
Projection-Based Fast and Safe Policy Optimization
for Reinforcement Learning

Shijun Lin, Hao Wang, Ziyang Chen, and Zhen Kan

Abstract— While reinforcement learning (RL) attracts
increasing research attention, maximizing the return while
keeping the agent safe at the same time remains an open
problem. Motivated to address this challenge, this work
proposes a new Fast and Safe Policy Optimization (FSPO)
algorithm, which consists of three steps: the first step involves
reward improvement update, the second step projects the
policy to the neighborhood of the baseline policy to accelerate
the optimization process, and the third step addresses the
constraint violation by projecting the policy back onto the
constraint set. Such a projection-based optimization can
improve the convergence and learning performance. Unlike
many existing works that require convex approximations for
the objectives and constraints, this work exploits a first-
order method to avoid expensive computations and high
dimensional issues, enabling fast and safe policy optimization,
especially for challenging tasks. Numerical simulation and
physical experiments demonstrate that FSPO outperforms
existing methods in terms of safety guarantees and task
completion rate.

I. INTRODUCTION

Deep reinforcement learning (RL) has shown great
potentials in many fields, such as e-sports games, self-driving
cars. When deploying deep RL in practice, achieving the goal
while keeping the agent safe is of great importance. That
is, the agent needs to maximize the reward collection while
satisfying a set of safety constraints. However, most existing
works are either not robust enough [1]–[3] or converge
slowly [4] when facing challenging tasks with complex safety
requirements. Therefore, this work is motivated to develop a
fast and safe policy optimization method.

To keep the agent safe, certificate functions have been
widely used. As a common certificate function, control
barrier function (CBF) ensures the forward invariance of a
safe set [5]–[8]. However, such methods have to rely on prior
knowledge of the system models and in most cases, limiting
its applications. To overcome this issue, recent works exploit
barrier certificates which can be learned from collected data.
For instance, the work of [9] learns workspace constraints
from human demonstrations and generates robot trajectories
satisfying the learned constraints. However, these methods
still lack safety guarantees. An optimization-based approach
was developed in [10] to learn control barrier functions from
expert trajectories with provable safety. The work of [11]

This work was supported in part by the National Natural Science
Foundation of China under Grant 62173314 and U2013601.

S. Lin, H. Wang, Z. Chen, and Z. Kan (Corresponding Author) are with
the Department of Automation at the University of Science and Technology
of China, Hefei, Anhui, China, 230026.

replaces the QP controller with a neural network and jointly
learns the CBF and controller. These methods still require
a lot of effort and high-quality sampling data to train the
parameters to learn a qualified CBF.

Constrained Markov decision process (CMDP) is another
common approach for safe RL [12]–[14]. Based on the
idea of trust region policy optimization (TRPO) [15],
the constrained policy optimization (CPO) was developed
to guarantee safe exploration [1]. In [2], the projection-
based constrained policy optimization (PCPO) replaced the
line search of CPO with the projection to improve the
convergence. Based on PCPO, the safe policy adaptation
with constrained exploration (SPACE) was developed in
[16], which uses a baseline policy to further accelerate
the learning process. However, these methods all involve
convex approximation of non-convex objectives and safe
constraints via Taylor approximation, which can lead to
poor performance. In addition, these methods require a
high-dimensional Fisher information matrix, which increases
the computational burden. Instead of convex approximation,
the first order constrained optimization in policy space
(FOCOPS) [17] exploits the idea of projection, updates
the policy in the non-parametric policy space, and then
projects it back into the parametric policy space. However, it
heavily depends on the current optimal policy. An alternative
to address CMDP is the Lagrangian method [18]–[20],
which uses the primal-dual method and incorporates the
constraint as a penalty signal by multiplying adaptive penalty
coefficients. A novel multi-timescale constrained actor-critic
approach, namely Reward Constrained Policy Optimization
(RCPO), was developed in [4], in which the actor, the critic,
and the Lagrangian multiplier share different learning rates.
In [3], the cumulative discount cost was reformulated in a
maximum form. However, these methods are limited by low
convergence rates.

