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Abstract— As autonomous driving technology matures, end-
to-end methodologies have emerged as a leading strategy,
promising seamless integration from perception to control
via deep learning. However, existing systems grapple with
challenges such as unexpected open set environments and the
complexity of black-box models. At the same time, the evolution
of deep learning introduces larger, multimodal foundational
models, offering multi-modal visual and textual understanding.
In this paper, we harness these multimodal foundation models to
enhance the robustness and adaptability of autonomous driving
systems. We introduce a method to extract nuanced spatial fea-
tures from transformers and the incorporation of latent space
simulation for improved training and policy debugging. We use
pixel/patch-aligned feature descriptors to expand foundational
model capabilities to create an end-to-end multimodal driving
model, demonstrating unparalleled results in diverse tests. Our
solution combines language with visual perception and achieves
significantly greater robustness on out-of-distribution situations.

I. INTRODUCTION

The rapid technological advancement in autonomous driv-
ing has emerged as a pivotal innovation that shifts control
from human hands to AI and sensors, promising safer
roads, enhanced mobility, and unparalleled efficiency. In
the pursuit of autonomous driving, end-to-end methodology
offers a paradigm shift toward a holistic construction of
the system that encompasses everything from perception
to control. Such an approach has (i) more flexibility with
minimal assumptions related to the design or functioning
of sub-components, and (ii) better integrality toward an
ultimate, unified goal in system performance evaluation and
targeted optimization. Notably, the ongoing advancement in
establishing end-to-end autonomous systems is propelled by
the amalgamation of deep learning techniques by training
models on extensively annotated datasets. However, prevalent
systems exhibit the following prominent limitations.
(i) Open set environments: self-driving vehicles operate in
extremely diverse scenarios that are impractical to fully cap-
ture within training datasets. When these systems encounter
situations that deviate from what they’ve learned (i.e., out-
of-distribution (OOD) data), performance deteriorates.
(ii) Black-/gray-box models: the ubiquitous use of complex,
advanced machine learning models complicates the task
of pinpointing the root causes of failures in autonomous
systems. Unraveling the intricate interactions and identifying
which learned concepts, objects, or even individual pixels
contribute to incorrect behavior can be a daunting task.
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Fig. 1: We harness the power of multimodal foundation
models in end-to-end driving to enhance generalization and
leverage language for data augmentation and debugging.

On the positive side, deep learning is undergoing a trans-
formative phase of significant advancement, characterized by
the emergence of even larger and multimodal models [1],
[2]. Trained on immense datasets that encompass billions of
images, text segments, and audio clips, these models leverage
knowledge gleaned from internet-scale resources to edge
closer to achieving common-sense understanding. They have
demonstrated exceptional efficacy in adapting to dynamic,
open-set environments [3], [4]. In addition, the incorporation
of language modality serves a dual purpose: not only does it
offer an interface that is straightforwardly comprehensible
by human users, but it also furnishes a concise yet rich
representation of information that may sufficiently describe
the underlying decision-making of autonomous systems.

In this work, we aim to harness the power of mul-
timodal foundation models to enhance the generalization
and reliability of end-to-end autonomous driving systems.
Importantly, rather than relying on explicitly-defined data
formats like scene descriptions or segmentation maps, we
exploit the latent features during model inference to preserve
all information pertinent to the models’ reasoning process.
Foundation models as feature extractors. While these
models exhibit certain favorable characteristics for attaining
open-set, multimodal representations, they do not translate
seamlessly to autonomous driving. The significant constraint
arises from the fact that these models are primarily designed
for image input consumption, resulting in the generation of a
singular vector representation for the entire image within an
embedding space. However, decision-making in autonomous
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Fig. 2: Overview. Left: Feature extraction from multimodal foundation models maps data in different modalities (e.g., image,
text) to feature vectors in a unified latent space. Middle: We introduce a generic method for patch-wise feature extraction
that preserves spatial information critical for end-to-end driving; this involves constructing attention masks anchored at each
patch location to focus on specific regions (depicted by the coloring) for the attention module. Right: The multimodal
representations with language modality enable seamless integration with LLMs; this allows to simulate latent features by
substituting the original features F ′ with contextually relevant language features (e.g., trees → house, shop, building).

