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Abstract—Safety is one of the main challenges in applying
reinforcement learning to realistic environmental tasks. To ensure
safety during and after the training process, existing methods
tend to adopt overly conservative policies to avoid unsafe sit-
uations. However, overly conservative policy severely hinders
the exploration and makes the algorithms substantially less
rewarding. In this paper, we propose a method to construct a
boundary that discriminates between safe and unsafe states. The
boundary we construct is equivalent to distinguishing dead-end
states, indicating the maximum extent to which safe exploration
is guaranteed, and thus has a minimum limitation on explo-
ration. Similar to Recovery Reinforcement Learning, we utilize
a decoupled RL framework to learn two policies, (1) a task
policy that only considers improving the task performance, and
(2) a recovery policy that maximizes safety. The recovery policy
and a corresponding safety critic are pre-trained on an offline
dataset, in which the safety critic evaluates the upper bound of
safety in each state as awareness of environmental safety for the
agent. During online training, a behavior correction mechanism is
adopted, ensuring the agent interacts with the environment using
safe actions only. Finally, experiments of continuous control tasks
demonstrate that our approach has better task performance with
fewer safety violations than state-of-the-art algorithms. The code
is available at https://github.com/tiev-tongji/dea-rrl.

Index Terms—Reinforcement Learning, Safety.

I. INTRODUCTION

REINFORCEMENT learning (RL) has made impressive
achievements in long-term control tasks, including Atria

games [1], car driving [2] and robot controlling [3]. While RL
performs well in games and simulation environments, safety
becomes one of the greatest challenges when applying RL
to real-world tasks. In real environments such as autonomous
driving tasks, unsafe actions can lead to damage to the agent
itself and the environment, resulting in significant maintenance
costs and even human casualties.

To learn a safe policy that satisfies state-wise safety con-
straints in the “safe critical" task, the agent needs to evaluate
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Fig. 1. This schematic shows the agent needs to control the car to avoid a
collision. A safety critic evaluates the safety of the policy in all states and
combines it with a threshold value to obtain the boundary that divides the safe
(green) and unsafe states (red). When the car is close enough to an obstacle,
at a given speed, no policy can avoid a collision, and these states are termed
Dead-ends. The boundary that only identifies all dead-ends as unsafe states is
called the optimal boundary (Optimal). Since the optimal safe policy is safe
in all states except dead-ends, by evaluating the safety of the optimal safe
policy, it is possible to distinguish whether a state is a dead-end or not. In
contrast, suboptimal safe policies can lead the safety critic to conservatively
consider more states as unsafe (Expert and Beginner).

the safety of each state and avoid entering unsafe states [4]. In
some Safe RL algorithms, the agent’s awareness of the safety
of a state is achieved by the safety critic who evaluates the
safety of the task policy in states. The safety critic and a safety
threshold together construct a boundary that divides the state
space into safe and unsafe subspaces, as shown in Figure 1.
The division of the state space depends on the policy, and
sub-optimal policies will lead to more states being considered
unsafe, thus limiting agent exploration.

In RRL [5], a recovery policy and a behavioral correction
mechanism are introduced. The task policy and the recovery
policy are trained simultaneously to improve task performance
and to satisfy safety constraints respectively. The behavioral
correction mechanism determines whether the action selected
by the task policy is a safe one by querying the value of safety
critic corresponding to the action, and replacing the unsafe
actions with those selected by the recovery policy. The safety
critic and recovery policy are first trained offline, and then they
are trained online alongside the task policy. This allows them
to leverage prior information about the environment to enhance
safety during online training. The agent can be considered
as evaluating the safety of states and interacting with the
environment through a composite policy composed of a task
policy and a recovery policy.
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However, there are certain issues that arise when imple-
menting this method. Specifically, the recovery policy used
for selecting actions in states approaching danger inhibits
exploration. This restriction can introduce a substantial bias
in the distribution of data observed by the agent in these
states. Training the safety critic and recovery policy on this
biased data may not lead to optimal convergence, subsequently
impacting the agent’s assessment of state safety and resulting
in an overly conservative algorithm. Additionally, the training
of the safety critic necessitates composite policy sampling, and
the behavior of the composite policy, in turn, is influenced
by the safety critic. This interaction can lead to an unstable
training process.