To deal with tasks with complex task objectives and safety
constraints, linear temporal logic (LTL) has been used with
RL [21]–[24]. For instance, an automata-inspired structure,
namely reward machine, was developed in [25] to accelerate
the RL training. However, safety was not considered in [25].
In [26], [27], CBF was incorporated with temporal logic-
guided RL to satisfy the safety constraints and complex
task constraints during exploration. However, the CBF was
designed by hand, requiring prior knowledge of the system.

In this work, we propose a novel Fast and Safe Policy
Optimization (FSPO) algorithm. Unlike the classical CPO
[1], our approach is based on the primal-dual method

2024 IEEE International Conference on Robotics and Automation (ICRA 2024)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 7426

with a first-order optimizer, which requires neither convex
approximation of the objective and constraints, nor the
Fisher information matrix. As a result, our approach requires
less computational resources. In particular, to improve the
convergence while ensuring policy safety, we consider
three steps. We first maximize the expected reward, then
project the policy to the region around the baseline policy
to accelerate the training process, and finally perform a
projection onto the safe sets. In addition, to deal with
complex tasks, we also encode the task as a linear temporal
logic (LTL) formula and use a reward machine to further
accelerate the reward learning process.

The contributions are summarized as follows. The
proposed FSPO does not require the convex approximation
and Fisher information matrix, and thus is less computational
resource demanding. The developed three-step projection
optimization method can speed up the training process
while keeping the policy safe. We further incorporate reward
machines into FSPO to accelerate the learning process and
handle complex tasks with temporal and logical constraints.
Numerical and experimental studies demonstrate that FSPO
outperforms most state-of-the-art baselines, especially for
complex tasks.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Safe Reinforcement Learning

Safe reinforcement learning problem are usually
formulated as constrained Markov Decision Process
(CMDP) [12], which is a tuple (S,A, T , R, C), where S is
the set of states, A is the set of actions, T : S×A×S 7→ [0, 1]
is the transition probability, R : S × A 7→ R is the reward
function, and C : S × A 7→ R is the cost function. Let
π(a|s) with s ∈ S and a ∈ A denote a policy. That is, given
a state s, an action a is selected according to π(a|s) and the
state transits from s to s′ according to the state transition
model T (s′|s, a). A reward R(s, a) and cost C(s, a) can
then be received, respectively.

The goal is to find a policy which maximizes
the cumulative discounted reward JR(π)

.
=

Eτ∼π [
∑∞

t=0 γ
tR (st, at)] while keeping the cumulative

discounted cost below hC to satisfy the constraints, i.e.,
JC(π)

.
= Eτ∼π [

∑∞
t=0 γ

tC (st, at)] ≤ hC where γ ∈ (0, 1)
denotes the discount factor, τ = (s0, a0, s1, · · ·) denotes the
trajectory , and τ∼π is a trajectory induced by π satisfying
π : s0 ∼ µ, at ∼ π(at|st), st+1 ∼ T (st+1|st, at), where µ
is the initial state distribution.

We define the reward advantage function as
AR

π (s, a)
.
= QR

π (s, a) − V R
π (s), where QR

π (s, a)
.
=

Eτ∼π [
∑∞

t=0 γ
tR (st, at) | s0 = s, a0 = a] is the expected

reward following policy π starting from state s and action
a, and V R

π (s)
.
= Eτ∼π [

∑∞
t=0 γ

tR (st, at) | s0 = s]
is the expected reward from state s under policy
π. Similarly, we can define the cost advantage
function AC

π (s, a)
.
= QC

π (s, a) − V C
π (s), where

QC
π (s, a)

.
= Eτ∼π [

∑∞
t=0 γ

tC (st, at) | s0 = s, a0 = a]
and V C

π (s)
.
= Eτ∼π [

∑∞
t=0 γ

tC (st, at) | s0 = s] .

