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GraspGPT: Leveraging Semantic Knowledge From a
Large Language Model for Task-Oriented Grasping

Chao Tang , Dehao Huang , Wenqi Ge , Weiyu Liu , and Hong Zhang

Abstract—Task-oriented grasping (TOG) refers to the problem
of predicting grasps on an object that enable subsequent manipu-
lation tasks. To model the complex relationships between objects,
tasks, and grasps, existing methods incorporate semantic knowl-
edge as priors into TOG pipelines. However, the existing semantic
knowledge is typically constructed based on closed-world concept
sets, restraining the generalization to novel concepts out of the
pre-defined sets. To address this issue, we propose GraspGPT, a
large language model (LLM) based TOG framework that lever-
ages the open-end semantic knowledge from an LLM to achieve
zero-shot generalization to novel concepts. We conduct experiments
on Language Augmented TaskGrasp (LA-TaskGrasp) dataset and
demonstrate that GraspGPT outperforms existing TOG methods
on different held-out settings when generalizing to novel concepts
out of the training set. The effectiveness of GraspGPT is further
validated in real-robot experiments.

Index Terms—Grasping, perception for grasping and mani-
pulation, deep learning in grasping and manipulation.

I. INTRODUCTION

TOOL manipulation is a fundamental skill for household
robots. To achieve successful tool manipulation and ac-

complish specific goals, the robot must, in the first place, grasp
the tool in a task-oriented manner, i.e., perform task-oriented
grasping [1], [2]. For instance, accurately gripping the handle
of a knife to slice an apple into pieces or securely holding the
tip of the blade of the knife during a handover. Considering the
vast number of object classes and tasks in open-world operating
environments like offices and kitchens, it is challenging to model
the complex relationships between object classes, tasks, and
grasps due to the diverse and dynamic nature of open-world
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environments. Practically, one can expect the robot to be trained
on a limited set of examples and generalize the learned TOG
skills to novel object classes and tasks beyond the training
examples.

To achieve such a goal, recent works have proposed incorpo-
rating semantic knowledge into TOG pipelines to enable robots
to adapt to various situations. Semantic knowledge provides
high-level abstractions of open-world environments and cap-
tures the underlying relationships between concepts. For in-
stance, Song et al. [3] construct a semantic knowledge base (KB)
with a pre-defined set of concepts and constraints with Bayesian
Networks. Recently, Murali et al. [4] contribute the largest and
the most diverse TOG dataset, named TaskGrasp dataset, and
build a knowledge graph (KG) based on the concepts collected
in the dataset. Although these methods have demonstrated their
generalization abilities to concepts pre-defined within the KB,
they still operate under the closed-world assumption and cannot
handle novel concepts out of the KB. This limitation is critical
as a household robot must deal with open-end object classes and
tasks.

The recent advancements in large language models
(LLMs) [5], [6] have brought about significant progresses in
various robot tasks [7], [8], [9], [10]. These LLMs are trained
with internet-scale text corpora. Thus, robots can seamlessly
extract and harness open-end semantic knowledge from LLMs
to plan actions in unseen scenarios. In this letter, we follow
the same spirit and introduce GraspGPT, an LLM-based TOG
framework. GraspGPT distinguishes itself from previous TOG
methods by not being constrained to a closed-world concept set.
Instead, it leverages the open-end semantic knowledge about
object classes and tasks from an LLM to achieve zero-shot gen-
eralization to novel concepts out of the training set. Specifically,
we focus on two types of concepts: object class and task. As
is shown in Fig. 1(a), when presented with a novel concept
in a language instruction, GraspGPT first prompts an LLM to
acquire a set of natural language description paragraphs of the
concept. These description paragraphs connect the novel concept
to its related concepts described during training, as depicted in
Fig. 1(b). Subsequently, the robot can generalize the learned
TOG skills from known concepts to novel concepts out of
the training set. Evaluation on the contributed TOG dataset
named Language Augmented TaskGrasp (LA-TaskGrasp)
dataset demonstrates that GraspGPT outperforms existing TOG
methods under different held-out settings. We further deploy
GraspGPT on a Kinova Gen3 robotic arm to validate its effec-
tiveness in real-world robotic applications.