We believe that the safety of states should be solely deter-
mined by the recovery policy, which should be trained along-
side a safety critic with the objective of maximizing safety.
This approach enables the safety critic and recovery policy
to be acquired through fully offline training. Additionally, it
allows us to identify the optimal boundaries of the safe state
space, specifically the boundaries of dead-ends.

Motivated by this, we propose our safe RL framework
Safe Reinforcement Learning with Dead Ends Avoidance and
Recovery (DEARRL), following the Recovery RL framework
[5] and decoupled RL framework [6]. In contrast to RRL, our
approach features a safety critic that assesses the safety of
the recovery policy rather than the composite policy. This re-
duction in conservatism relaxes the constraints on exploration
without increasing the risk of violations.

The advantages of our approach are as follows:
• Our method allows task policy to fully explore the

environment and significantly improve task performance
in complex environments;

• We show theoretically that our approach can learn optimal
boundary, which is equivalent to the discovery of dead-
ends.

• Our method completely decouples the task policy and
safe policy, so that the recovery policy can be plug-and-
play within other task policies without fine-tuning.

II. RELATED WORK

A. Safe RL

Safe RL addresses two main safety-related problems: the
asymptotic safety and the in-training safety of policies.
Asymptotic safety means the safety of policies after conver-
gence, which is commonly achieved by reward penalties and
cost constraints. Lagrange Relaxation [7] is the most widely
used method due to its simplicity, and other methods such as
Trust Regions [8], Lyapunov-based [9], Guide Policy [10] are
proposed for their stricter safety guarantees, fewer violations
during the training and having faster convergence.

Although these approaches do find safe policies after train-
ing, they learn safety by trial-and-error the same as tradi-
tional RL algorithms, which means violations are inevitable
before convergence. To ensure in-training safety, state-wise
safety constraints and prior knowledge of the environment
are utilized [4]. [11]–[13] assume a white-box or a black-
box environment dynamics model is available, limiting policy

optimizing in a safe policy set which is constructed based on
the known model. However, these assumptions are hard to
meet in real-world problems.

RRL [5] trains a recovery policy using offline data to guar-
antee the safety of the online training process. [14] combines
RRL and Meta-RL [15], improving the generalizability of RRL
by enabling pre-trained safety critic and recovery policy to
be quickly adapted to different tasks during the fine-tuning
phase. Although these methods can achieve in-training safety,
they are prone to obtain over-conservative policies due to the
reason explained in Section I.

B. Decoupling Performance and Safety

Decoupling performance and safety offers new ideas for
solving the exploration-exploitation dilemma [6], [16] because
separating processes of maximizing reward and guaranteeing
safety prevents policies from under-performing due to over-
conservatism. [17] and [5] introduce an implicit and an explicit
safe policy respectively. The task policy no longer needs
to consider safety explicitly when being updated. However,
the identification of unsafe actions in these methods corre-
lated with the task policy, thus the agent is still prevented
from obtaining optimal policies by the exploration-exploitation
dilemma. Although [18] achieves full decoupling of explo-
ration and exploitation, it focuses only on the rewards and
ignores safety in training.

C. Dead-Ends Discovery and Avoidance

The concept of dead-ends discovery (DeD) is introduced
in [19] and later applied to the medical field [20]. [21]
combines risk sensitivity with DeD, which allows dead-ends
to be identified earlier. [22] also proposes the “irrecoverable
state" with a similar meaning to the dead-end state, preventing
dangerous situations from occurring through reward shaping
and model-based rollout [23].

We contend that distinguishing dead-end states from normal
states is essential to enhance the performance of safe RL.
This distinction allows us to identify the broadest range of
policies that can be explored safely. The safety critic in RRL
[5] could not distinguish dead-end states, as elaborated later
in Section IV-A.