driving demands more than just semantic scene descriptions;
it also requires nuanced spatial and geometric information.
To address this, we present a generic method to extract per-
patch features from transformer-based architectures that is
broadly applicable to a wide range of foundation models.
Simulation using language. Multimodal representations
map data from various modalities into a unified embedding
space, offering two key advantages for policies trained to
operate in this space: (i) cross-modality feature inspection,
and (ii) feature manipulation in modalities distinct from sen-
sor measurements. These capabilities facilitate latent space
simulation, allowing target features tied to specific concepts
to be swapped out with features from other desired concepts.
For instance, one could replace a ’car’ feature from images
in an urban driving scenario with a ’deer’ feature, without
requiring actual sensor data synthesis for a deer. This method
is valuable for data augmentation and policy debugging.
Notably, leveraging the language modality as a conceptual
representation enables integration with large language mod-
els (LLMs), unlocking enhanced common-sense reasoning
capabilities to enrich simulation complexity.
Our contributions. We bridge the gap between the robust
multimodal open-set capabilities demonstrated by foundation
models and the advanced reasoning capabilities expected of
futuristic autonomous systems - enabling OOD, end-to-end,
multimodal, and more explainable autonomy. We contribute:

• A novel approach to apply end-to-end open-set (any en-
vironment/scene) multimodal autonomous driving that
achieves SOTA results in both in-distribution and OOD
testing, and is able to provide driving decisions from
representations queryable by image and text.

• A novel mechanism to extract pixel/patch-aligned fea-
tures, extending the capabilities of multimodal founda-
tion models that typically yield image-level vectors.

• A latent space simulation technique augmented with
language modality for both data augmentation in train-
ing and counterfactual reasoning in policy debugging.

• Extensive analysis in photo-realistic simulated environ-
ments to demonstrate enhanced generalization of end-to-
end driving policies across diverse scenarios; our system
can drive seamlessly in environments not seen during
training and avoid obstacles not trained on.

• Deployment and validation of our methods on a full-
scale autonomous vehicle in real-world environments.

II. RELATED WORK

End-to-end driving. Neural networks trained to process
entirely from perception to control in autonomous vehicles
have displayed significant potential for various driving abil-
ities [5]–[9]. Nevertheless, these networks encounter chal-
lenges in acquiring robust models on a large scale, as they
demand extensive training data that is both time-consuming
and costly to gather [10]. These challenges not only incur
substantial expenses but also pose potential safety risks [11].
Consequently, training and assessment of robotic controllers
in simulated environments have emerged as a viable al-
ternative [10], [12]–[14]. However, even these simulated
environments can not cover enough scenarios, making trained
networks (systems) highly sensitive to scenarios that differ
from their training data. Training policies via intermediate
visual abstraction is another approach [15]–[17], aligning
with our work yet without multimodal foundation models.
Foundation models in robots. Recent strides in robotics
have embraced foundational models, showcasing their ability
to interact adeptly in dynamic open-set scenarios, e.g., for
control and planning [18]–[22], for 3D mapping [23], [24],
detection and following systems [25]–[28], and 3D scene
segmentation and understanding [3], [4]. Moreover, these
models have demonstrated their versatility across multiple
data modalities [3], [25], [29]–[32] marking a new era of
robots that can reason and interact wisely with the envi-
ronment. Specifically in driving, explainable and language-
based representations have been of interest for the ability to
introspect and counterfactually reason about event [33]–[37]
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Pixel/patch aligned descriptors. Several approaches for
extracting per-pixel feature descriptors via foundation models
were suggested [3], [38], however, they are either (i) not
multimodal [38], (ii) trained with a specific focus on aligning
foundation features with 2D pixels, and thus, these models
tend to lose a substantial number of concepts as part of
the fine-tuning process [39], or (iii) relies on the use of
a universal segmentation model such as SAM [40], Fast-
SAM [41], or Mask2Former [42] for extracting masks [3],
and then applies the foundation models on crops of these
masks to extract mask-aligned features, such methods are
by definition inefficient for realtime applications and might
yield not meaningful features when applying the foundation
models on small crops. Finally, they might miss important
regions in the image due to the used segmentor limitations.

