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Abstract— The past few years have seen immense progress
on two fronts that are critical to safe, widespread mobile robot
deployment: predicting uncertain motion of multiple agents,
and planning robot motion under uncertainty. However, the
numerical methods required on each front have resulted in a
mismatch of representation for prediction and planning. In pre-
diction, numerical tractability is usually achieved by coarsely
discretizing time, and by representing multimodal multi-agent
interactions as distributions with infinite support. On the other
hand, safe planning typically requires very fine time dis-
cretization, paired with distributions with compact support, to
reduce conservativeness and ensure numerical tractability. The
result is, when existing predictors are coupled with planning
and control, one may often find unsafe motion plans. This
paper proposes ZAPP (Zonotope Agreement of Prediction and
Planning) to resolve the representation mismatch. ZAPP unites
a prediction-friendly coarse time discretization and a planning-
friendly zonotope uncertainty representation; the method also
enables differentiating through a zonotope collision check,
allowing one to integrate prediction and planning within a
gradient-based optimization framework. Numerical examples
show how ZAPP can produce safer trajectories compared to
baselines in interactive scenes.

I. INTRODUCTION

The widespread deployment of autonomous mobile robots
near and around people is steadily increasing. To ensure
safety (i.e., collision avoidance), such robots require predic-
tive models of other agents’ uncertain motion [1], [2], plus
motion planning methods that can quickly generate collision-
avoiding trajectories [3], [4]. However, there is often a
mismatch in the numerical representation required to imple-
ment predictors and to implement planners and controllers.
In particular, predictors typically leverage a coarse time
discretization and represent uncertain agent motion via Gaus-
sian mixtures or other unbounded distributions [5]–[10]. In
contrast, planning typically requires a fine time discretization
to avoid excessive conservativeness and accurately represent
dynamics [11]–[13]. Furthermore, since safety assurances are
nominally incompatible with unbounded representations of
agent motion, planning methods typically consider bounded
disturbances (e.g., [14]–[17]). Thus, it remains unclear how
best to bridge the representation gap between prediction and
motion planning for mobile robots in multi-agent scenes.

We propose a Zonotope Agreement of Prediction and
Planning (ZAPP) to address the representation gap between
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Fig. 1: Overview of approach and notation. Existing interaction
prediction approaches typically use coarse time discretizations to
enable long-term predictions, but this can lead to missed collision
detections in motion planning. We use zonotopes (blue and red
polygons) to represent uncertain, continuous-time reachable sets
(light blue and red tubes) for agents in interactive scenes (ego
agent in blue, other agent i in red). Note that approximating the
reachable sets in discrete time (polygons with thick outlines) may
still be insufficient for detecting collisions. To find an ego motion
plan, we propose a numerical trajectory optimization approach with
zonotope collision-avoidance constraints. The zonotopes are backed
out from the outputs of a neural network predictive model, which
also provides gradients for trajectory optimization (green dashed
arrows). We also illustrate the ego goal xg, agents’ state history
X0, and static obstacles Xobs.

prediction and planning. ZAPP seeks to preserve as many of
the learned properties of multi-agent interaction from a pre-
dictor while producing a computationally-tractable, planning-
compatible representation. We reformulate a generalized
notion of prediction using zonotopes, a convex, symmetric
polytope representation amenable to robust planning and
control, which lets us represent uncertainty and continuous-
time motion. ZAPP combines these components into a tra-
jectory optimization framework inspired by recent successes
in gradient-based safe motion planning [18]–[21]. We also
note that our approach is predictor-agnostic, meaning it can
be paired with a variety of existing discrete-time predictors.