III. PRELIMINARY

A. Constraint Markov Decision Processes

We consider safe RL under Constraint Markov Decision
Process (CMDPs) M = (S,A,R, P, γ, ρ, C, γsafe, ϵsafe)
[24], where S is the state space, A the action space,
R : S ×A → R the reward function, P : S ×A× S → [0, 1]
the transition function, γ ∈ [0, 1) the discount factor for
reward, C : S ×A → R the cost function, γsafe ∈ [0, 1) the
discount factor for cost and ϵsafe ∈ R the safe threshold. Let
Π be the set of Markovian stationary policies. Given policy
π ∈ Π : S → P(A) maps states to action distributions and
π(a|s) denotes the probability of choosing action a in state
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s. The task performance of π is defined as the discounted
cumulative reward J (π):

J (π) = Eτ∼π,P [
∞∑
t=0

γtR(st, at, st+1)] (1)

Similar to [25], state-cost function Vc and action-cost func-
tion Qc are introduced to indicate the expected cumulative cost
of π in s:

V πc (s) = Eτ∼π,P [
∞∑
t=0

γtsafeC(st, at, st+1)|s0 = s] (2)

Qπc (s, a) = Es′∼P (·|s,a)V
π
c (s′) (3)

Under the state-wise safety constraint formulation [4], we
define the set of safe policies

Πc = {π ∈ Π|∀s ∈ S, V πc (s) < ϵsafe} (4)

The objective of CMDPs is to find a policy that maximizes
Equation (1) in the set of safe policies Πc:

π∗
task = max

π
J (π), s.t.π ∈ Πc (5)

B. Safe Markov Decision Processes

In safety-critical tasks, any unsafe action is fatal. Therefore,
we define SMDPs, a special case of CMDPs to describe this
kind of task.

Definition 1: Safe Markov Decision Processes (SMDPs)
M = (S,A,R, P, γ, ρ, C, γsafe, ϵsafe), a special case of
CMDPs where episodes terminate after any danger occurred.
In SMDPs, the cost function is a binary indicator of the safety
of the state:

C(st, at, st+1) =

{
1, safety violation

0, otherwise
(6)

Observe that if γsafe = 1, Qπc indicates the probability of
ending up with a failure state in the future with π. Qπϕ,c,
parameterized by ϕ, can be optimized by minimizing the MSE
loss:

LQc(ϕ;π) =
1

2
(Qπϕ,c(st, at)− (ct + (1− ct)

γsafeEat+1∼π(·|st+1)Q
π
ϕ̂,c

(st+1, at+1)))
2

(7)

where (st, at, st+1, ct) is the transition sampled from offline
data or replay buffer and ct is short for C(st, at, st+1).
Equation (7) can be considered to be the policy evaluation
of π in terms of safety.

Definition 2: The state space is divided into three subspaces:
• Sfail: Failure state. Indicates the end of an episode due

to a danger.
• Sdead: Dead-ends state. Any dead-end state will trans-

form into a failure state, regardless of the policy π the
agent takes (π ∈ Π).

• Ssafe: Safe state. Ssafe=S \ (Sfail ∪ Sdead).
Therefore,

∀s ∈ Ssafe,∃(a, s′) ∈ (A,Ssafe), P (s, a, s′) > 0 (8)

The cost function in SMDPs can also be expressed as

C(st, at, st+1) = I(st+1 ∈ Sfail) (9)

Similar to [22], we assume that a safety violation must come
fairly soon after entering any dead-end state region:

Assumption 1: There exists a horizon H ∈ N, that any
trajectory starting from s0 ∈ Sdead will end up in H steps.

We additionally introduce a sampling policy π̄ for training
the safety critic and modify the definition of the set of safe
policies as follows:

Ππ̄c = {π ∈ Π|∀(s, a) ∈ (Ssafe,A) and π(a|s) > 0,

Qπ̄c (s, π(s)) < ϵsafe}
(10)

Similar to CMDPs, the objective of SMDPs is to find a
policy with Equation (1) in the set of safe policies Ππ̄c :

π∗
task = max

π
J (π), s.t.π ∈ Ππ̄c (11)

IV. METHODOLOGY
A. Recovery RL

In most approaches of Safe RL without decoupling, π̄ is
the same as πcom (the composite policy), including RRL
[5]. In pre-train phase, RRL trains safety critic Qπcom

ϕ,c and
recovery policy πθ,rec (parameterized by ϕ and θ respectively)
by minimizing LQc

(ϕ;πcom) according to Equation (7) and
maximizing Jπrec

(θ;πcom) according to Equation (12).