III. METHOD

The end-to-end autonomous driving problem involves de-
signing a control system φ that produces steering and acceler-
ation commands based on a continuous stream of perception
data F ∈ RH×W×3 (RGB imagery here), acquired through
vehicle-mounted sensors u = φ(F). We propose enhancing
φ by substituting the raw frames F with a dense feature
representation F ′ ∈ RH ′×W ′×D extracted via a multimodal
foundation model Desc, where (H ′,W ′) is the resolution
of the dense features in the spatial dimensions and D is
the number of channels, i.e., u = φ(F ′) = φ(Desc(F)). We
first present to generate these multimodal features, preserving
both spatial and semantic informations. We then describe
how to employ language modality for latent space simulation,
useful for both data augmentation and policy debugging.

A. Patch-wise Feature Extraction

Given a foundation model Desc : RH×W×3 → RD of L
layers, an input image/frame F ∈ RH×W×3, and a desired
resolution H ′ ≤ H,W ′ ≤ W , the goal is to extract a feature
descriptors tensor F ′ ∈RH ′×W ′×D, such that F ′ encapsulates
all the semantic information of F and maintains its location
in the scene. For simplicity, we set H ′,W ′ to be equal to
the number of (non-overlapping) patches used to divide the
input image F when applying Desc on it (in what follows
we will demonstrate how H ′,W ′ can be any number smaller
than H,W ) and N = H ′W ′. For an integer i > 1, we use [i] to
denote the set {1, · · · , i}, and for every layer ℓ ∈ [L], we use
Qℓ
Desc(F),K

ℓ
Desc(F) ∈ RN×Dk ,V ℓ

Desc(F) ∈ RN×D to denote the
resulted query, key, and value matrices in the ℓth attention
layer, when applying Desc on F . We provide a mechanism
to extract features for a specific patch (or area in the image)
F

′( j), where j ∈ [N]. Notably, this mechanism can be applied
at any layer of most transformer-based foundation models
such as CLIP [1], DINO [43], [44], and BLIP [2], [45].
Masking for patch- or region-aligned feature extraction.
When extracting F

′( j), we introduce an attention mask m( j) =

(m( j)
1 , · · · ,m( j)

N ) ∈ RN . Each element m( j)
i ∈ [0,1] of this

vector determines how much the ith patch should contribute
to the desired patch feature F

′( j). For example, if we want

to completely ignore patch number i, simply set mi = 0 and
mk = 1,∀k∈ [N]\i. We utilize m to extract features as follows:
(1) Set r ∈ (−∞,0) as the parameter to control the strength of
the masking; the larger |r|, the higher effects of the masking.
(2) Define the matrix Gℓ

Desc(F) as the matrix multiplication
of the key and query matrices at the ℓth attention layer:

Gℓ
Desc(F) := Qℓ

Desc(F)(K
ℓ
Desc(F))

T
.

(3) Given the matrix M( j) = [m( j), · · · ,m( j)]T ∈ RN×N , we
obtain a masked version of Gℓ

Desc(F) as:

Ĝℓ,( j)
Desc(F)

= Gℓ
Desc(F)+(1−M( j)) · r,

where 1 ∈ RN×N is an all-ones matrix. This operation sets
the attention scores (in the matrix Ĝℓ,( j)

Desc(F)
) for ”non-

contributing” patches (where there corresponding mi close
to 0) to be close to r (low value), effectively masking
them out. The 1−M( j) term ensures that the patches with
a corresponding attention mask equal to 1 have an added
softmax’ed score of 0 (no modification), and a very low value
(effectively r) if the corresponding attention mask is near 0.
(4) With the modified attention scores, we obtain the final
attention weights with the softmax function as:

F
′( j) := Descℓ→

(
SoftMax(Ĝℓ,( j)

Desc(F)
)(V ℓ

Desc(F))
T
)
,

where Descℓ→ is the rest of the foundation model after the
lth layer. Notably, this technique can be directly extended
to any region-wise feature extraction by generalizing the
definition of patches to arbitrarily-shaped regions.
Setting the masks. We define the ith entry of m( j) to
correspond to “how much patch i contributes to the semantic
information of patch j”. Analogous to convolutional kernels,
”close” neighbors (patches) may contribute more than far
ones. Let (xi,yi) be the row-stacked ordering of the image
grid after patching. Let dist(i, j) denotes the distance between
patch i and j as dist(i, j) :=

∥∥(xi,yi)− (x j,y j)
∥∥

z , where z≥ 1

defines the norm. We set m( j)
i := f (dist(i, j)); where f can

be

{
0, if dist(0,1)> α

1, otherwise
, 1/2dist(i, j), or 1/dist(i, j), etc.