Related Work. A wide variety of methods predict future
agent motion for navigation and interaction. To achieve
high-quality predictions, it is typically necessary to explic-
itly model interactions, known dynamics, and multimodality
[22]–[24]. A further need across prediction architectures is to
represent uncertainty in predicted states (e.g., [5]–[7], [25]–
[28]). For the sake of numerical tractability, it is common
to either assume a Gaussian mixture model [5], [6], or to
associate occupancy probabilities with road network structure
[25], [29]. A key aspect of these methods is that they predict
in discrete time for numerical tractability (with the exception
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of [25], which requires known road structure).
Given a prediction model, one can then perform planning

and control. In structured settings, one can adopt specific
rules of the road as constraints for trajectory planning [17],
[30]–[36]. One can also consider risk tolerance to allow a
user-specified level of constraint violation [32], [37]. In less
structured scenes, one can robustly consider interaction dy-
namics [18], [38]; robustness can introduce conservativeness,
which one may mitigate by estimating parameters of other
agents’ motion [39]. While most methods use discrete time,
many planning methods also explicitly consider continuous
time in unstructured [34] or structured [17], [33], [35], [40]
settings. However, these continuous-time methods typically
only consider an open-loop prediction model, wherein pre-
dictions may be incorrect because they are not conditioned
on an ego trajectory plan. Thus, the challenge we address
is continuous-time, closed-loop collision avoidance in a
numerically-tractable way.

Contributions. Our key insight is that typical discrete-
time predictions can be readily extended to continuous-
time via zonotopes, enabling a differentiable framework for
optimization-based motion planning. Our Zonotope Agree-
ment of Prediction and Planning (ZAPP) is enabled by the
following contributions. First, we convert unbounded, multi-
modal, discrete-time predictions into zonotopes suitable for
robust planning. Second, we extend discrete-time zonotope
predictions to continuous time while enabling differentiable
collision checking for trajectory optimization. Third, we
provide a simulation framework for constructing interactive
scenes (see Fig. 2), and we show that ZAPP outperforms a
variety of baselines through numerical experiments.

Notation. The real numbers are R and the natural numbers
are N. The floor operator ⌊ · ⌋ rounds down to the nearest
integer. The cardinality of A is |A|. The Minkowski sum
is A + B = {a + b | a ∈ A, b ∈ B}. A random variable
w, drawn from an n-dimensional normal distribution with
mean µ and covariance Σ, is w ∼ N (µ,Σ). The n × n
identity matrix is In. An n×m array of zeros (resp. ones)
is 0n×m (resp. 1n×m). For a vector v, the ith element is v[i].
For an array A, the element at row i, column j is A[i, j];
the ith row is A[i, :]. The diag operator places its arguments
block-diagonally in a matrix of zeros.

II. PROBLEM FORMULATION

We now pose a generic tightly-coupled prediction and
planning problem (see Program (3)). This formulation re-
quires solving a differential equation interaction model and
collision checking in continuous time, necessitating a careful
choice of representation for practical implementation.

A. Setup

1) Agents, Modes, and Dynamics: Consider a control
scenario with an ego agent (which we control) and m ∈ N
other interacting agents (which we do not control, but we
can predict their motion). We assume an upper bound on m
is known a priori.

We consider multi-modal interaction dynamics, where
each mode y ∈ Y = {1, 2, · · · , ny} is a unique homotopy
class of the multi-agent system’s trajectories, meaning that
trajectories from one mode cannot be continuously defomed
into those of another mode [41]. For example, in a scene
with two agents crossing paths (see Fig. 1), there are at least
two modes: one where agent i stops to let the ego agent pass,
and one where the ego agent stops to let agent i pass.

The ego agent has state xy
e (t) ∈ Rne in mode y at time

t. The state vectors of the other m agents in mode y are
xy
1(t), · · · , xy

m(t), with state dimensions ni ∈ N for i =
1, · · · ,m respectively. The combined state of the multi-agent
system is xy(t) ∈ X ⊂ Rnx , with nx = ne +

∑
ni. We

consider a finite time horizon tf > 0, so t ∈ T = [0, tf].
We assume that all agents occupy a 2-D workspace; our

approach can extend to 3-D by applying techniques similar
to [19]–[21]. We further assume that each agent’s state xy

i

includes a 2-D position, pyi (t) = posi(x
y(t)). We denote

static obstacles Xobs ⊂ X , and assume they are known to
the ego agent, since the focus of this work is planning.