Jπrec
(θ; π̄) = −Es∼D[Q

π̄
c (s, πθ,rec(·|s))] (12)

In fine-tuning phase, unsafe actions will be corrected by πrec:

at =

{
aπtask , Qπ̄ϕ,c(st, a

πtask) < ϵsafe

aπrec , otherwise
(13)

Similar to Equation (11) The objective of RRL can be ex-
pressed as:

π∗
task = max

π
J (π), s.t.π ∈ Ππcom

c (14)

As described in Section I, the restriction of exploration results
in a bias in the observed data. Training the safety critic
and recovery policy on such biased data may not lead to
optimal convergence. Consequently, RRL tends to be overly
conservative in its assessment of state safety.

B. Dead-ends Discovery and Avoidance

Different from RRL, our proposed DEARRL ensures safety
by distinguishing between dead-end states and safe states and
only prevents the agent from entering dead-ends. In the pre-
train phase, DEARRL trains safety critic Qπrec

ϕ,c and recovery
policy πθ,rec by minimizing LQc(ϕ;πrec) and Jπrec(θ;πrec)
as in Equation (7) and Equation (12), which is completely
decoupled from πtask. This is equivalent to solving the optimal
Bellman equation [25] for safety. Thus, the optimal recovery
policy and the corresponding policy evaluation function can
be obtained.

π∗
rec(θ) = min

θ
Eτ∼P,πrec(θ)[Q

πrec
c (s, πrec(s; θ))]

= min
θ

Eτ∼P,πrec(θ)[

∞∑
t=0

γtsafect]
(15)
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By using the same behavior correction mechanism as Equa-
tion (13) where π̄ is π∗

rec, the object of DEARRL can be
expressed as:

π∗
task = max

π
J (π), s.t.π ∈ Π

π∗
rec

c (16)

C. Theoretical Proof

We will illustrate the advantages of DEARRL over RRL
theoretically.

Theorem 1: Ππcom
c and Π

π∗
rec
c are the accessible space for π

to explore safely in RRL and DEARRL respectively, we have
Ππcom
c ⊆ Π

π∗
rec
c .

Proof : Since Q∗
c (the shorthand of Qπ

∗
rec
c ) is the optimal

cost value function, we have Q∗
c(s, a) ≤ Qπcom

c (s, a) for every
(s, a). As in Equation (10), ∀(π, s, a) ∈ (Ππcom

c ,Ssafe,A) and
π(a|s) > 0,

Q∗
c(s, π(s)) ≤ Qπcom

c (s, π(s)) < ϵsafe

therefore π ∈ Π
π∗
rec
c , which means Ππcom

c ⊆ Π
π∗
rec
c .

We will show that with appropriate ϵsafe, Q∗
c can be used

to identify dead-end states.
Lemma 1: Suppose that Assumption 1 holds and uncertain-

ties are ignored in the environment i.e. P : S ×A× S →
{0, 1},

• ∀(s, π) ∈ (Sfail,Π), V πc (s) = V ∗
c (s) = 1,

• ∀(s, π) ∈ (Sdead,Π), V πc (s) ≥ V ∗
c (s) ≥ γH−1

safe

• ∀(s, π) ∈ (Ssafe,Π), V πc (s) ≥ V ∗
c (s) = 0

Proof : Since V ∗
c is the optimal value function, we have

V πc (s) ≥ V ∗
c (s) for all s ∈ S. By the definition of cost

function Equation (9) and state-cost function Equation (2),
∀s ∈ Sfail, V πc (s) = 1.

Assumption 1 shows that the episode would terminate after
at most H steps since the agent reaches a dead-end state, we
can derive from Equation (2) that

V πc (s) = Eτ∼π,P [
∞∑
t=0

γtsafeC(st, at, st+1)|s0 = s ∈ Sdead]

≥
H−2∑
t=0

γtsafe ∗ 0 + γH−1
safe ∗ 1 = γH−1

safe .