Let P (s = st|π) denote the state distribution at time t
under policy π. The discounted state distribution induced
by π is dπ(s)

.
= (1 − γ)

∑∞
t=0 γ

tµt(s | π). Then the
performance difference between two policies π and π′ can
be compactly expressed as [28]

JR (π′)− JR(π) =
1

1− γ
Es∼dπ

a∼π′

[
AR

π (s, a)
]
. (1)

Similarly, we have

JC (π′)− JC(π) =
1

1− γ
Es∼dπ

a∼π′

[
AC

π (s, a)
]
. (2)

The policy can be safely learned by [1]:

πk+1 =arg max
π∈Πθ

E
s∼dπk

a∼π

[
AR

πk
(s, a)

]
s.t. JC (πk) +

1

1− γ
E

s∼dπk

a∼π

[
AC

πk
(s, a)

]
≤ hC ∀i

D̄KL (π∥πk) ≤ δ.

(3)

where D̄KL is the KL-divergence between two policies, hC

is cost threshold.

B. Linear Temporal Logic and LDBA

Linear Temporal Logic (LTL) has been widely used in
describe complex tasks. Detailed descriptions of the syntax
and semantics of LTL can be found in [29].

Definition 3.1 An limit-deterministic Büchi automata
(LDBA) [30] is a tuple A = (Q,Σ, δ, q0, F), where Q is a
finite set of states, Σ is a finite alphabet, δ : Q×(Σ∪{ϵ}) →
2Q is a (partial) transition function, q0 ∈ Q is an initial state,
and F is a set of accepting states.

C. Problem Statement

Given a safe reinforcement learning problem formulated
in (3), we denote by πB a baseline policy (i.e., a pre-trained
policy that can be obtained by any reinforcement algorithm).
The distance between π(s) and πB(s) can be measured by
KL-divergence as D(s)

.
= DKL (π(s)∥πB(s)). Similarly, we

can define JD(π)
.
= Eτ∼π [

∑∞
t=0 γ

tD (st)] and

JD (π′)− JD(π) =
1

1− γ
E
s∼dπ′

a∼π′

[
AD

π (s, a)
]
. (4)

Using the reward machine and KL-divergence between the
learning policy and baseline policy, the training process can
be improved since more information is utilized. Hence, the
goal is to solve the following optimization problem:

πk+1 =arg max
π∈Πθ

E
s∼dπk

a∼π

[
AR

′

πk
(s, a)

]
s.t. JC (πk) +

1

1− γ
E

s∼dπk

a∼π

[
AC

πk
(s, a)

]
≤ hC ∀i

JD (πk) +
1

1− γ
E

s∼dπk

a∼π

[
AD

πk
(s, a)

]
≤ hC ∀i

D̄KL (π∥πk) ≤ δ.

(5)

where R
′

is the reward function generated by the reward
machine, which will be defined in the following section.

7427

Algorithm 1 FSPO

1: procedure INPUT: (An initial policy π0 = π(· | θ0), the initial
Lagrangian coefficient µ0 and v0, a baseline policy πB and a
trajectory buffer B)

Output: the optimal policy θ∗

2: while Reward AR and cost JC not converged do
3: for each k = 0, 1, 2 . . . do
4: Sample a set of trajectories D = τ ∼ πk = π(θk)
5: Run Reward Improvement Step by (6) or (7) to

obtain πθ
k+1

3
6: Project the πθ

k+1
3

to baseline policy πB neighbor
set by (10), (11) and (12) to obtain πθ

k+2
3

7: update vk by (18) or (20)
8: Project the πθ

k+2
3

to constrain set by (15), (16) and
(17) to obtain πθk+1

9: update µk by (19) or (21)
obtain θk+1, vk and µk, Use πθk+1 in the environment to

get new samples

III. FAST AND SAFE POLICY OPTIMIZATION

A. Approach Overview

Inspired by [16], we use three steps to facilitate the
training of the policy, i.e., the reward improvement step, the
divergence projection step, and the constraints projection step
to solve the optimization problem in (5). CPO [1] can ensure
the safety of policy without error occurred. However, in the
event of an error, the projection can effectively resolve it, as
shown in Fig. 1. To avoid residual errors due to the convex
approximation, our approach is based on the dual methods.
Unlike existing methods such as RCPO [4] that uses dual
methods to mix the constraint and the reward, in this work
the dual method is used after policy optimization.