We control the ego agent with a signal uy : T → U .
We associate the control signal with a particular mode to
make this formulation general. We apply a receding-horizon
strategy wherein u is reoptimized every ∆t > 0 seconds. We
let t be reset to 0 every ∆t seconds at the beginning of each
plan without loss of generality, so we only consider the time
interval T = [0, tf] going forward.

Finally, we denote the multi-agent dynamics in mode y as

ẋy(t) = fy(t, xy(t), uy(t)) + wy(t). (1)

We assume the noise wy(t) ∼ W is drawn from a distribution
with compact support.

2) Reachable Sets: We seek to find safe ego motion plans
given the uncertain dynamics (1). To do so, we consider the
reachable set of the multiagent system:

Ry(t) =
{
xy(t) | ẋy = fy + wy and xy(0) ∈ R(0)

}
, (2)

where R(0) is an uncertain set of initial states of all agents,
which we assume is known. Note, our proposed zonotope
framework in Sec. III can be readily extended to account for
occupancy (nonzero volume) of each agent [19]–[21], [40],
so we omit occupancy to simplify exposition.

B. Problem Statement

We seek to approximate the following trajectory optimiza-
tion problem in a numerically tractable way:

min
{uy}y∈Y

J(y, xy, uy) (3a)

s.t. pose(Ry(t)) ∩ posi(Ry(t)) = ∅ ∀ t, y, i (3b)
pose(Ry(t)) ∩ Xobs = ∅ ∀ t, y (3c)

ua(τ) = ub(τ) ∀ τ ∈ [0, tc], a, b ∈ Y (3d)

where J is an arbitrary cost function, t ∈ T , y ∈ Y , and i ∈
{1, · · · ,m}. Program (3) seeks a set of |Y| control signals
{uy : T → U}y∈Y for which the ego agent does not collide
with any other agent (Constraint (3b)) or any obstacles
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(Constraint (3c)). Per (2), the reachable set constraints (3b)
and (3c) implicitly require the multi-agent system to start
from the initial condition set R(0) and obey the interaction
dynamics f . Finally, the control signals must agree up to a
consensus horizon tc ∈ [∆t, tf] (Constraint (3d)); this means
that the ego agent must apply the same control at least up
to time tc for all modes. We adopt this strategy because we
do not necessarily know the actual mode when solving (3),
so we must be able to simultaneously plan a control strategy
for each mode. This idea, Contingency MPC [42], has been
applied successfully in multi-agent settings [6].

The key challenge is that one can never perfectly represent
the reachable sets Ry

i (t). Furthermore, to enable a numerical
solution, we require an efficient, differentiable representation
of collision detection per (3b) and (3c).

III. PROPOSED METHOD

We now propose ZAPP to represent Problem (3) in a
numerically-tractable way. We begin by introducing zono-
topes and operations that we use to implement Problem (3)
Then, we reformulate Problem (3) as Problem (7) and detail
our implementation.

A. Zonotope Preliminaries

We use zonotopes to represent reachable sets. A zonotope
Z ⊂ Rn is a convex, symmetrical polytope parameterized
by a center c ∈ Rn and a generator matrix G ⊂ Rn×nG as

Z = Z(c,G) = {c+Gβ | ∥β∥∞ ≤ 1} , (4)

where β ∈ RnG , and nG is the number of generators (i.e.,
the columns of G). This is called the G-representation.

Zonotopes enable efficient implementation of many set
operations via well-known analytical formulas (see [43],
[44]). We use the Minkowski sum to construct continuous-
time reachable sets and collision avoidance constraints. The
Minkowski sum of Z1 = Z(c1, G1) and Z2 = Z(c2, G2)
is Z1 + Z2 = Z(c1 + c2, [G1, G2]). We use the Cartesian
product to construct multi-agent reachable sets. The Carte-
sian product is Z1 ×Z2 = Z([ c1c2 ], diagG1, G2).

We project zonotopes to lower dimensions to extract
position information. Suppose the multi-agent system is at
state x(t) ∈ Z(c(t), G(t)) ⊂ Rnx , where both c(t) and
G(t) have nx rows. We write pi(t) ∈ posi(Z(c(t), G(t))),
which selects the rows of c(t) and G(t) corresponding to the
position coordinates of state xi.