(17)
By Equation (8) in Definition 2, for every s ∈ Ssafe, there

always exists at least one action a such that s′ ∼ P (·|s, a), s′ ∈
Ssafe. Start at s ∈ Ssafe, the agent would never reach a
dead-end state by choosing the safe action, which means that
V ∗
c (s) = 0.
Theorem 2: Suppose that Assumption 1 holds and uncer-

tainties are ignored in the environment, and let

ϵsafe = γHsafe (18)

Then, with the behavior correction mechanism shown by
Equation (13), the agent will be prevented from reaching dead-
end states.

Proof : According to Equation (13), the actions allowed to
be performed satisfy:

Qπc (s, a) = Es′∼P (·|s,a)γsafeV
π
c (s′) < γHsafe (19)

therefore
V πc (s′) < γH−1

safe ,∀s ∈ Ssafe (20)

which ensuring s′ ∈ Ssafe. Because of the initial state s0 ∈
Ssafe, it is ensured that the agent is always explored in safe
states.

Theorem 1 shows that DEARRL may provide a broader
accessible space for exploration compared to RRL, thereby
reducing conservatism without compromising safety. Lemma
1 and theorem 2 collectively suggest that when starting from
safe states, both RRL and DEARRL can prevent agents
from entering dead-end states by utilizing an appropriate
ϵsafe. It is noteworthy that in RRL, there is no guarantee
that V πcom

c (s) < γH−1
safe ,∀s ∈ Ssafe since πcom may not

necessarily be the optimal safe policy. Consequently, RRL may
mistakenly identify certain safe states as dead-end states due
to its inherent conservatism.

D. Offline Pre-train

In offline pre-training, managing Out-Of-Distribution
(OOD) actions is crucial to mitigate any estimation bias in
the safety critic. An effective approach to this challenge is
avoiding the querying of Qc values for OOD actions. However,
during online training, it’s essential not to completely disregard
OOD actions when determining recovery policy actions. In
situations where all known actions within the current state are
unsafe, it is preferable to opt for an unknown yet potentially
safe action rather than deploying a known but certainly dan-
gerous one.

Inspired by the implicit Q-learning (IQL) algorithm [26], we
use Expectile Regression to train Qπrec

c , effectively avoiding
the impact of OOD actions. Different from IQL, we employ
Advantage Policy Gradient instead of Advantage Weighted
Regression in [26] to train πrec. This modification permits
an OOD action to be attempted in a state where all known
actions are deemed unsafe.

The state-cost function V πc and action-cost function Qπc is
updated by minimizing following loss functions:

LV π
c
(ψ) = E(s,a)∼D[L

τ
2(Q

π
ϕ,c(s, a)− V πψ,c(s))] (21)

LQπ
c
(ϕ) = E(s,a,s′)∼D[(c(s, a, s

′)+

(1− c(s, a, s′))γsafeV πψ,c(s′)−Qπϕ,c(s, a))2]
(22)

where Lτ2 is the expectile regression loss and D the offline
dataset.

E. Online Training

Any of the RL algorithms can be used to train πtask. In our
work, we utilize the Soft Actor Critic algorithm (SAC) [27].
The process of online fine-tuning is illustrated in Algorithm
1, and we give some remarks on online training.

• We relabel all actions with the action proposed by πtask
as the same as [5], which is important to achieve decou-
pled safe reinforcement learning, as it prompts the agent
to view behavior correction as part of the environment.
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• Exploration is not permitted for the recovery policy as it
would increase the frequency of safety constraint viola-
tions during the training process, rendering the training
procedure unsafe.

• We choose not to fine-tune Qπrec
c and πrec in online

training since it is risky to train on data collected by poli-
cies with constrained exploration. Additionally, a fixed
behavior correction mechanism provides the agent with a
stable MDP dynamic model, thus improving the stability
of training.

• Finally, we use a small ϵsafe to enhance the safety of the
algorithm due to aleatoric and epistemic uncertainty.