In summary, our contributions are two-fold:
� We propose GraspGPT, an LLM-based TOG framework

that leverages the open-end semantic knowledge from an
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Fig. 1. (a) GraspGPT prompts an LLM to acquire language descriptions
about the novel concept(s) in a natural language instruction given by the user.
(b) Language descriptions connect the novel concept to its related concepts
described during training, enabling the generalization of task-oriented grasping
skills from known concepts to novel concepts.

LLM to achieve zero-shot generalization to novel concepts
out of the training set.

� We present a pipeline to automatically generate language
descriptions of concepts with an LLM and contribute a
language augmented TOG dataset named LA-TaskGrasp
dataset.

II. RELATED WORK

A. Task-Oriented Grasping

The ability to perform task-oriented grasping is essential for
household robots as it is the first step towards tool manipulation.
Data-driven approaches have achieved success in solving TOG
problems to some extent. Dang et al. [11] and Liu et al. [12]
propose novel semantic representations of grasp contexts for
task-oriented grasp pose prediction. These methods learn class-
task-grasp relationships purely from data without any external
knowledge sources, thus achieving unsatisfying performance.
More recent works [3], [4], [13], [14] have proposed incorporat-
ing semantic knowledge as priors into TOG pipelines. Song et al.
[3] construct a semantic KB with a set of tasks, object classes,
actions, constraints, and reason over the KB using Bayesian Net-
works. Similarly, Ardón et al. [13] and Antanas et al. [14] build
KGs relating pre-defined semantic attributes using probabilistic
logic approaches. Despite these advancements, a significant
bottleneck that hinders the generalization to a broader range of
object classes and tasks is the need for large-scale TOG datasets.
Motivated by this dilemma, Murali et al. [4] contribute the largest

and the most diverse TOG dataset, named TaskGrasp dataset, and
build a KG based on the concepts collected in the dataset. More
importantly, they propose the state-of-the-art TOG algorithm
GCNGrasp, which builds upon the semantic knowledge encoded
in the KG, to generalize to concepts within the KG. However, the
major limitation of GCNGrasp is its inability to directly handle
novel concepts out of the graph. This limitation is critical as
a household robot must deal with open-end object classes and
tasks in real-world applications. In this letter, we address this
problem by leveraging the open-end semantic knowledge from
an LLM to generalize learned TOG skills to novel concepts.

B. LLMs in Robotics

Recent advances in LLMs have motivated the robotics com-
munity to harness the semantic knowledge embedded in these
models for a wide range of robotic applications, such as tabletop
manipulation [10], navigation [15], [16], and mobile manipula-
tion [7], [17].

Huang et al. [9] first propose to decompose high-level tasks
into mid-level plans with LLMs for robot decision making. To
enable LLM-based robots to act properly in real-world applica-
tions, Ahn et al. [7] ground LLMs through affordance functions
of pre-trained skills. Meanwhile, Huang et al. [18] extend previ-
ous work to include closed-loop feedback for both mobile and
tabletop manipulation with a collection of perception models.
Liang et al. [10] re-purpose LLMs to directly generate policy
code running on real-world robots. More recent works [19],
[20] combine multi-modal reasoning with LLMs for object
rearrangement tasks. While aforementioned methods primar-
ily consider LLMs for high-level task and motion planning,
GraspGPT directly grounds the semantic knowledge from an
LLM to grasping actions, which opens up the potential for opti-
mizing other low-level policies (e.g., manipulation, navigation)
with an LLM.

III. PROBLEM FORMULATION

We assume access to an object class set C = {ci}Kc
i=1 and a

task set T = {tj}Kt
j=1, where Kc and Kt are numbers of object

classes and tasks, respectively. Based on C and T , we consider
the problem of learning task-oriented grasp pose prediction for
a parallel-jaw gripper given the partial point cloud of an object
Xo ∈ RN×3 and a natural language instruction I specifying
an object class c and a task t, where N is the number of
points. During training, we have c = ci ∈ C and t = tj ∈ T .
The challenge for real-world robotic applications is that c or
t can be novel concepts (i.e., out of the training set) from
open-world concept sets Cow and Tow during inference, where
C ⊂ Cow and T ⊂ Tow. To enable the generalization of TOG
skills from known to novel concepts, GraspGPT incorporates
open-end semantic knowledge by prompting an LLM to generate
a set of object class description paragraphs Lc for c and a set of
task description paragraphs Lt for t.