As outlined in Alg. 1, π0 is an initial policy to be updated
and πB is a pre-trained baseline policy that can be obtained
by any trust region based reinforcement algorithm such as
PPO [31], CPO [1] and RCPO [4]. For each k = 0, 1, . . .,
after sampling trajectories, we first maximize the reward in
the trust region by (6) or (7) to get πθ

k+1
3

in line 5. Then, to
accelerate the learning process, we project πθ

k+1
3

onto the
region around πB using (10), (11) and (12) to obtain πθ

k+2
3

.
The Lagrangian coefficients vk can be update by (18) or (19).
Finally, to satisfy the safety constraints, we project πθ

k+2
3

to
the constrain set by (15), (16) and (17), update µk by (19)
or (21), and output πθk+1

at last.

B. Three Optimization Steps

As illustrated in Fig. 1, our approach consists of three
optimization steps.

Reward Improvement Step: inspired by the reward
improvement method in TRPO [15] and PPO [31], we first
maximize the reward advantage function AR

π (s, a) with the
constraint of Kullback_Leibler (KL) divergence to perform
a stable policy update. There are two ways in this step:

πθ
k+1

3

= arg max
πθ∈Πθ

{Es∼dπθk
(·),a∼πθ(·|s)[A

R
πθk

(s, a)]

Fig. 1: Three optimization steps of FSPO when πθk don’t satisfy
the constraint

−αk

√
Es∼dπθk

[KL(πθk , πθ)[s]]}. (6)

or update like PPO with clip as

πθ
k+1

3

≈ arg max
πθ∈Πθ

{
Es∼dπθk

(·),a∼πθ(·|s)

min

(
πθ (at | st)
πθk (at | st)

AR
πθk

(st, at) ,

clip

(
πθ (at | st)
πθk (at | st)

, 1− ε, 1 + ε

)
AR

πθk
(st, at)

)}
. (7)

Both ways can yield the reward improvement over the
neighborhood of the origin policy.

Divergence Projection Step: to accelerate the training
process, we leverage the baseline policy πB and project
πθ

k+1
3

onto the region around πB . The distance between
πθ

k+1
3

and πθ is minimized using a distance measure D as

πθ
k+2

3

= arg min
πθ∈Πθ

D(πθ, πθ
k+1

3

) (8)

s.t. JD(πθk) +
1

1− γ̃
Es∼dπθk

(·),a∼πθ(·|s)[A
D
πθk

(s, a)]

+βk

√
Es∼dπθk

[DKL(πθk , πθ)[s]] ≤ hD. (9)

To avoid the convex approximation like CPO and PCPO, the
primal-dual approach is developed as

(πθ
k+2

3

, vk+1) = arg min
πθ∈Πθ

max
v≥0

L̂D(πθ, πθk , θk+ 1
3
), (10)

L̂D(πθ, πθk , θk+ 1
3
) = DKL(πθ

k+1
3

, πθ) + vkD̂(πθ, πθk).

(11)
The divergence constraint function is

D̂(πθ, πθk) = JD +
1

1− γ̃
Es∼dπθk

(·),a∼πθ(·|s)A
D
πθk

(st, at)

+βk

√
Es∼dπθk

[DKL(πθk , πθ)[s]]− hD. (12)

Constrain projection Step: To ensure policy safety, we
project πθ

k+2
3

onto the safe constrain set in this step. Similar
to the last step, the distance between πθ

k+2
3

and πθ is

7428

(a) (b)

Fig. 2: (a) The simulation environment. (b) The reward machine.

minimized as

πθk+1
= arg min

πθ∈Πθ

D(πθ, πθ
k+2

3

) (13)

s.t. JC(πθk) +
1

1− γ̃
Es∼dπθk

(·),a∼πθ(·|s)[A
C
πθk

(s, a)]

+ηk
√
Es∼dπθk

[DKL(πθk , πθ)[s]] ≤ hC . (14)

Then we solve the following problem

(πθk+1
, µk+1) = arg min

πθ∈Πθ

max
µ≥0

L̂C(πθ, πθk , θk+ 2
3
), (15)

L̂C(πθ, πθk , θk+ 2
3
) = DKL(πθ

k+2
3

, πθ) + µkĈ(πθ, πθk).