Algorithm 1 DEARRL Training Online
1: Input: safety critic Qπrec

c , recovery policy πrec, task
horizon H , training steps N

2: Initialize replay buffer Dtask ← ∅
3: s0 ← env.reset()
4: for steps,← 1, N do
5: for t ∈ {1, ...,H} do
6: if ct−1 = 1 or t = H then
7: st ← env.reset()
8: end if
9: Sample aπtask , aπrec from πtask, πrec

10: if Qπrec
c (st, a

πtask) < ϵsafe then
11: at = aπtask

12: else
13: at = aπrec (behavior correction)
14: end if
15: Execute at, Observe st+1, rt, ct
16: Dtask ← Dtask ∪ (st, a

πtask , st+1, rt)
17: Train πtask on Dtask by maximizing J (π)
18: end for
19: end for

V. EXPERIMENTS
In the experiments, we investigate whether our approach

can:
• exceeds state-of-the-art algorithms in terms of task per-

formance, post-training safety and in-training safety;
• enhance the safety of the training process with minimal

impact on task performance;
• obtain a task-independent behavior correction strategy

that ensures the safety of trained policies in testing.

A. Domains
Experiments are conducted under the standard safe rein-

forcement learning test environment Safety Gym [28]. As
shown in Figure 2, we selected two simple environments
(StaticEnv, DynamicEnv) set up in [29] and three more com-
plex environments (PointGoal1, CarGoal1, DoggoGoal1) pre-
defined in Safety Gym. Unlike the general Safety Gym setup,
we mandate that any violation of safety constraints leads to
the immediate termination of the episode, mirroring real-world
tasks. This setup significantly increases the complexity of the
task and poses an extreme challenge to the agent’s capacity to
balance exploration and exploitation.

B. Offline Data Collection

Unlike general offline RL where the training results are
influenced by the performance of the behavior policy that is
used for data sampling, the Recovery RL framework requires
offline data to contain a wide coverage of unsafe trajectories,
allowing Qc to learn to identify unsafe actions efficiently.
The offline dataset we used contains 2M transitions including:
(1) 1M transitions sampled from the replay buffer of SAC
training, and (2) 1M transitions obtained by interacting with
the environment using random actions. The latter is included
because in our experiments we find that the failed transitions
in the SAC replay buffer tend to share similar characteristics.
The random sampling data can diversify the failed transitions
in the offline data. We filter out the parts of the data that are
less relevant to safety by keeping only 100 transitions before
violations.

C. Evaluation Metric

The average cumulative reward (ACR) over episodes is
used as a measure of task performance, and a higher return
indicates a better task performance. The default reward func-
tions provided by Safety Gym are used in our experiments,
which define algorithm-independent tasks. We use the average
rate of constraint violation (AVR) in testing as a measure of
asymptotic safety and the number of constraint violations (TV)
in training as a measure that indicates in-training safety. To
highlight the differences between our method and RRL, we
use the ratio of steps that the behavior correction mechanism is
used (ARR) as a measure of the extent to which the behavior
correction mechanism intervenes in the training and testing
phase.

D. Comparisons with Baselines

• Unconstrained Baseline [27]: We use SAC as a baseline
for unconstrained methods, optimizing task performance
and ignoring safety constraints.

• Worst-Case Soft Actor Critic (WCSAC) [29]: A com-
bined Lagrangian relaxation and risk-sensitive approach
that maximizing

J (π)− λ(Eτ∼P,π[CV aRα(Qπc (s, a))]− ϵsafe)

where CV aRα
.
= Epπ [Qπc |Qπc ≥ F−1

C (1−α)] and FC is
the CDF of pπ(Qπc |s, a), updating policy parameters and
λ via dual gradient descent.

• RRL [5]: A semi-decoupled approach that preventing
agent using unsafe action for which Qπcom

c (s, a) ≥ ϵsafe
by behavior correction mechanism. To ensure safety
during training, we do not allow the recovery policy to
explore the environment.

• Implicit Q-Learning (IQL) [26]: An offline RL algorithm
that optimizes critic and actor by expectile regression and
advantage-weighted regression.

To better compare the ability of each method to balance
safety and task performance, we let each method have similar
asymptotic safety achieved by using different ϵsafe.
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Fig. 2. The experiments are conducted in the safety gym standard test environment. Five task environments are shown from left to right, including StaticEnv,
DynamicEnv, PointGoal1, CarGoal1 and DoggoGoal1. These environments are based on the Safety Gym, where the task is to navigate a robot from its initial
position to the target area (green area) and avoid entering unsafe areas (blue areas) during the process. PointGoal1, CarGoal1 and DoggoGoal1 can be seen
as upgraded versions of DynamicEnv, which include more unsafe areas, larger action space and more complex robots.