Mathematically, we aim to estimate the posterior distribu-
tion P (G|Xo, I, Lc, Lt), where G represents the space of all
task-oriented grasp poses. Following the convention in prior
work [4], [21], the estimation process is factorized into two steps:
1) task-agnostic grasp sampling P (G|Xo) and 2) task-oriented
grasp evaluation P (S|Xo, I, Lc, Lt, g), where S is the score
(probability of success) for each g ∈ G. Each grasp pose g is
represented by (R, T ) ∈ SE(3), where R ∈ SO(3) represents
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Fig. 2. (a) Overview of GraspGPT framework: when presented with a novel concept, such as a novel object class or task, in the natural language instruction,
GraspGPT first prompts an LLM to acquire a set of language description paragraphs of the concept. Subsequently, GrasGPT evaluates the task compatibility
of grasp candidates based on the multi-modal inputs from the sensors and an LLM. (b) The detailed structure of task-oriented grasp evaluator: the module is a
customized transformer decoder that injects semantic knowledge from an LLM into the natural language instruction.

the 3D orientation and T ∈ R3 represents the 3D translation.
Since the first step is well-studied by previous works, we directly
apply off-the-shelf task-agnostic grasp sampler from [22] to
obtain a set of grasp pose candidates, and focus on solving the
second step.

IV. GRASPGPT

A. Overview

An overview of the proposed GraspGPT framework is pre-
sented in Fig. 2(a). We begin by outlining the methodology for
data generation in Section IV-B. We then detail the strategy
for obtaining feature representations of multi-modal inputs in
Section IV-C. Finally, we describe how to perform task-oriented
grasp evaluation in Section IV-D.

B. Data Generation With an LLM

The data generation pipeline is designed based on TaskGrasp
dataset that comprises Kc household object classes and Kt ev-
eryday tasks. To construct the Language Augmented TaskGrasp
(LA-TaskGrasp) dataset, we employ an LLM to generate lan-
guage descriptions for each object class ci and task tj , which will
be described first. We then present the procedure for generating
language instructions.

Language Description Generation The key idea behind
GraspGPT is to leverage the language descriptions from an LLM
to establish connections between novel and known concepts.
According to Rosch’s theory [23] of cognitive representations
of semantic categories, a concept shares similar geometry, func-
tion, or effect descriptions with its related concepts. Inspired
by [4], the similarity between concepts can be described by
1) directly prompting the LLM (e.g., “Describe what verbs
are similar to cut:”) and 2) comparing the descriptions of two
concepts (e.g., “Describe the geometry of a cup/bowl:”). In
essence, the ability to relate concepts in this way is guaranteed
by the fact that LLMs are trained on internet-scale data, enabling
them to capture a broad range of linguistic patterns and semantic
information.

To obtain Lci for object class ci, we design two prompt
sets: 1) property prompt set, each of which asks a property of

ci, and 2) similarity prompt set, each of which asks classes
sharing a similar property with ci. Here, properties can be
shape, geometry, function, etc. Similarly, to obtain Ltj for
task tj , we design: 1) affordance prompt set, each of which
asks object classes that afford tj , and 2) relevance prompt set,
each of which asks semantically or physically relevant tasks
to tj . For each prompt set, we equally define Np prompts.
To generate language descriptions of concepts, we recursively
query the LLM to generate Na different answers per prompt.
Examples of generated language descriptions are presented in
Table I. We then orderly combine answers from each prompt to
obtain complete description paragraphs of a concept, resulting
inNa

2Np description paragraphs. However, we have empirically
observed that using only a subset of these paragraphs is sufficient
for training due to the information redundancy. Each paragraph
has an approximate length of 4-6 sentences. A complete list
of prompts used to construct LA-TaskGrasp dataset and more
examples of language descriptions can be found in the appendix.
GraspGPT is not restricted to concepts defined in LA-TaskGrasp
dataset, as it can incorporate open-end semantic knowledge from
an LLM. It is a primary advantage over existing methods.