Spatial resolution/number of patches N. Increasing the
spatial resolution enhances the foundation models’ spatial
features, as higher resolution allows for more granular, non-
overlapping patches. For our applications, this granularity
is beneficial. We adapt ViTs to extract overlapping patches
during inference as in [25], [38], interpolating their positional
encoding accordingly. This yields multimodal features with
a finer spatial resolution notably without requiring additional
training. In our empirical experiments, we have observed that
this modification consistently performs well.

B. Language-augmented Latent Space Simulation

Each patch feature F
′( j) incorporates language modality,

enabling seamless integration with LLMs. We exploit this
property by conducting latent space simulations, where we
replace F

′( j) with alternative textual features to simulate
different scenarios. We opt for feature replacement over
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Rural | Summer | Dry | Day | Car Rural | Winter | Dry | Day | Car

Urban | Summer | Dry | Night | Animal Rural | Fall | Dry | Day | Animal

Rural | Summer | Dry | Night | AnimalUrban | Summer | Dry | Day | Car

Rural | Spring | Dry | Day | Car Urban | Summer | Rain | Day | Car

Setting Scenarios Methods
Scene Season Weather Time Actor No-FM MF I-ViT Ours

ID Rural Summer Dry Day Car 1.00 0.72 1.00 1.00

OOD

Rural

Spring Dry Day Car† 0.84 0.42 0.86 0.96
Summer Dry Night Car† 0.30 0.35 0.80 0.89

Fall Dry Day Car† 0.90 0.74 0.95 0.91
Winter Snow Day Car† 0.14 0.42 0.88 0.96
Spring Dry Day Animal 0.85 0.39 0.89 0.95

Summer Dry Night Animal 0.29 0.39 0.59 0.85
Fall Dry Day Animal 0.87 0.71 0.95 0.88

Winter Snow Day Animal 0.15 0.45 0.87 0.95

Urban

Summer Dry Day Car† 0.55 0.50 0.77 0.62
Summer Rain Day Car† 0.69 0.43 0.81 0.81
Summer Dry Night Car† 0.45 0.42 0.81 0.78
Summer Dry Day Animal 0.58 0.50 0.80 0.64
Summer Rain Day Animal 0.66 0.43 0.83 0.78
Summer Dry Night Animal 0.45 0.36 0.86 0.81

TABLE I: OOD generalization. The left figures are illustrations for the scenarios. †indicates car types different from training.
ID is in distribution (evaluated on data not in the training dataset yet of the same scenario). OOD is out-of-distribution.

arithmetic operations, as the latent space may not necessar-
ily adhere to a Euclidean metric structure where standard
arithmetic would be applicable. The procedure is as follows:
(1) Obtain a set of concepts in natural language that
may be relevant to autonomous driving from LLMs
and compute their corresponding textual feature, Tk =
Desc(ck), where ck ∈ Csrc/tgt = LLM(⟨questions⟩) where
Csrc refers to the set that may appear in the image feature
and Ctgt is the set of the desired substitutes.
(2) Find the best match of the patch feature via search,
TF ′( j) = argmax

k∈[|Csrc|]
g(F

′( j),Tk) where g(·, ·) is the similarity

measure, e.g., dot product. This can be improved by more
advanced optimization techniques like [46] [47].
(3) Manipulate the dense feature descriptor F ′ by replac-
ing F

′( j) with sensible textual features h(TF ′( j) ,{Tk}k∈[|Ctgt|])
under conditions like similarity above certain threshold or
stochasticity. The function h can be human prior or LLMs
that conceptually answer the question of what may be a
plausible substitute from Ctgt under the current context.

This technique is useful for counterfactual testing in
policy debugging or data augmentation during training (more
concrete examples shown in Sec. IV-B and Sec. IV-C).