(16)
The safety constraint function is

Ĉ(πθ, πθk) = JC +
1

1− γ̃
·Es∼dπθk

(·),a∼πθ(·|s)A
C
πθk

(st, at)

+ηk
√
Es∼dπθk

[DKL(πθk , πθ)[s]]− hC . (17)

As for the coefficient v and µ, there are two ways to update:

νk+1 = νk + ην(J
D − hD)+, (18)

µk+1 = µk + ηµ(J
C − hC)+, (19)

or treat them as parameters of the neural network with the
loss functions

Lν = −ν ∗ ην(JD − hD), (20)

Lµ = −µ ∗ ηµ(JC − hC). (21)

C. Reward Machine

When encountering more challenging tasks (e.g., long-
horizon tasks with complex temporal and logic constraints),
we encode the task as a linear temporal logic (LTL) formula.
Then, we build a reward machine [25] based on the LTL
formula to facilitate agent learning.

Definition 3.1 (Reward Machine). Given a tuple
⟨S,A,P, L⟩ where S is a finite set of environment states, A
is a set of actions, P is a finite set of propositional symbols,
and L is a labeling function: L : S × A × S → 2P . A
reward machine (RM) is a tuple ⟨Q, q0,Σ,R, δ, ρ⟩ where Q
is a finite set of automata states, q0 ∈ Q is the initial state,

Σ = 2P is the input alphabet, and R is a finite set where
each R : S ×A× S → R in R is a reward function.

Example 1. Consider a robot tasked to deliver the
water and food to the people, and then pick up
the books and send them to the people, as shown
in Fig. 2. Such a task can be written in an LTL
formula as ((¬start)Ubooks) ∧ ((¬books)Ustart) ∧
((¬start)U(water ∧ food)) ∧ (♢(water ∧ food)). A
reward machine can be defined over a set of propositional
symbols P = {water, food, books, start}, where o ∈ P
occurs when the agent is at location o. The states of reward
machine is Q = {q0, q1, q2, q3, q4} and the reward function
set is R = {r0, r1, r2, r3, r4} as shown in Fig. 2. The q0
means the agent haven’t got the water and food, and thus
the reward is a negative value r0. If the agent has obtained
the water and food, the state of reward machine comes to
q1 and the reward of this transition is r1. Now the robot
needs to send the water and food back to the people. If
the agent hasn’t go back to S, no matter where it goes, it
always stays in state q1 and gets the negative reward r0.
Once it reaches S, the positive reward r2 is received, and
the RM state comes to q2. Similarly, only if the agent gets
the books, the state can be transited to q3. The agent then
gets the reward r3 and goes back to the people with state
transiting to q4 to complete the whole task. Otherwise it
can only get a negative reward r0 and stay in q3 or q4.

IV. EXPERIMENT

In this section, our method is evaluated against recent
representative methods. Particularly, we investigate 1) the
policy performance: whether our method improves the
performance of learned policy in terms of reward collection
and convergence; 2) the safety guarantee: whether our
method outperforms previous methods in terms of safety
guarantee in both training and deployment stages; 3) the task
completion: whether our method can complete the tasks.

A. Experiment Setup

1) Environments: To verify the advantages of our method
in different environments, we consider two cases. Case 1
is a relatively simple environment with three obstacles as
shown in Fig. 3(a)-(b). The LTL task is ((¬areay)Uareab)∧
(♢areab), which requires the robot to first reach the blue
area and then the yellow area. Case 2 is a more challenging
environment as shown in Fig. 3(d)-(e), which requires the
agent to reach area b, y, and g sequentially, while avoiding
the obstacles. Such a task can be written in LTL as
((¬areag)Uareay) ∧ ((¬areay)Uareab) ∧ (♢areab).