To detect if zonotope reachable sets are in collision, one
can check if the center of one zonotope lies in the other
zonotope Minkowski summed with the generators of the first:

Proposition 1 ([44, Lemma 5.1]). Consider the zonotopes
Z1 = Z(c1, G2) and Z2 = Z(c2, G2). Then, Z1 ∩ Z2 = ∅
if and only if c1 ̸∈ Z(c2, [G1, G2]).

Note, checking if a point lies within a zonotope of arbitrary
dimension typically requires either an iterative approach [44]
or solving a linear program [45], [46]. In this work, we avoid
this issue by leveraging two facts: (i) our occupancy sets
are in 2-D, and (ii) since zonotopes are polytopes, they can

also be represented as a collection of linear inequalities, also
know as an H-representation, and represented by a matrix A
and a vector b such that x ∈ Z ⇐⇒ max(Ax− b) ≤ 0:

Proposition 2 ([43, Theorem 2.1]). Let Z = Z(c,G) ⊂ R2,
with nG generators. Assume that G has no generators of
length 0. Let ℓG ∈ Rm be a vector of the lengths of each
generator: ℓG[i] = ∥G[:, i]∥2. Let C =

[
−G[2,:]
G[1,:]

]
. Then

A[:, i] =
1

ℓG[i]
·
[
C
−C

]
∈ R(2nG)×2, and (5a)

b = C⊤c+
∣∣C⊤G

∣∣ 1m×1 ∈ R2nG , (5b)

where |·| denotes the absolute value taken elementwise. Then

x /∈ Z ⇐⇒ min
(
Ax− b) > 0. (6)

B. Reformulation for Implementation

Let kf = ⌊tf/∆t⌋ and kc = ⌊tc/∆t⌋. Suppose each mode
y is associated with a probability γy ∈ [0, 1] of occurring; in
practice, we use a Gaussian mixture model (GMM) to learn
multi-agent uncertain dynamics, so γy are the coefficients of
the GMM. We implement the following program:

min
{δUy

f }y∈Y

∑
y

γy ·

(
λf ∥xy(kf)− xg∥22 +

kf∑
k=0

λr ∥uy(k)∥22

)
(7a)

s.t. min
(
Ay

i (k)p
y
e (k)− byi (k)

)
> 0 ∀ i, k, y (7b)

min
(
Ay

j (k)p
y
e (k)− byj (k)

)
> 0 ∀ j, k, y (7c)

ua(k) = ub(k) ∀ a, b ∈ Y, k = 0, · · · , kc (7d)
δuy(k) + uy

nom(k) = uy(k) ∀ k, y (7e)

where i ∈ {1, · · · ,m}, k ∈ {0, · · · , kf}, y ∈ Y , and
kc = tc∆t. We set xg ∈ X as a user-specified goal state
and λf, λr > 0 as user-specified weights. The optimization
variables δUy

f ⊂ V ⊂ Rnu are perturbations of the control
signal uy : T → U with respect to a fixed nominal
control signal uy

nom : T → U , as in (7e); this decision
variable formulation is detailed below in Sec. III-D. The
collision avoidance constraints for dynamic obstacles (7b)
and static obstacles (7c) both leverage an H-representation,
where the A⋆

⋆(k) and b⋆⋆(k) matrices are constructed using
Prop. 2 applied to zonotopes constructed in Sec. III-G.
Static obstacles in (7c) are indexed by j = 1, · · · , nobs. To
implement Program (7), we use a gradient-based solver. In
the following, we are careful to ensure that (7b)–(7d) are
differentiable with respect to {δUy

f }y∈Y .

Remark 3. We make a minor abuse of notation to write k
instead of k∆t as arguments to time-varying quantities.

