can define an observation compressor to
handle the storage and retrieval of image-based observations.
Following best practices from the video encoding literature,
we apply our approach to each set of f images.

Our compressor, ObsComp, internally stores three ar-
rays: obs, sparse_obs, and obs_inds. Using these
arrays we can then define the following two operations:
ObsComp.get(i) and ObsComp.set(s, i), which
get and set the uncompressed state si respectively.

To set a state si, we first compute the observation index
array obs_indsi = {(i−f+1), . . . , i}. Next, we check if i
mod f = 0, and if so store the raw image frame obsi/f =
oi. If not, we compute and store the SparseArray,
sparse_obsi/f,(i mod f)−1 = oi − obsi−i mod f .

To get a state si, we retrieve the observation indices
obs_indsi and concatenate the individual frames refer-
enced either directly from obs or from decoding compressed
frames stored in sparse_obs (Equation 1).

D. Theoretical Compression Factor

With these definitions in mind, we can evaluate the theoret-
ical compression factor for our approach, that is the reduction
ratio in overall memory consumption.

Let obs store uncompressed image observations oi and
be of shape (d, I, I), where d = |D|/f is the size of the
uncompressed replay buffer divided by the frame stack size
f , and (I, I) is the size of a single grayscale input image.

Let sparse_obs store compressed image observations
Si in SparseArray format and be of shape (d, f − 1).
Note that each element of this array contains the overhead to
store a pointer to a SparseArray object, which can then be
accessed to perform observation decompression (Equation 1).

Finally, let obs_inds store frame stack indices (as ex-
plained in the previous sub-section) and be of shape (|D|, f).

Assuming each Si incurs an overhead of an 8-byte pointer
and N is the number of total nonzero pixel values for all Si ∈
sparse_obs, we can define the memory size of ObsComp
as the following (in bytes):

I2d+ 8d(f − 1) + 4N + 4|D|f. (3)

In comparison, to store all observations without any form of
compression would take |D| × I × I × f bytes. Overall, our
method yields a theoretical compression factor of:

I2|D|f
I2d+ 8d(f − 1) + 4N + 4|D|f

. (4)

Letting N = d(f − 1)n, where n is the average number
of pixels that need to be stored per compressed image, and
I = 84 (as used in our experiments in Section V), we can
further simplify the compression factor in terms of f and n:

1764f

(1762− n)/f + 2 + n
. (5)

Noting that n = I2ϕ = 7056ϕ, where ϕ is the average
percentage of pixels that need to be stored per compressed

image, we plot the theoretical compression factor resulting
from our approach for varying values of f and ϕ in Figure 2.
We observe that even with a relatively small frame stack
length of f = 4, an order of magnitude compression factor
can still be achieved as long as at most an average of 5% of
the pixels remain in the encoded images. Similarly, with a
larger frame stack length of f = 10, we can also still achieve
an order of magnitude compression factor, even with up to
25% of the pixels remaining.

5% 10% 15% 25% 50%

2 3.3 2.9 2.5 2.0 1.3

4 10.0 7.3 5.7 4.0 2.3

6 17.9 12.0 9.0 6.0 3.3

8 26.6 16.8 12.3 8.0 4.3

10 35.6 21.7 15.6 10.0 5.3
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Fig. 2: Theoretical compression factor for different values of
frame stack length f and average percent of total pixels re-
maining per compressed image ϕ. Higher values correspond
to more compression achieved.

V. EXPERIMENTS AND RESULTS
We evaluate the effectiveness of our differential encoder-

based compression framework using tasks from both the
Atari 2600 benchmark [12] as well as the DeepMind Control
Suite (DMC) [9]. We analyze our results in terms of training
speed, memory consumption (and associated compression
factor), and convergence performance. Our full implemen-
tation, including values for all hyperparameters used in our
experiments, can be found in our open-source GitHub repos-
itory at: github.com/A2R-Lab/DiffCompressDRL.