Language Instruction Generation To efficiently generate
language instructions during each training loop, we employ
a template-based generation strategy. Following our prior
work [24], we begin with M templates from [25], such as “Use
the [obj] to [task]”. Each template requires an object class
label ci and a task label tj . To further enrich the vocabulary
and grammatical diversities, we perform template augmentation
using an LLM (e.g., “rewrite the following sentence in a different
grammatical format:”) to generate M+ additional templates,
such as “hold the [obj] in your hand and [task]” and “grip
the [obj] in a [task]ing-friendly manner”. For a complete list
of M +M+ templates used in LA-TaskGrasp dataset, please
refer to the appendix. During each training loop, we randomly
sample ci and tj from C and T , and a template to generate a
natural language instruction without human effort.

C. Multi-Modal Feature Representation

To incorporate semantic knowledge about concepts in the
form of language descriptions into GraspGPT framework, we
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TABLE I
EXAMPLES OF OBJECT CLASS AND TASK DESCRIPTIONS IN LA-TASKGRASP DATASET

transform them along with other sensory inputs into their feature
representations. Therefore, two encoders are introduced: one
for embedding point cloud data and the other for embedding
language data.

Object and Grasp Encoder To model the relative spatial rela-
tionship between a 6 DoF (Degree of Freedom) grasp pose and
Xo, we adopt a joint embedding strategy. Following Mousavian
et al. [21], we first approximate the robot gripper with six control
points Xg defined in the object frame and concatenate them to
the object point cloud Xo to form a joint point cloud. A binary
feature vector is then added to the joint point cloud, indicating
that each point belongs to the object or the gripper. Finally, the
joint point cloud is embedded with PointNet++ [26] (denoted as
PN++), which consists of three set abstraction layers:

FX = PN++(Concat([Xg, Xo], dim = 0))

The resulting point cloud embedding FX ∈ R1024 is later fused
with language embeddings.

Language Encoder In order to relate known and novel con-
cepts, GraspGPT necessitates the ability to digest a large variety
of linguistic elements in language descriptions. For instance, in
the case of an affordance description of the task “pour”:

“Household objects that support the function of pouring
include utensils such as pitchers, cups, and ladles, as well as
containers with pouring spouts, to aid in the transfer of liquid
or other items from one vessel to another.”

GraspGPT must be able to comprehend object classes (e.g.,
pitchers, cups, ladles), entity taxonomy (e.g., utensil, container,
vessel, liquid), actions (e.g., transfer), and relations (e.g., from...
to...). While training a dedicated language encoder from scratch
is a common choice, it would require a significant amount of
training data and is meanwhile time-consuming. We, therefore,
opt for a BERT [27] pre-trained on a large corpus of text
data to encode both language descriptions and instructions.
The pre-trained BERT outputs word embeddings for a task de-
scription paragraph Ftd ∈ RTtd×768, an object class description
paragraph Fod ∈ RTod×768, and a language instruction FI ∈
RTI×768, where Ttd, Tod, and TI denote the maximum lengths
(with zero-padding) for each language sequence, respectively.
The language encoder is frozen during training.

D. Task-Oriented Grasp Evaluation

After obtaining the feature representations of all elements,
we next present a multi-modal fusion module for task-oriented
grasp evaluation, which can be represented below:

S = TGE(FX , FI , Ftd, Fod)

where TGE is the task-oriented grasp evaluator, and S is the
score for the candidate grasp pose g.

Task-Oriented Grasp Evaluator TGE is implemented as a
customized Transformer decoder [28]. It is analogous to a
sequence-to-sequence model commonly used in machine trans-
lation, which converts sequences from one domain to another. In
our problem, the robot is unable to comprehend novel concepts
out of the training set. We utilize TGE to translate a novel concept
using its description paragraphs, and connect the novel concept
to its related concepts described during training.