The reward machines for the above two cases are shown
in Fig. 3(c) and Fig. 3(f), respectively. In the experiment,
we set r0 = −1, r1 = r2 = 20, and r3 = 100. The agent
is rewarded based on the accomplishment of subtasks, and
punished if no progress is made. The cost is designed as

c =

{ 50

1+e10(d−dsafe) , if d > dsafe,

50, if d ≤ dsafe,

7429

(a) (b) (c)

(d) (e) (f)

Fig. 3: The top row indicates Case 1 and the bottom row
indicates Case 2. (a) The simple environment in simulation. (b)
The corresponding physical environment. (c) The reward machine.
(d) The challenging environment with more obstacles. (e) The
corresponding physical environment. (f) The reward machine.

which indicates that, the closer the agent to the obstacle, the
greater the cost it will get. If it collides with an obstacle, a
large penalty will be received.

2) Baseline: We consider five baselines: constrained
policy optimization (CPO) [1], projection-based constrained
policy optimization (PCPO) [2], safe policy adaptation with
constrained exploration (SPACE) [16], reward constrained
policy optimization (RCPO) [4], reachability constrained
reinforcement learning (RCRL) [3]. As for RCPO, we use
PPO and SAC as the RL base algorithms, denoted as
PPO_Lagrangian (PPO_L) and SAC_Lagrangian (SAC_L),
respectively. To show the effect of divergence projection
step, besides FSPO, we also consider SPO, a simplified
version of FSPO in the ablation experiment that only includes
the reward improvement step and constrain projection step
without the divergence projection step. To compare with
the above different update methods, we use FSPO with
neural network updated Lagrangian coefficient (FSPO_N)
and FSPO with manually updated Lagrangian coefficient
(FSPO_M). Similarly, SPO_M and SPO_N are considered.

B. Main Result

This section presents the comparison results of the policy
performance, the safety rate, and the task completion rate
between our method and the baseline methods. The role of
the divergence projection step and the training process of
Lagrangian coefficients are also discussed.

1) Safety rate during learning: For Case 1, Fig. 4(a)
and (b) show that FSPO converges slower than the baseline
methods, but performs similarly to the baseline methods in
terms of the reward collection and the cost performance.
This is mainly due to the fact that Case 1 is a relatively

(a) (b)

(c) (d)

Fig. 4: The reward and cost curves of different algorithm. (a) and
(b) show the reward and cost curves for Case 1, while (c) and (d)
show the performance for Case 2.

simple case, for which the baseline methods can generally
perform well. However, when encountering more challenging
environments and tasks, as in Case 2 with more obstacles
and more complex task requirements, the strength of our
method emerges. As shown in Fig. 4(c) and (d), the reward
of FSPO is higher than baseline algorithms while the cost is
significantly lower the others. Note that the SPACE cannot
even complete the task. A possible explanation is that, since
we do not use the convex approximation method, it results
in higher reward and lower cost with high safety guarantees.

2) Safety rate during and after training: We compare the
safety rate and task completion rate during and after training
of our algorithm with the baseline algorithms for Case 2.
We choose the last 2000 episodes in the training to show the
results after training. Both SPO and FSPO have high safety
rate and task completion rate. Our algorithm also shows high
safe guarantees. It is worth mentioning that, although PPO_L
shows the highest safety rate, it cannot complete the task.

3) Ablation experiment: As mentioned in (18)-(21), there
are two ways to update the Lagrangian coefficients. To verify
the effect of the divergence projection step, we compare
the performance between the following four algorithms:
FSPO_M, FSPO_N, SPO_M and SPO_A. As shown in Fig.
5, FSPO and SPO have similar performance for Case 1.
When encountering more challenging Case 2, SPO converges
slowly even if it has high reward and low cost at last.
However, the convergence of FSPO is greatly improved.

Since Lagrangian coefficient determines the trade off
between the safety and performance, we first show the
training process of Lagrangian coefficients during the
learning process. As shown in Fig. 5(a) and (d), the
Lagrangian coefficient updated by neural network slowly
decreases as the training progresses. But when updating it

7430

(a) (b) (c)

(d) (e) (f)

Fig. 5: The evolution of the Lagrangian coefficient, the reward, and the cost using FSPO_M, FSPO_N, SPO_M, and SPO_N. The top
row shows the result for Case 1 while the bottom row shows the result for Case 2.