To proceed, first, we detail our decision variable imple-
mentation. Then, we approximate discrete-time reachable
sets using a prediction model. Next, we extend from discrete
to continuous time. Finally, we discuss how to collision
check our reachable sets.
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C. Dynamics via a Prediction Model

1) Reformulation: It is often numerically intractable to
perfectly represent the dynamics fy , and thus the reach-
able sets Ry(t), especially in arbitrary multi-agent settings.
Instead, we train a predictor model P to estimate dis-
cretized solutions to (1) by maximizing the likelihood that
xy(k) ∼ P(y, k,X0, U

y
f ; θ), where θ ∈ Rnθ are the trained

parameters (e.g., neural network weights). The sequence
X0 =

(
x(k)

)0
k=−h

is a finite, discrete state history of length
h ∈ N. Note that the states x(k) in the state history are not
associated with a specific mode, since the past mode may not
be known and the mode may change in the future. Finally,
Uy

f ⊂ U is the planned (future) control signal uy : T → U .
2) Implementation: We use Trajectron++ [5], a state-of-

the-art prediction model implemented as a Conditional Varia-
tional Auto-Encoder (CVAE). Trajectron++ assumes a known
form of dynamics and control for each agent (e.g., 2-D
integrator or kinematic unicycle). The model outputs a multi-
modal distribution over each agent’s applied controls at each
time step, represented as a Gaussian mixture, with one multi-
variate Gaussian per mode: uy

i (k) ∼ N (µy
i,u(k),Σ

y
i,u(k)).

Here, µy
i,u(k) is the mean over controls for agent i in mode y,

and Σy
i,u(k) is the covariance matrix. Trajectron++ produces

a distribution over each agent’s state by propagating the
control and previous state distributions forward according to
each agent’s dynamics, which we denote by the mappings:

gµ : (y, k,X0, U
y
f ) 7→ µy

i (k) and (8a)
gΣ : (y, k,X0, U

y
f ) 7→ Σy

i (k), (8b)

where µy
i (k) ∈ Rni is a mean state and Σy

i (k) ∈
Rni×ni is a state covariance matrix, such that xy

i (k) ∼
N (µy

i (k),Σ
y
i (k)) with high likelihood. Note that µy

i (mean
state) is denoted differently from µy

i,u (mean control), and
similarly for standard deviation.

D. Decision Variable Implementation

When solving Problem (7) numerically, our predictor
would need to be re-evaluated after each solver iteration,
because the output prediction is conditioned on the future
ego motion. In other words, one must perform a forward-pass
of a neural network multiple times for a single MPC solve,
which can be computationally burdensome [18]. To avoid
this issue, we implement our decision variables as follows.

First, the predictor is evaluated once at the beginning of an
MPC execution using Uy

f,nom ⊂ U , which is a fixed nominal
control uy

nom : T → U . In practice, we create this nominal
control as an open-loop sequence of controls that drives the
ego agent in a straight line towards its global goal (ignoring
static or dynamic obstacles). We obtain nominal mean states
µy
i,nom and nominal state covariance matrices Σy

i,nom as

µy
i,nom(k) = gµ(y, k,X0, U

y
f,nom), (9a)

Σy
i,nom(k) = gΣ(y, k,X0, U

y
f,nom), (9b)

which are created by rolling out the Trajectron++ predictor
dynamics [5]. Then, we consider a first-order Taylor expan-
sion around the nominal control, so our decision variables

are δUy
f such that

µ̂y
i (k) := µy

i,nom(k) +
∂gµ
∂Uy

f

∣∣∣
(k,X0,U

y
f,nom)

δUy
f , (10)

where µ̂y
i (k) is the new perturbed mean state.

Optimizing and constraining the perturbations of the con-
trol sequence, instead of the control sequence itself, ensures
that the updated solutions provided by the solver remain
fairly close to the nominal control sequence, which is used
for the evaluation of the neural network. Since we use a
receding-horizon MPC framework, we take advantage of
warmstarting each time we call our solver (i.e., to initialize
our decision variable, we take the optimal control sequence
from the previous solution, discard the value of the first
timestep, and duplicate the value of the last timestep).

E. Discrete-Time Reachable Sets via a Prediction Model

1) Reformulation: We seek to approximate each discrete-
time reachable set Ry(k) as an α-confidence region of the
predictor. We extend this to continuous time in Sec. III-F.