The architecture of TGE is depicted in Fig. 2(b). The transla-
tion process incorporates contextual information from language
descriptions into their corresponding concept in I . Both training
and inference follow the same computational procedure. Specif-
ically, we begin by transforming word embeddings from the
pre-trained language encoder to a lower dimension space and
obtain F̃td ∈ RTtd×128, F̃od ∈ RTod×128, and F̃I ∈ RTI×128.
TGE consists of two layers, one for incorporating object class
knowledge F̃od and the other for incorporating task knowledge
F̃td. Each decoder layer aims to learn a function as below:

φtd : RTI×128 × RTtd×128 → RTI×128

φod : RTI×128 × RTod×128 → RTI×128

where the outputs of φtd and φod are language instruction word
embeddings augmented with contextual knowledge. Two de-
coder layers share a similar design. The computational procedure
of φ∗d can be represented as follows:

F̃I = LN(F̃I + MHA(F̃I , F̃∗d))

F̃I = LN(F̃I + FFN(F̃I))

where ∗d can be either td or od; LN, MHA, and FFN denote layer
normalization, multi-head attention, and feedforward network,
respectively; MHA consists of eight cross-attention heads in our
implementation. The computation of each cross-attention head
can be represented as:

A = Softmax

(
QIK

T
∗d√

128

)
V∗d

where A is the attended word embeddings. QI , K∗d, and V∗d are
transformed from F̃I and F̃∗d as follows:

QI = Qproj(F̃I),K∗d = Kproj(F̃∗d), V∗d = Vproj(F̃∗d)

where Qproj, Kproj, and Vproj are projection matrices. The intu-
ition is to reconstruct F̃I by all elements in F̃∗d weighted by their
normalized correspondence. Since cross-attention mechanism
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can dynamically assign weights to each input token, it learns to
attend to concept tokens in I while ignore irrelevant tokens.

Finally, F̃I is mean pooled to output a sentence embedding
F I ∈ R128. It is then concatenated with the shape embedding
F̃X ∈ R300, which is obtained by projecting FX via a fully
connected layer. We compute S using an MLP (Multi-Layer
Perceptron) with a sigmoid activation:

S = Sigmoid(MLP(Concat([F̃X , F I ], dim = −1)))

The MLP comprises three fully connected layers with 1D batch
normalization, ReLU activation, and dropout.

Loss Function We compute the binary cross-entropy loss
between S and the ground truth label Sgt:

Lbce = − 1

N

N∑
i=1

Sgt,i · log(Si)

+ (1− Sgt,i) · log(1− Si)

where N is the total number of samples, and Sgt,i is set to one
if the ith grasp pose is successful and zero otherwise.

V. EXPERIMENTAL SETUP

A. Perception Experiments

Baselines We compare GraspGPT to the following meth-
ods: 1) Random, which represents the method in [22] that
focuses on grasp stability only and ignores task constraints (i.e.,
task-agnostic grasping method). 2) Semantic Grasp Network
(SGN) [12], which learns class-task-grasp relations without
incorporating external semantic knowledge. 3) GCNGrasp [4],
which is the state-of-the-art TOG algorithm introduced earlier
and whose main limitation is its inability to generalize to novel
concepts out of the graph. During inference, we connect the
novel concept node to its nearest neighbor in the KG. The nearest
neighbor search is based on the cosine similarity between the
concepts’ pre-trained word embeddings provided by Concept-
Net [29].

Dataset GraspGPT and three baselines are evaluated on the
LA-TaskGrasp dataset, which augments the TaskGrasp dataset
with language data. The original TaskGrasp dataset contains
250 K task-oriented grasp pose annotations for 56 tasks, 75
object classes, and 191 object instances. Each instance is a
partial point cloud of a real household object with multi-view
RGB-D fusion. TaskGrasp provides three types of held-out
settings: held-out (object) class, held-out task, and held-out
instance. We focus on the former two settings in this letter. For
language data, LA-TaskGrasp contains 80 language description
records for each object class and 40 records for each task,
resulting in 6000 object class description records and 2240 task
description records. We combine these descriptions to generate
750 object class description paragraphs and 560 task description
paragraphs. LA-TaskGrasp dataset also includes 53 language
instruction templates, resulting in 222600 possible language
instruction sentences.

Metrics We use the same set of evaluation metrics used by
GCNGrasp. Specifically, we compute the Average Precision
(AP) score for each object class, task, and instance, and then
compute the mean AP (mAP) averaged over all object classes,
tasks, and instances (i.e., class mAP, task mAP, and instance
mAP).