(a) (b)

Fig. 6: The evolution of the divergence cost and the Lagrangian
coefficient ν for Case 2.

manually, it stays at a high value when the agent is not safe
enough. Once the agent has been trained to be sufficiently
safe, the value decreases fast. The performance of FSPO_M
is slightly better than FSPO_N.

4) Divergence cost of FSPO: The divergence cost means
the divergence between the policy and the baseline policy
πB . We show the divergence cost and the Lagrangian
coefficients of step 2 in Fig. 6a and Fig. 6b, respectively.
It is observed that the value is high at the beginning, and
then quickly decreases after some episodes. It is speculated
that such a process can help accelerate the training at the
beginning and increase the upper limit of the algorithm in
the end.

C. Physical Experiment

The effectiveness of our approach is also verified in
physical environment for Case 1 and 2 using a turtlebot. As

TABLE I: Safety rate and task completion rate

Method Final Safety Rate Task Completion Rate Safety Rate during Training

CPO [1] 43.15% 0% 39.50%

PCPO [2] 52.75% 0% 49.89%

SPACE [16] 11.1% 0% 25.16%

PPO_L [4] 99.46% 0% 98.69%

SAC_L [4] 84.70% 84.31% 57.47%

RCRL [3] 87.27% 85.38% 63.42%

SPO_M(Ours) 94.97% 94.97% 58.46%

SPO_A(Ours) 93.25% 93.25% 51.81%

FSPO_M(Ours) 95.10% 94.93% 86.53%

FSPO_N(Ours) 92.70% 91.97% 86.25%

shown in Fig. 3(b) and (e), the turtlebot can safely complete
the tasks. The experiment video with more explanations is
provided1.

V. CONCLUSION

In this work, a Fast and Safe Policy Optimization (FSPO)
algorithm is developed to improve the policy learning
efficiency and performance while ensuring policy safety.
Numerical simulation and physical experiments demonstrate
the effectiveness of FSPO. Future research will consider
extending FSPO to further ensure safety in both training and
deployment.

1https://youtu.be/2RgaH-zcmk

7431

REFERENCES

[1] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” in Int. Conf. Machin. Learn. PMLR, 2017, pp. 22–31.

[2] T.-Y. Yang, J. Rosca, K. Narasimhan, and P. J. Ramadge, “Projection-
based constrained policy optimization,” in Int. Conf. Learn. Represent.,
2019.

[3] D. Yu, H. Ma, S. Li, and J. Chen, “Reachability constrained
reinforcement learning,” in Int. Conf. Machin. Learn. PMLR, 2022,
pp. 25 636–25 655.

[4] C. Tessler, D. J. Mankowitz, and S. Mannor, “Reward constrained
policy optimization,” arXiv preprint arXiv:1805.11074, 2018.

[5] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,”
in IEEE Control Syst., 2014, pp. 6271–6278.

[6] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in European Control Conf., ECC, 2019, pp. 3420–3431.

[7] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, “Introducing
sostools: A general purpose sum of squares programming solver,” in
Proc IEEE Conf Decis Control, vol. 1, 2002, pp. 741–746.

[8] P. Wieland and F. Allgöwer, “Constructive safety using control barrier
functions,” IFAC-PapersOnLine, vol. 40, no. 12, pp. 462–467, 2007.

[9] M. Saveriano and D. Lee, “Learning barrier functions for constrained
motion planning with dynamical systems,” in IEEE Int Conf Intell Rob
Syst, 2019, pp. 112–119.

[10] A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas,
S. Tu, and N. Matni, “Learning control barrier functions from expert
demonstrations,” in Proc IEEE Conf Decis Control, 2020, pp. 3717–
3724.

[11] C. Zhang, S. Wang, S. Meng, and Z. Kan, “Safe exploration of
reinforcement learning with data-driven control barrier function,” in
Proceeding - China Autom. Congr., CAC, 2022, pp. 1008–1013.