2) Implementation: Given the distribution from Trajec-
tron++, we represent the reachable set as a zonotope over-
approximating a confidence region of the distribution:

Ry
i (k) ≈ Zy

i (k) = Z
(
µ̂y(k), Ĝy

Σ(k)
)
, (11)

with µ̂y(k) = (µ̂y
e (k), µ̂

y
i (k), · · · , µ̂y

m(k)), and Ĝy
Σ(k) =

diag(Ĝy
e (k), Ĝ

y
1(k), · · · , Ĝy

m(k)). In particular, we con-
struct the generators in each Ĝy

i (k) as the princi-
pal axes of a confidence ellipsoid of the distribution
N (µ̂y

i (k), Σ̂
y
i (k)), per [47] and [48, Proposition 2]. We

set Ĝy
i (k) = εi

[
(λy

i,1)
1/2vyi,1, · · · , (λ

y
i,ni

)1/2vyi,ni

]
and εi =

(chi2invni

(
erf(α/

√
2)
)
)1/2, where λy

i,j is the jth eigenvalue,
vyi,j is the jth eigenvector for agent i in mode y, chi2invni

is the inverse of the χ2 (chi squared) distribution function
with ni degrees of freedom, and erf is the error function
[49, Sec. 3.1]. Note that εi can be precomputed for a user-
specified confidence bound for each agent, and is constant
when solving Problem (7). We set α = 1.0.

F. Continuous-time Reachable Set Approximation

We now approximate the continuous-time reachable sets
from (3b) and (3c) using zonotopes, which we use later in
Sec. III-G to generate the constraints (7b) and (7c).

1) Reformulation: We seek to model the continuous-time
reachable set for each agent, denoted

Ry

i (k) =
⋃

τ∈[k∆t, (k+1)∆t]

Ry
i (x

y(τ)). (12)

2) Implementation: We propose a geometric approxima-
tion of (12). We construct cyi (k) and G

y

i (k) such that

Ry

i (k) ≈ Zy

i (k) = Z
(
cyi (k), G

y

i (k)
)

(13)

The joint continuous-time reachable set for all agents is then

Ry
(k) ≈ Zy

(k) = Zy

e (k)×Zy

1(k)× · · · × Zy

m(k). (14)
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To approximate Ry

i (k) geometrically, we first represent
the line segment between xy

i (k) and xy
i (k+1) as a zonotope:

Ly
i (k) = Z

(
cyL,i(k), G

y
L,i(k)

)
, with (15)

cyL,i(k) =
1
2

(
µy
i (k) + µi(k + 1)

)
and (16)

Gy
L,i(k) =

1
2

(
µy
i (k + 1)− µy

i (k)
)
. (17)

Then, we approximate Ry

i by extending the reachable set
at each time step halfway towards the reachable sets at the
previous and subsequent time steps:

Zy

i (k) =
(
Zy

i (k) +
1
2

(
Ly
i (k)− xy

i (k)
))

∪(
Zy

i (k + 1) + 1
2

(
Ly
i (k)− xy

i (k + 1)
))
,

(18)

where Zy
i (k) = Z

(
µ̂y
i (k), Ĝ

y
i k
)

, and we have used the
Minkowski sum of zonotopes as per Sec. III-A.

We leave alternative methods of approximating continuous
time to future work. For example, one could compute the
convex hull between timesteps with constrained zonotopes
[45], [50], but the resulting numerical representations are
typically large. One could also apply standard zonotope
reachability methods [40], [43], though the resulting set
representations may not be differentiable.

G. Collision Avoidance Constraints

We now use our reachable set approximation to create the
collision avoidance constraints (7b) and (7c).