B. Real-Robot Experiments

The real-robot experiment platform comprises a 7 DoF Ki-
nova Gen3 robotic arm with a parallel jaw gripper and an Intel
RealSense D435 RGB-D camera with eye-in-hand calibration.
For each test object, we first apply SAM [30] to extract the
object point cloud captured from a single view and then apply
Contact-GraspNet [22] to generate 50 grasp pose candidates.
Single-view setup is used here because it is more practical for
real-world robotic applications. Finally, all the candidates are
evaluated and the one with the highest score are executed. We
collect test objects from our laboratory and YCB dataset. More
details on the experimental setup can be found in the appendix.

The physical grasping pipeline is divided into three stages:
Perception, Planning, and Action, and the statistics of each stage
is reported separately for clarity. A trial succeeds if the test object
is grasped subject to the natural language instruction and lifted
stably by the robot. We additionally combine GraspGPT with
three pre-defined skills (pouring, handover, and scooping) in
the form of motion primitive to showcase its practicality in tool
manipulation.

C. Implementation Details

All the experiments are conducted on a desktop PC with a
single Nvidia RTX 3090 GPU. GraspGPT is optimized with
an Adam optimizer [31] with a weight decay of 0.0001. The
learning rate is set to 0.0001 initially and decays subject to a
customized function as in GCNGrasp. We train GraspGPT for 50
epochs with a batch size of 32. Each point cloud is downsampled
to 4096 points before being fed into the model.

For the choice of an LLM, we select the OpenAI GPT-3 model,
specifically the text-davinci-003 version. GraspGPT is capable
of incorporating any current LLM, such as OpenAI GPT-4
and Google Bard, or using an ensemble of LLMs. We leave
this ensemble approach for our future work. For the language
encoder, we choose the Google pre-trained BERT-Base model
provided by Hugging Face.

VI. RESULTS

A. Results of Perception Experiments

To highlight the difference between our approach and GC-
NGrasp, we investigate perception experiments from two per-
spectives: open-world generalization and closed-world general-
ization. The former evaluates the generalization performance to
novel concepts out of the knowledge graph of GCNGrasp. In
the latter evaluation, GCNGrasp has access to all the concepts
in the LA-TaskGrasp dataset and the ground truth relations
between them in its pre-defined graph. Although this assumption
is impractical in real-world robotic applications, we still want to
explore how our approach compares to GCNGrasp even though
GraspGPT does not assume access to concepts out of the training
set. Since GraspGPT and the other two baselines do not rely on a
pre-defined graph structure, their results for the two evaluations
are the same. The quantitative results of perception experiments
are reported in Table II.

Open-World Generalization For both held-out settings, Ran-
dom achieves approximate mAPs of 50–60%, indicating that
the distribution of positive and negative samples in the dataset
is even. By considering task constraints, SGN achieves consis-
tent improvements (10%+) over Random under two held-out
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TABLE II
QUANTITATIVE RESULTS OF PERCEPTION EXPERIMENTS

Fig. 3. Qualitative results of open-world generalization. GraspGPT and GCNGrasp are evaluated under both held-out settings. Results on self-collected test
objects (no ground truth annotations) are also presented. Grasp poses are colored by their confidence scores (green is higher). Only top-5 predictions are displayed
for better visualization effect.

settings. For GCNGrasp, we observe a significant performance
difference between the held-out task setting and the held-out
class setting. GCNGrasp even falls behind Random by 1.58%,
11.03%, and 19.20% on three metrics in the held-out task setting.
This suggests that the pre-trained word embeddings of Concept-
Net are good at capturing the linguistic relations between object
classes but perform poorly on relating task concepts. Therefore,
GCNGrasp cannot fully exploit the power of semantic knowl-
edge encoded in its graph. Since GraspGPT does not rely on
a pre-defined KG but instead leverages the open-end semantic
knowledge from an LLM, GraspGPT outperforms all three
baselines when generalizing to concepts out of the training
set. It outperforms GCNGrasp by 21.84%, 29.69%, and 39.17%
on held-out task setting and by 6.78%, 5.43%, and 5.26% on
held-out class setting. The qualitative results are presented in
Fig. 3.