[12] E. Altman, Constrained Markov decision processes. CRC press, 1999,
vol. 7.

[13] A. Wachi and Y. Sui, “Safe reinforcement learning in constrained
markov decision processes,” in Int. Conf. Machin. Learn. PMLR,
2020, pp. 9797–9806.

[14] V. S. Borkar, “An actor-critic algorithm for constrained markov
decision processes,” Syst Control Lett, vol. 54, no. 3, pp. 207–213,
2005.

[15] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Int. Conf. Machin. Learn. PMLR,
2015, pp. 1889–1897.

[16] T.-Y. Yang, J. Rosca, K. Narasimhan, and P. J. Ramadge, “Accelerating
safe reinforcement learning with constraint-mismatched baseline
policies,” in Int. Conf. Machin. Learn. PMLR, 2021, pp. 11 795–
11 807.

[17] Y. Zhang, Q. Vuong, and K. Ross, “First order constrained
optimization in policy space,” Adv. neural inf. proces. syst., vol. 33,
pp. 15 338–15 349, 2020.

[18] D. Ding, K. Zhang, T. Basar, and M. Jovanovic, “Natural
policy gradient primal-dual method for constrained markov decision
processes,” Adv. neural inf. proces. syst., vol. 33, pp. 8378–8390, 2020.

[19] H. Satija, P. Amortila, and J. Pineau, “Constrained markov decision
processes via backward value functions,” in Int. Conf. Machin. Learn.
PMLR, 2020, pp. 8502–8511.

[20] F. Chen, J. Zhang, and Z. Wen, “A near-optimal primal-dual method
for off-policy learning in cmdp,” Adv. neural inf. proces. syst., vol. 35,
pp. 10 521–10 532, 2022.

[21] M. Cai, S. Xiao, Z. Li, and Z. Kan, “Optimal probabilistic motion
planning with potential infeasible ltl constraints,” IEEE Trans. Autom.
Control, vol. 68, no. 1, pp. 301–316, 2021.

[22] M. Cai, H. Peng, Z. Li, and Z. Kan, “Learning-based probabilistic ltl
motion planning with environment and motion uncertainties,” IEEE
Trans Autom Control, vol. 66, no. 5, pp. 2386–2392, 2020.

[23] P. Vaezipoor, A. C. Li, R. A. T. Icarte, and S. A. Mcilraith, “Ltl2action:
Generalizing ltl instructions for multi-task rl,” in Int. Conf. Machin.
Learn. PMLR, 2021, pp. 10 497–10 508.

[24] Z. Zhou, Z. Chen, M. Cai, Z. Li, Z. Kan, and C.-Y. Su, “Vision-
based reactive temporal logic motion planning for quadruped robots
in unstructured dynamic environments,” IEEE Trans. Ind. Electron.,
vol. 71, no. 6, pp. 5983–5992, 2024.

[25] R. T. Icarte, T. Klassen, R. Valenzano, and S. McIlraith, “Using
reward machines for high-level task specification and decomposition
in reinforcement learning,” in Int. Conf. Machin. Learn. PMLR, 2018,
pp. 2107–2116.

[26] M. Cai and C.-I. Vasile, “Safe-critical modular deep reinforcement
learning with temporal logic through gaussian processes and control
barrier functions,” arXiv preprint arXiv:2109.02791, 2021.

[27] M. H. Cohen, Z. Serlin, K. Leahy, and C. Belta, “Temporal logic
guided safe model-based reinforcement learning: a hybrid systems
approach,” Nonlinear Analysis: Hybrid Systems, vol. 47, p. 101295,
2023.

[28] S. Kakade and J. Langford, “Approximately optimal approximate
reinforcement learning,” in Int. Conf. Machin. Learn., 2002, pp. 267–
274.

[29] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[30] M. Y. Vardi, “Automatic verification of probabilistic concurrent finite
state programs,” in Proc. Annu. IEEE Symp. Found. Comput. Sci.
FOCS. IEEE, 1985, pp. 327–338.

[31] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

7432