IV. RESULTS

Hardware setup. We collected data and deployed learned
policies on a full-scale vehicle (2019 Lexus RX 450H)
retrofitted for autonomous driving. The car is equipped with
an NVIDIA 4070 Ti GPU and an AMD Ryzen 7 3800X
8-Core Processor. For perception, we employ a 30Hz BFS-
PGE-23S3C-CS camera offering a 130◦ horizontal FoV at a
resolution of 960 x 600 pixels. Also, the car also features
inertial measurement units (IMUs), wheel encoders, and an
OxTS d-GPS system for precise odometry estimation.
Tasks and evaluation metrics. We focus on a generic
driving task involving both lane-following and obstacle
avoidance. Failure conditions are defined as: (i) veering off
the lane boundary, (ii) colliding with objects (or approaching
them too closely in the real world for safety reasons), and
(iii) deviating from the lane’s direction by more than 30◦.
In simulations, we utilize a ”soft” success rate as a perfor-
mance metric, which gauges the duration the car can operate

without encountering any failure conditions, normalized by
a predefined time horizon for each trial. We conducted 100
trials, each with an approximate 20-second time horizon.
For real-world testing, we tally the number of interventions
made by the safety driver, using criteria that align with the
aforementioned failure conditions. Unless stated otherwise,
all experiments adhere to a closed-loop control setting.
Data and learning. We obtained data from a data-driven
simulator VISTA [10] to augment a real-world dataset with
diverse synthetic data in a closed-loop control setting. This
simulation relies on approximately two hours of real-world
driving data, gathered under varying conditions including
different times of day, weather conditions, scenes, and sea-
sonal variations. We employ a training approach known as
Guided Policy Learning [10], [48], which takes advantage
of privileged information within the simulator to guide the
learning of the image-based policies. Ground-truth control
signals for training are produced using a Proportional-
Integral-Derivative (PID) controller for lane-following tasks
and Control Barrier Functions (CBFs) [49] for obstacle
avoidance. All models are trained with L2 loss via Adam
optimizer at a learning rate of 10−3, employing a plateau
scheduler with a factor of 1 and a patience of 10, for 106

iterations. We uses BLIP2 [2] as it is SOTA in various
benchmarks like zero-shot VQA, image-text retrieval, etc.

A. Out-of-Distribution and Cross-modality Generalization

In Tab. I, we evaluate the out-of-distribution (OOD)
generalization capabilities of end-to-end policies employing
various feature extractors. Our baseline comparisons include:
(i) No Foundation Model (No-FM) [8], [10], which utilizes a
CNN-based model (transformer-based architectures yielded
comparable results) trained from scratch without leveraging
foundation models; (ii) Mask-based Features (MF) [25],
[41], which initially applies segmentation [40], then extract
global feature vectors [1] for each masked/cropped image,
and assign the vector to each pixel within the correspond-
ing region (an approach adapted from similarity measure
technique); (iii) Inherent ViT Features (I-ViT) [38], which
suggests using ViT models [50] interlayers outputs (per-
patch corresponding) of the key, value, and query matrices
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Thresh. null 0.03 0.05 0.08 0.10 0.20 ∞

Perform. 0.657 0.658 0.661 0.751 0.826 0.984 1.000

TABLE II: Cross modality generalization. We test the
generalization of training in image modality and deploying
in language modality by replacing sufficiently similar image
features (determined by the threshold) with textual features.

Debugging Concepts Perform. Failure at
Lane Stable Avoidance Recovery

Image Feature 1.000 0.000 0.000 0.000
Car, Road, Tree, Sky 0.267 0.149 0.453 0.117
+ Car & Road + Dark 0.536 0.028 0.381 0.056
+ Car Exterior Parts 0.657 0.040 0.237 0.074

TABLE III: A debugging tool. We use LLMs to propose
potentially relevant concepts for language-augmented latent
space simulation to inspect the decision-making of a policy.

as ”inherent” per-pixel/patch features. We also tried CLIP
[1] and BLIP2 [2] in I-ViT and found them giving worse
similarity map [38] than DINO [50], similar findings for
CLIP to [25]. This may result from CLIP and BLIP2 being
trained for image-text alignment unlike DINO for visual fea-
tures only. Lastly, we found feature extractors pre-trained on
ImageNet give comparable results to training from scratch as
in No-FM, thus not included in Tab. I. All feature extractors
are frozen and followed by a policy network utilizing a
consistent transformer-based architecture (a simple ViT with
patch size 1×1, depth 3, transformer dimension 128, heads
4, head dimension 32, MLP dimension 256). Firstly, we note
that MF underperforms in both in-distribution and out-of-
distribution settings. We propose two possible explanations
for this: (1) the process of masking out non-target regions
may inadvertently eliminate valuable contextual information,
and (2) while masking is generally effective for objects, it
creates ambiguous image crops for more abstract categories,
often referred to as ”stuffs” [51]. For instance, masking out
all elements except the road in a rural setting results in
an indistinct, yellowish region. Additionally, I-ViT and Ours
surpass No-FM in OOD settings, scenarios, highlighting the
benefits of utilizing foundation models as feature extractors
to enhance generalization. Notably, I-ViT works with visual
features only unlike our method for multiple modalities; we
envision the extraction of inherent pixel-aligned multimodal
features to be a promising future direction.