Fig. 3. Training curves. Means (solid lines) and variances (shaded) of the training curves for the four algorithms under different tasks, with the first row
showing the average cumulative reward, the second row showing the average proportion of constraint violations over update steps and the third row showing
the average use of behavior correction. We adapted ϵsafe for RRL and DEARRL to make the two algorithms have similar safety in training. For each method,
we used random seeds for training.

TABLE I
RESULTS OF TRAINING AND TESTING EACH METHOD INDIVIDUALLY

Environments SAC WCSAC RRL DEARRL(ours) IQL
ACR AVR TV ACR AVR TV ACR AVR TV ACR AVR TV ACR AVR

StaticEnv 2.754 0.043 1642 2.936 0.008 1453 2.813 0.032 392 2.882 0.023 119 2.630 0.095
DynamicEnv 17.434 0.519 3330 19.004 0.069 1451 14.230 0.006 112 20.784 0.018 86 18.044 0.565
PointGoal1 12.609 0.753 12375 7.811 0.055 5739 7.203 0.094 476 14.079 0.035 236 12.740 0.76
CarGoal1 16.727 0.73 14850 18.672 0.035 6199 9.647 0.057 1109 15.430 0.091 786 11.357 0.94

DoggoGoal1 16.956 0.908 31450 1.055 0.013 10825 5.924 0.192 623 7.002 0.048 706 18.889 0.838
* ACR, AVR, TV respectively stand for Average Cumulative Return, Average Violation Rate, and Total Violations in training.
* The best and second-best results have been marked in bold and underlined, respectively.

E. Results

1) Main Results: The performance and safety of all meth-
ods are shown in Figure 3 and Table I. The results show
that our method exhibits high asymptotic safety (low AVR)
and in-training safety (low TV) across all tasks, along with a
cumulative reward (ACR) similar to the unconstrained method
in most tasks. This suggests that our method substantially
enhances the safety of the algorithm with minimal impact on
performance.

WCSAC achieves a policy with higher safety (low AVR)
compared to SAC after training in all tasks. However, due
to its learning of information related to the safety of the
environment during training, WCSAC inevitably experiences
numerous constraint violations in the early stages of training
(high TV).

IQL avoids interaction with the environment by training
completely offline so that safety constraints are not violated
during training. Nevertheless, it fails to attain a safe policy
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TABLE II
RESULTS OF TESTING THE COMBINATION OF TRAINED SAC AND PRE-TRAINED BEHAVIORAL CORRECTION MECHANISMS

Environments SAC(with RRL) IQL(with RRL) SAC(with DEARRL) IQL(with DEARRL)
ACR AVR ARR ACR AVR ARR ACR AVR ARR ACR AVR ARR

StaticEnv 2.451 0 0.351 2.730 0.006 0.314 2.667 0 0.009 2.947 0 0.031
DynamicEnv 10.012 0.014 0.492 9.822 0.046 0.523 18.769 0.032 0.242 19.425 0.078 0.235
PointGoal1 6.059 0.120 0.430 4.190 0.132 0.572 10.596 0 0.275 9.926 0.04 0.322
CarGoal1 8.332 0.060 0.527 7.545 0.094 0.559 8.165 0.028 0.334 10.783 0.116 0.297

DoggoGoal1 3.270 0.002 0.962 3.103 0.024 0.951 13.285 0.002 0.780 9.407 0 0.846
* ARR stands for the Average Ratio of using the Recovery policy.

after training (high AVR).
RRL, on the other hand, learns information about the safety

of the environment through pre-training and therefore results in
a low number of constraint violations throughout the training
process (low TV). As shown in Figure 3, the ratio of steps
RRL using behavior correction during the training process
is higher than that of DEARRL, indicating a larger number
of interventions in the training process of πtask, which is an
important reason why RRL can only learn suboptimal policies
in complex environments. It is worth noting that the training
curve of RRL exhibits large variance, which is caused by the
fact that πtask is trained in an unstable environment.