A. Methodology
For all Atari benchmark tasks, we set f to the default value

of 4 and train using two popular on- and off-policy rein-
forcement learning algorithms: Proximal Policy Optimization
(PPO) [35] and Quantile Regression DQN (QR-DQN) [15].
We use publicly available implementations of both PPO and
QR-DQN (credit: stable-baselines3 [43]), modifying
only the buffer logic in order to accommodate observation
compression. For the DeepMind Control Suite tasks, we set
f to the default value of 3 and train on a state-of-the-art
off-policy, data augmentation-based reinforcement learning
algorithm: Data-regularized Q-v2 (DrQ-v2) [8]. We use Meta
Research’s official implementation of DrQ-v2, again only
modifying logic pertaining to the storage and retrieval of
image observations. Unless otherwise noted, we run all
experiments using the default PPO, QR-DQN, and DrQ-v2
hyperparameters. Exact values for all hyperparameters can
be found on our GitHub repository.2

2Training was done using a high-performance workstation with a 3.2GHz
16-core Intel i9-12900K and a 2.2GHz NVIDIA GeForce RTX 4090 GPU
running Ubuntu 22.04 and CUDA 12.1.
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Comp
Type Env FPS

(base)
FPS

(ours)
GB

(base)
GB

(ours)
Total
Comp

Walker 119 142 63.5 7.1 8.9×
Half Quadruped 184 243 63.6 7.1 9.0×

AVG 152 193 63.6 7.1 9.0×
Walker 119 73 63.5 3.8 16.7×

Full Quadruped 184 135 63.6 4.1 15.5×
AVG 152 104 63.6 4.0 15.9×

TABLE I: DrQ-v2 training speed (FPS), replay buffer size
(GB), and total memory reduction due to compression (To-
tal Comp) of both speed-optimized (Half) and memory-
optimized (Full) compression for the DMC [9] tasks of
Walker Walk and Quadruped Walk.

B. Robotic Control Tasks

In this section, we evaluate our approach on the
Walker Walk and Quadruped Walk tasks from the
DMC robotic control suite [9].3 We define two separate levels
of image-based compression: Half and Full. Half, or speed-
optimized compression uses a fully vectorized implemen-
tation of observation indexing (Section IV-B) but does not
leverage observation compression (Section IV-C), while Full
uses the entire compression stack detailed in Section IV, but
as a result, does not support vectorization.4 In addition, both
implementations store all experience values in our replay
buffer directly in memory, unlike DrQ-v2, which by default
needs to store such values to disk.

Table I compares the training speed, replay buffer size, and
total compression factor (Equation 4) achieved with Half and
Full compression using DrQ-v2 across the Walker Walk
and Quadruped Walk DMC tasks.5 We find that on
average, Half and Full compression reduce the replay buffer’s
memory footprint by 9× and 15.9× respectively, with Full
achieving a 16.7× compression factor for Walker Walk.

In terms of training speed, our Half compression approach,
which is fully vectorized, improves latency over the baseline
DrQ-v2 implementation by as much as 32% while still
achieving the aforementioned 9× compression factor. As
noted earlier, our Full compression implementation does
not yet leverage vectorization and so results in an average
slow-down of 32% as compared to the baseline DrQ-v2
implementation, which, despite storing its replay buffer on
disk, leverages multi-threaded data loaders and batch pre-
fetching in order to be as low latency as possible.

Figure 3 plots the learning curves of DrQ-v2 across
the Walker Walk and Quadruped Walk DMC environ-
ments using no compression (black), Half compression (light
blue), and Full compression (dark blue). We average our
results across five random seeds and display the standard de-
viation with the accompanying shaded region. As expected,

3We make two minor modifications to the default environments: switching
from RGB to grayscale image observations and removing the default
checkerboard floor pattern.

4We note that this can be added through future work and as such speed
results from Full compression represent a conservative underestimate of
future fully-optimized performance.

5We set N to be the maximum number of nonzero pixels stored at any
time during training, across all trials, to provide a conservative bound.

Fig. 3: Learning curves of DrQ-v2 with Half (light blue), Full
(dark blue), and no (black) compression for the DMC [9]
tasks of Walker Walk and Quadruped Walk.

given that our compression is lossless, we find convergence
is not affected by our approach, as all final rewards both with
and without differential encoder-based compression are well
within a standard deviation of each other.