In Tab. II, we evaluate the ability of our policy to general-
ize from image to language modalities under the ID setting
in Tab. I. Notably, our policy is trained exclusively on image
data. To generate cross-modality features, we employ the
following procedure: (i) calculate features (from the LLM
encoder in BLIP2) for a predefined set of natural language
concepts (e.g., road, car); (ii) identify the best-matching
textual feature for each image feature pixel, along with the
degree of similarity (we manually check a diverse subset
of images to verify that the best matches are reasonable);
(iii) replace the image feature at pixels where the similarity
exceeds a certain threshold with the corresponding textual
feature. A null threshold implies driving solely based on
textual features, while an infinity threshold denotes reliance
exclusively on image features. Our observations indicate that
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Fig. 3: Linear classification on driving maneuver. We
report accuracy (the leftmost labels) and coefficients of linear
classifier associated with a concept (2nd, 4th columns) along
with typical examples of each maneuver (1st, 3rd columns).

the policy performs reasonably well in cross-modality set-
tings, both qualitatively and quantitatively. These results offer
promising empirical evidence for the viability of language-
augmented latent space simulations.

B. Debugging and Inspecting Policies With Language

In Tab. III, we present a case study focused on policy
debugging through language-augmented latent space simu-
lation. Our procedure is as follows: (i) we consult Large
Language Models (LLMs) to generate a base set of natural
language concepts relevant to, for example, a rural driving
scenario; (ii) we collect driving policy rollouts along with in-
termediate features, filtering out less pertinent concepts based
on similarity statistics, and potentially human judgment; (iii)
we then evaluate the policy by replacing image pixel features
with textual features drawn from various subsets of these
relevant concepts; (iv) lastly, we pinpoint specific concepts
whose presence across subsets leads to significant perfor-
mance changes. It’s worth noting that the third step involves
combinatorial complexity and may benefit from some degree
of human intervention for enhanced efficiency. We highlight
two major discoveries. Firstly, the concepts Car & Road
and Dark play critical roles in both recovery and stable
lane maneuver. Considering Car and Road in conjunction
is essential, as the policy uses the end of the road as a
navigational reference to maintain lane position. Typically,
this reference point in the image is relatively small and
encompasses both concepts simultaneously. Moreover, this
combined feature serves as a natural differentiator, setting
itself apart from standalone features like Road or Tree that
may appear elsewhere in an image. As for the concept of
Dark, it exposes a loophole where the policy takes advantage
of simulation artifacts. Specifically, when the car deviates
significantly from the lane center, the simulation produces
dead or black pixels due to the absence of content to render.

In Fig. 3, we display linear classification results for various
maneuver types using low-dimensional projected features.
This evaluation diverges from a closed-loop control setting,
as ”features-to-control” requires more complex models than
linear functions. Our research question aims to explore the
existence of simple decision boundaries that differentiate

6691



RSDDC RSDNC RFDDC RWSDC RSDDA
+3.43% -2.49% +8.32% +3.12% -0.48%
RSDNA RFDDA RWSDA USDDC USRDC
-5.09% +9.83% +1.02% +12.49% +14.44%

USDNC USDDA USRDA USDNA All
+10.80% -0.65% +13.08% +12.75% +5.47%

TABLE IV: Improved generalization from data augmen-
tation. We augment training with unseen yet potentially
relevant concepts from LLMs via language-augmented latent
space simulation to improve performance. The labels are the
scenarios in Tab. I (RSDDC is Rural, Spring, Dry, Day, Car).