1) Reformulation: We reformulate the collision avoidance
constraints as

pose(R
y
(k)) ∩ posi(R

y
(k)) = ∅ and (19a)

pose(R
y
(k)) ∩ Xobs = ∅ (19b)

for each k = 0, · · · , kf − 1.
2) Implementation: We construct the dynamic collision

avoidance constraints as follows. Consider the ego agent and
agent i in mode y at time step k. Recall that the contin-
uous time occupancy approximation is given as Zy

i (k) =
Z(cyi (k), G

y

i (k)) for agent i. We apply Prop. 1 and project
each such zonotope to the agent’s position dimensions to
construct a collision check zonotope between the ego and
each ith agent:

Py
i (k) = Z

(
pyi (k),

[
pose(G

y

e (k)), posi(G
y

i (k))
])
, (20)

where posi extracts the position coordinates of the gen-
erator matrix. We convert Py

i (k) to an H-representation
(Ay

i (k), b
y
i (k)) with Prop. 2 to get the constraint in (7b):

min
(
Ay

i (k)p
y
e (k)− byi (k)

)
> 0. (21)

We formulate the static obstacle collision avoidance con-
straints similarly. First, we assume the static obstacles are
overapproximated by a finite union of zonotopes: Xobs ⊆⋃nobs

j=1 Z(pobs,j , Gobs,j). This is a reasonable assumption for
a variety of common obstacle representations, such as occu-
pancy grids or compact polygons. Then, for each obstacle
j, we apply Prop. 1 to construct a zonotope Py

j (k) =

Z
(
pobs,j ,

[
pose(G

y

e (k)), Gobs,j
])

. We apply Prop. 2 to con-
vert to H-representation, (Ay

j (k), b
y
j (k)), as in (7c).

Importantly, our collision avoidance constraints are sub-
differentiable [51, Ch. 5.1.4], meaning we can use them
with a gradient-based optimization solver. This is because
we leverage Props. 1 and 2; notice that Prop. 1 only requires
matrix concatenation, and Prop. 2 uses arithmetic, concate-
nations, an absolute value, and a max. In Prop. 2, generator
lengths appear in the denominator of (5), but we assume
there are no generators of length 0. In practice, we compute
derivatives of the constraints with respect to the ego controls
using autodifferentiation in PyTorch [52].

Next, we present a numerical experiment to illustrate the
utility of our proposed ZAPP approach.

IV. NUMERICAL EXPERIMENTS

We now present a numerical study to illustrate the utility
of our proposed method for uncertainty-aware planning in
multi-agent scenes. As part of our codebase, we contribute
a framework for generating interactive scenes. We created
this because we found that, in preliminary experiments with
traffic data [53], [54], traffic agents mostly follow predefined
paths with little interaction. Our code is open-source1. We
implement zonotopes in python using the numpy package
[55]. We solve (7) using the Interior Point Method (IPM)
solver cyipopt2. The cost and constraints gradients are com-
puted via PyTorch [52] automatic differentiation.

We generate our dataset using the environment shown
in Figs. 2 and 3. The goal is to navigate a hallway while
avoiding 10 non-ego agents. All agents are modeled as
double integrators subject to nonlinear forces (note that
Trajectron++ [5] can readily handle more complex nonlinear
dynamics; we deliberately chose dynamics that allowed us
to construct highly interactive scenes). Each (i, j) pair of
non-ego agents repels each other proportional to the inverse
squared Euclidean distance 1/

∥∥pyi − pyj
∥∥2
2
. They are also

repelled, but with much lower magnitude, from the ego agent;
this mimics social forces while allowing collisions (see Table
I). Finally, non-ego agents are repelled from static obstacles
proportional to their relative velocity and inverse of relative
distance. This setup renders the prediction problem control-
dependent and prevents the surrounding agents from easily
avoiding the ego agent, ensuring interaction. All agents have
a maximum absolute velocity of 4 m/s and a maximum ab-
solute acceleration of 3 m/s2 in both the Cartesian directions.
We consider the ego agent to have no size (i.e., a point mass),
and the surrounding agents to be squares with a side length
of 1 m.

We train the predictor on 300 scenes of 8 seconds each.
In the training scenes, the ego controls are simulated by
creating an artificial potential field that attracts the ego agent
towards the global goal, resulting in realistic and smooth
control policies.

A. Experiment Setup

1) Task: We consider the control task complete when
the ego agent has traveled 28 m horizontally from the start

1https://github.com/lpaparusso/ZAPP
2https://cyipopt.readthedocs.io/en/stable/
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Fig. 2: ZAPP takes as input a nominal ego-agent trajectory (black
dashed line), which is used to predict the nominal continuous-time
predictions (blue tubes), and finally steers the motion plan to avoid
collision (blue line).