Closed-World Generalization Compared to open-world gen-
eralization, GCNGrasp performs consistently better on closed-
world generalization since all the concepts and the ground truth
relations between them have been pre-defined in its graph.
GraspGPT and GCNGrasp outperform both Random and SGN
due to the incorporation of semantic knowledge. For the held-
out task setting, GraspGPT achieves comparable performance
with GCNGrasp on instance mAP and class mAP but falls
behind by 3.77% on task mAP. For held-out class setting,

GraspGPT outperforms GCNGrasp on two metrics. Overall,
GraspGPT achieves comparable performance with GCN-
Grasp on closed-world generalization even though it does not
assume access to all concepts and their relations as GCNGrasp
does.

B. Results of Real-Robot Experiments

Task-Oriented Grasping We conduct 100 trials on each held-
out setting, with ten trials per object class or task. As pre-
sented in Table III, GraspGPT achieves high success rates
(86.00% and 91.00%) in the perception stage, even though
the object point clouds are captured from a single view. The
performance drop from the perception stage to the action stage
(71.00% and 77.00%) can be attributed to three primary reasons:
1) marginal grasp candidates generated by the grasp sampler;
2) incorrect evaluation by GraspGPT; 3) motion planning failure.
The qualitative results of three test objects are shown in Fig. 3
(right).

Task-Oriented Manipulation To support task-oriented manip-
ulation (refer to Fig. 4), we first utilize GraspGPT to generate
task-oriented grasp poses for tool objects. Then, we design
rule-based heuristics to determine the operating direction and
effect points [32] on the target objects. As presented in Table IV,
GraspGPT performs well in task-oriented grasping, achieving
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TABLE III
RESULTS OF TASK-ORIENTED GRASPING EXPERIMENTS

TABLE IV
RESULTS OF TASK-ORIENTED MANIPULATION EXPERIMENTS

Fig. 4. Real-robot experiments on task-oriented grasping and manipulation:
Mug-Pour (left) and Spatula-Handover (right).

success rates of 75.00%, 85.00%, and 90.00% in three tasks,
respectively. However, due to its inability to adaptively model
the relative pose [33] between the tool object and the target
object, the success rates of task-oriented manipulation decrease,
especially for pouring and scooping. Future work includes ex-
tending GraspGPT to support task-oriented pick and place.

C. Ablation Study

To gain further insights into the effectiveness of each com-
ponent of GraspGPT, we perform two sets of ablation studies,
aiming to answer two questions:
� Does the incorporation of semantic knowledge from an

LLM help to better generalize to novel concepts out of the
training set?

� How does the selection of a pre-trained language encoder
affect the overall performance of GraspGPT?

Ablation on Semantic Knowledge We compare GraspGPT
to three ablations: 1) no semantic knowledge (i.e., w/o D);
2) object class description only (i.e., w/o TD); 3) task description
only (i.e., w/o OD). The results for two held-out settings are
reported in Table II. For the held-out task setting, the full model
outperforms all three ablations. Specifically, the comparison
between w/o D - w/o TD and w/o D - w/o OD demonstrates
that the incorporation of task knowledge is more important

TABLE V
ABLATION ON PRE-TRAINED LANGUAGE ENCODER

for novel task generalization. For the held-out class setting,
we observe that object class knowledge is more important for
generalizing to novel classes out of the training set. Using
object class knowledge only (w/o TD) even slightly outperforms
the full model. We argue that object class descriptions have
already provided sufficient knowledge for novel object class
generalization. Arbitrarily incorporating extra task knowledge
may lead to adversarial/conflicting effects in some cases. In our
current implementation, we do not preprocess the language data
from the LLM. Future work will be done on knowledge filtering
and selection. Overall, the result verifies the hypothesis that the
incorporation of semantic knowledge helps achieve better
generalization to novel concepts.

Ablation on Language Encoder To validate the design
choice of using a large pre-trained language encoder, we equip
GraspGPT with pre-trained BERTs of three sizes and compare
their resulting mAPs. Since the conclusions for the two held-out
settings are similar, we only report the result of the held-out
task setting for simplicity. The result is presented in Table V,
where L denotes the number of transformer layers. It is clear
that BERT-Baseoutperforms two smaller models, but the gaps
are insignificant. We argue that the three models are equally
pre-trained on a large corpus of text data, so they achieve a
similar level of knowledge understanding capability despite their
differences in model complexity.