C. Atari Environments

Table II compares the training speed and replay buffer size
with and without differential encoding-based image compres-
sion across 10 Atari 2600 benchmark environments [12],
as well as the compression factor, for both PPO and QR-
DQN using the Full compression approach.6 We find that
on average, Full compression is able to reduce the replay
buffer’s memory footprint by 8.9× and 9.9× for PPO and
QR-DQN respectively. While the end compression factor
does vary by environment–as the number N of nonzero pixel
values stored in the observation compressor (Equation 3)
differs depending on the level of inter-frame dissimilarity
within the environment–we find that 5/10 PPO and 6/10 QR-
DQN environments achieve over a 10× compression factor,
with our best-case environments achieving as much as a
14.2× reduction. As previously noted, Full compression is
not fully vectorized and can be optimized through future
work, as such we find an average 5% and 29% slow-down for
PPO and QR-DQN respectively as compared to the default,
vectorized, stable-baselines3 implementation.

Figure 4 plots the learning curves of PPO and QR-DQN
across the ten Atari environments for the first 10M steps
of training. These figures report the average of five random
seeds and also display the standard deviation with the accom-
panying shaded regions. As in the DMC environments, we
find that convergence is not affected, with all final rewards
being well within a standard deviation of one another.

VI. CONCLUSION AND FUTURE WORK

This paper presents a novel, differential encoding-based
method for observation compression, reducing the overall
memory requirements of perceptive DRL without impacting
training performance.

6We do not run the Atari experiments with Half compression, as due to
their low memory cost relative to the DMC tasks, the Atari baselines are
already fully vectorized in RAM.
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Fig. 4: Learning curves of PPO (top) and QR-DQN (bottom) with (blue) and without (black) pixel-based compression across
ten Atari 2600 [12] environments. Rewards are averaged across five trials and standard deviations are shaded.

Alg Env FPS
(base)

FPS
(ours)

MB
(base)

MB
(ours)

Total
Comp

Asteroids 1605 1535 27.6 2.6 10.8×
BeamRider 1339 1267 27.6 7.6 3.6×
Breakout 1437 1383 27.6 2.0 14.2×
Enduro 1117 1062 27.6 3.5 7.9×
MsPacman 1432 1389 27.6 2.3 12.1×

PPO Pong 1582 1512 27.6 2.0 13.9×
Qbert 1507 1452 27.6 3.0 9.1×
RoadRunner 1347 1267 27.6 3.0 9.0×
Seaquest 1466 1371 27.6 2.9 9.6×
SpaceInvaders 1468 1395 27.6 2.4 11.3×
AVG 1430 1363 27.6 3.1 8.9×
Asteroids 897 616 2694 265 10.2×
BeamRider 792 547 2694 552 4.9×
Breakout 833 587 2694 190 14.2×
Enduro 722 536 2694 306 8.8×
MsPacman 839 597 2694 219 12.3×

DQN Pong 881 627 2694 192 14.0×
Qbert 849 608 2694 213 12.7×
RoadRunner 808 576 2694 290 9.3×
Seaquest 732 484 2694 278 9.7×
SpaceInvaders 861 607 2694 227 11.9×
AVG 821 579 2694 273 9.9×

TABLE II: Training speed in frames/steps per second (FPS),
replay buffer size (MB), and total memory reduction due
to compression (Total Comp) of both PPO and QR-DQN
(DQN) across ten Atari 2600 [12] environments.

We evaluate the compression factor, training speed, and
learning performance across ten Atari and two DMC tasks
using three state-of-the-art on- and off-policy perceptive
DRL algorithms. We find that differential image encoding
reduces the memory footprint by as much as 14.2× and
16.7× for the Atari and DMC tasks respectively. These
savings also enable large-scale DRL that previously required
paging between flash and RAM to be run entirely in RAM,
improving latency for the DMC tasks by as much as 27%.

Admittedly, not all learning-based approaches will benefit
equally from observation compression. For instance, newer
model-based techniques may trade off large replay buffers
for more expressive world models [6]. However, if we are
to realize lifelong, practical learning on the edge, curbing
memory usage, wherever it may be, is essential.

In future work, we hope to further optimize our method
through enhanced vectorization and parallelization in order
to speed up training. Finally, we hope to deploy our com-
pression technique onto physical robot hardware and test it
in the context of both real-world edge RL and tiny robot
learning [44]. We hope that this effort will aid in reducing
cost and compute barriers for state-of-the-art RL across all
robot platforms.
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