In terms of online training time, DEARRL requires action
correction, thus it takes about 1.5 times longer than SAC
to train with the same number of steps, slightly less than
RRL. Conversely, offline training takes significantly less time
(accounting for only 20% of the total training time), as the
major time cost lies in interacting with the environment and
collecting feedback.

Finally, we remark that DEARRL has a lower return than
SAC in DoggoGoal1 because the environment is more difficult
to explore with the introduction of the behavior correction
mechanism, and it takes longer for agents to learn the optimal
policy.

2) Ablations: We design ablation experiments to investigate
the effect of settings in pre-training and online training on
safety and task performance.

Fig. 4. Ablations of offline pre-training. Average reward, average proportion
of constraint violations and average proportion of use of behavioral correction
for different methods. For each method, we used the same ϵsafe = 0.7 and
random seeds for training.

As shown in Figure 4, RRL (rec) represents the use of
recovery policy as the sampling strategy for training the safety
critic. This makes the training process smoother and improves
safety critic’s ability to recognize dead-end states, as compared
to RRL. Not fine-tuning the safety critic and recovery policy
during the online phase, represented by RRL (not finetune),

can also yield better results than training on the observed data
(RRL). This is due to the significant difference between the
actual data distribution and the observed data distribution in
online training. DEARRL (IQL) utilizes IQL as the offline
training algorithm, which helps reduce the impact of OOD
actions during the training of the safety critic, thus improving
the performance of the safety critic. DEARRL employs the
Advantage Policy Gradient algorithm within IQL, as described
in Section IV-D, allows the recovery policy to select actions
outside the dataset, thereby enhancing the capability of the
behavior correction mechanism to ensure safety.

Fig. 5. Ablations of online training. Average reward, the average proportion of
constraint violations and the average proportion of use of behavioral correction
for different ϵsafe choices for RRL and DEARRL in PointGoal1. For each
method, we used random seeds for training.

We then compared the performance and safety of RRL
and DEARRL under different ϵsafe. As shown in Figure 5,
as ϵsafe decreases, both RRL and DEARRL exhibit similar
performance, i.e. a decrease in both the average reward and the
proportion of constraint violations. Notice that when ϵsafe is
equal, DEARRL demonstrates comparable safety levels and far
superior task performance than RRL. DEARRL substantially
reduces the influence of the behavior correction mechanism on
πtask, eventually enabling the algorithm to find a better πtask.

3) Decoupled Framework: In DEARRL, πrec and Qπrec
c

are completely decoupled from πtask, so that the pre-trained
πrec and Qπrec

c can be directly combined with other trained
πtask to enhance the safety of these algorithms during test-
ing. We combined RRL and DEARRL’s behavior correction
mechanism with policies acquired from SAC and IQL, and
tested them across 500 random episodes (see Table II). The
findings indicate that DEARRL can be seamlessly integrated
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into any RL algorithm, significantly elevating their safety
during testing, albeit with a minor decrease in returns. Notice
that in some environments, πtask and πrec obtained by IQL
(with DEARRL) even rival those achieved through online
training, despite being trained entirely offline.

Finally, we observe that when combined with the behav-
ior correction mechanism, SAC and IQL show a significant
increase in episodic length but a slight decrease in return on
testing. This can be attributed to the fact that the behavior
correction mechanism modifies the original MDP model for
which policies trained using SAC and IQL were initially
optimized.

VI. CONCLUSION
In this paper, we propose DEARRL, a fully decoupled safe

reinforcement learning framework. We achieve the decoupling
of task performance and safety through pre-training recovery
policies that maximize safety. The task policies are free to
explore without considering safety, and safety in exploration
is achieved by combining recovery policies with behavior
correction. We show our approach’s superiority in identifying
the dead-end states in determined MDPs, which defines the
maximum range that a policy can explore safely. Through a se-
ries of experiments, we demonstrate that our approach strikes
a balance between task performance and safety, suggesting its
potential for practical applications in diverse environmental
tasks.

Future work includes: (1) introducing model-based rein-
forcement learning to estimate uncertainty, allowing ϵsafe to
be adaptive, and (2) obtaining an offline safe reinforcement
learning algorithm that involves the behavior correction mech-
anism in the offline training process of πtask to improve task
performance.
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