VII. CONCLUSION

In this letter, we propose GraspGPT, an LLM-based TOG
framework that leverages the open-end semantic knowledge
from an LLM to achieve zero-shot generalization to novel con-
cepts out of the training set. Compared to existing methods,
GraspGPT does not rely on any pre-defined concept set or
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knowledge base. Evaluation on the LA-TaskGrasp dataset
demonstrates the superiority of GraspGPT over existing meth-
ods on novel concept generalization. The effectiveness of
GraspGPT is further validated in performing task-oriented
grasping and manipulation in real-world applications.
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[15] D. Shah, B. Osiński, and and S. Levine, “LM-NAV: Robotic navigation
with large pre-trained models of language, vision, and action,” in Proc.
Conf. Robot Learn., 2023, pp. 492–504.

[16] C. Huang, O. Mees, A. Zeng, and W. Burgard, “Visual language
maps for robot navigation,” in Proc. IEEE Int. Conf. Robot. Automat.,
2022,pp. 10608–10615.

[17] J. Wu et al., “TidyBot: Personalized robot assistance with large language
models,” 2023, arXiv:2305.05658.

[18] W. Huang et al., “Inner monologue: Embodied reasoning through plan-
ning with language models,” in Proc. Conf. Robot. Learn. PMLR, 2023,
pp. 1769–1782.

[19] Y. Jiang et al., “VIMA: General robot manipulation with multimodal
prompts,” 2022, arXiv:2210.03094.

[20] A. Zeng et al., “Socratic models: Composing zero-shot multimodal rea-
soning with language,” in Proc. 11th Int. Conf. Learn. Representations,
2022.

[21] A. Mousavian, C. Eppner, and D. Fox, “6-DOF GraspNet: Variational
grasp generation for object manipulation,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., 2019, pp. 2901–2910.

[22] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox, “Contact-
GraspNet: Efficient 6-DoF grasp generation in cluttered scenes,” in Proc.
IEEE Int. Conf. Robot. Automat., 2021, pp. 13438–13444.

[23] E. Rosch, “Cognitive representations of semantic categories,” J. Exp.
Psychol.: Gen., vol. 104, no. 3, 1975, Art. no. 192.

[24] C. Tang, D. Huang, L. Meng, W. Liu, and H. Zhang, “Task-oriented grasp
prediction with visual-language inputs,” 2023, arXiv:2302.14355.

[25] T. Nguyen, N. Gopalan, R. Patel, M. Corsaro, E. Pavlick, and S. Tellex,
“Affordance-based robot object retrieval,” Auton. Robots, vol. 46, no. 1,
pp. 83–98, 2022.

[26] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++ : Deep hierarchical
feature learning on point sets in a metric space,” in Proc. 31st Int. Conf.
Neural Inf. Process. Syst., 2017, pp. 5105–5114.

[27] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” 2018,
arXiv:1810.04805.

[28] A. Vaswani et al., “Attention is all you need,” in Proc. 31st Int. Conf.
Neural Inf. Process. Syst., 2017, pp. 6000–6010.

[29] H. Liu and P. Singh, “ConceptNet-a practical commonsense reasoning
tool-kit,” BT Technol. J., vol. 22, no. 4, pp. 211–226, 2004.

[30] A. Kirillov et al., “Segment anything,” 2023, arXiv:2304.02643.
[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

2014, arXiv:1412.6980.
[32] Z. Qin, K. Fang, Y. Zhu, L. Fei-Fei, and S. Savarese, “KETO: Learning

keypoint representations for tool manipulation,” in Proc. IEEE Int. Conf.
Robot. Automat., 2020, pp. 7278–7285.

[33] C. Pan, B. Okorn, H. Zhang, B. Eisner, and D. Held, “TAX-Pose: Task-
specific cross-pose estimation for robot manipulation,” in Proc. Conf.
Robot Learn., 2023, pp. 1783–1792.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on February 11,2024 at 07:24:22 UTC from IEEE Xplore.  Restrictions apply. 

IEEE Robotics and Automation Letters (RA-L) paper, presented at ICRA 2024, Yokohama, Japan. Cite as RA-L paper.

IEEE Robotics and Automation Letters (RA-L) paper, presented at ICRA 2024, Yokohama, Japan. Cite as RA-L paper.