higher-level maneuvers (e.g., avoidance vs. 0.5 steering an-
gle) and examine how feature spatial distribution within an
image influences classification. We follow this procedure:
(i) apply K-means clustering (with 4 clusters) to feature
vectors from policy rollouts and project them into a lower-
dimensional space based on distances to cluster centers;
(ii) perform linear support vector classification on these
projected features of all N patches; (iii) anchor the cluster
centers by matching with the most relevant textual features
proposed by LLMs. In Fig. 3, the cluster centers pertain to
Cars, Road & Tree, Forests and Jungles, and Campgrounds.
Due to space limitations, we focus on the first two. Training
on 10 trajectories and testing on 90 distinct ones yield high
accuracy (in the leftmost labels), affirming simple decision
boundaries. Visualizations of typical maneuvers and classifier
coefficients show more structured coefficients in the image’s
lower part, closely linked to driving maneuvers. For Car,
negative coefficients (in blue) appear in the road’s center
during lane-stable maneuvers, indicating that no cars should
obstruct the path. Positive coefficients (in red) are observed
throughout the road during avoidance, suggesting that cars
can appear anywhere. During recovery, these coefficients are
mainly positive at the road’s edges, as the ego car initiates
recovery only after passing other vehicles. For Road &
Tree, positive coefficients clutter at the image’s edges during
avoidance, reflecting the ego car’s heading deviation from
the road to evade obstacles. In lane-stable and recovery, these
coefficients are variably distributed in the middle, aligning
with the ego car’s road-oriented direction.

C. Data Augmentation using Language

In Table IV, we showcase the performance improve-
ments achieved through data augmentation using language-
augmented latent space simulation. Our procedure is as
follows: (i) We first identify a set of target concepts likely
to appear in the training data that are candidates for re-
placement, selecting Tree and Dark for this experiment;
(ii) We then consult LLMs to suggest possible replacement
concepts; in this experiments, they are broadly defined as
any non-drivable objects or entities likely to appear in a
driving scenario; (iii) Finally, we randomly swap image
pixel features—those exhibiting high similarity to the target
concepts—with the textual features corresponding to these
suggested replacement concepts. We note performance im-
provements in most OOD scenarios, with the exceptions
of RSDNA and RSDNC, where we observe a non-marginal
decline in performance. Both represent rural, nighttime con-

Following Lane (Toy) House Cones Roadblock

Crashes Lane
Stable

Obstacle Avoidance
Pedestrian Roadblock Cone Chair House

No-FM 7.3 /km 8/10 9/10 10/10 9/10 10/10
Ours 0 /km 0/10 0/10 0/10 0/10 1/10

TABLE V: Real Car Test. We verify the generalization
capability of our method on a real autonomous car.

ditions, characterized by extremely low light, as depicted in
row 3, column 2 of Tab. I. These low-light environments
make data augmentation particularly error-prone when tar-
geting the concept of Dark for replacement.
D. Real Car Deployment

In Tab. V, we present the outcomes of tests conducted
on a full-scale autonomous vehicle within a rural test track.
These tests were carried out during the summer season and
spanned various times of the day. Importantly, the evaluation
took place on different road segments and occurred two
years subsequent to the summer data used in the training set,
allowing us to assess performance amid noticeable changes
in the environment. We assess the system’s proficiency in
lane-following and its ability to avoid a variety of objects not
encountered during training. These objects include pedestri-
ans, roadblocks, traffic cones, chairs, and even a toy house.
Some of these test scenarios are illustrated in the top row
of Tab. V. Our approach, which utilizes foundation models,
yields near-flawless driving performance, further validating
its effectiveness in generalizing to real-world robotic sys-
tems. However, it’s worth noting that the inference speed is
somewhat limited, averaging around 3 fps, compared to non-
foundation-model-based policies, which achieve between 10
to 30 fps depending on the architecture. That said, we have
not yet focused on optimizing runtime performance, which
could be improved through techniques such as quantization.

V. CONCLUSION

This exploration into enhancing autonomous driving
through multimodal foundation models has offered several
lessons learned. The incorporation of these models improves
the system’s adaptability in unpredictable open-set environ-
ments, emphasizing their role in advancing real-world appli-
cability of autonomous vehicles. Our model’s blend of visual
and textual understanding provides insights into the often
murky decision-making processes inherent to autonomous
systems, suggesting a promising trajectory for future models
that prioritize both performance and transparency. The devel-
opment of pixel/patch-aligned feature descriptors and latent
space simulation, enriched with language modality, suggests
potential for optimizing the training and debugging processes
for end-to-end learning based control. Moreover, the success-
ful deployment and performance of our methods on a real-
world, full-scale autonomous vehicle provides encouraging
first steps toward autonomous driving solutions that integrate
multi-modal foundational models with perception.
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