Fig. 3: Example of a completed scenario in the robustness test
(w/o DC). ZAPP is able to lead ego to the goal (from left to right)
without crashes, implementing receding horizon motion planning
(trajectories at each time step shown in blue). To ease visualization,
the surrounding agents’ trajectories are shown at discrete times with
color fading from dark to light as time passes.

point. If a collision involving the ego agent occurs, we
register a crash and consider the task not complete. Note,
we collision check the robot approximately in continuous
time by checking at a much finer time discretization than is
used for our MPC planner.

2) Planner Details: Our planner considers the 2 most
probable modes for each of the 3 closest surrounding agents.
It runs at 2 Hz in simulation time, with the 16 step predictive
horizon discretized at 10 Hz. We set |δuy(k)| ∈ [−3, 3] m/s2

to ensure that the linearization of the prediction model is a
fair assumption (see (7e)). We set the maximum number of
solver iterations per MPC execution to 10.

3) Baselines: (i) To understand the relevance of
continuous-time approximation, we compare against MATS,
a planning-focused predictor that uses linearized dynam-
ics and discrete-time collision avoidance [6]; to ensure a
fair comparison, we augment MATS with our discrete-time
reachable set approximation. (ii) To test the effect of interac-
tion prediction, we test against ZAPP without interaction gra-
dients (w/o Int.), meaning we do not update the predictions
when the ego control changes while solving Problem (7). (iii)
To test robustness to model error, we evaluate both MATS
and ZAPP without domain consistency (w/o DC), meaning
the predictor is trained on different interaction forces from
the ones used in the experiment. Future work will compare
against additional social navigation baselines [38], [56].

B. Results and Discussion

Quantitative results are shown in Table I. In Figure 2, a
qualitative example shows ZAPP in action. A full completed
scenario is shown in Figure 3 for the ZAPP w/o DC case.

a) Crash Percentage: ZAPP produces a low crash
percentage (approximately 1/10 compared to MATS). This

Method G/C [%] AS [m/s] ST [s]
MATS [6] 70.0 / 30.0 3.81±0.10 2.27±0.62
MATS [6] w/o DC 53.3 / 46.7 3.79±0.14 2.27±0.62
ZAPP w/o DC 86.7 / 13.3 3.75±0.15 4.33±1.72
ZAPP w/o Int. 46.7 / 53.3 3.86±0.08 2.21±0.58
ZAPP (ours) 96.7 / 3.3 3.80±0.14 4.33±1.72

TABLE I: Baseline performance on goals/crashes (G/C),
average speed (AS), and average solve time (ST).

shows that collision checking in continuous time has a
positive effect on safety and task completion. The fact that
ZAPP w/o DC has more crashes than ZAPP indicates that
modeling uncertainty (i.e., reachable sets) is necessary, and
that improving predictor robustness is critical for future
work. This is further supported by the high crash percentage
of MATS w/o DC, which is not acceptable in safety-critical
control tasks. Overall, these results indicate that the extension
of collision checking to continuous time has a positive effect
on safety and robustness to perturbations when planning ego
motion in dynamic, multi-agent scenes.

b) Average Speed: Table I reports the average speed
(towards the goal) of the ego agent over all scenes with
no crashes, similar to the metric in [34]. The 4 baselines
have similar average speed values, close to the maximum
allowed control action of 4 m/s. Therefore, ZAPP improves
safety and robustness compared to MATS at practically no
expense in task completion speed. However, we stress that
the metrics are calculated only for scenarios without crashes.
Since ZAPP completes the task almost always, its average
speed is more relevant than the one obtained by MATS.

c) Solve Time: MATS baselines, as expected, compute
faster because discrete-time collision checking needs half as
many zonotopes and constraints. However, all of the obtained
solver times are only one order of magnitude slower than
real time, even though the predictor and planner are written
in non-compiled and non-optimized Python code. Thus, we
anticipate that, in future work, our method can readily be
made to work in real time with compiled and optimized code,
and task-focused prediction architectures (e.g., [9]).

V. CONCLUSION

This paper presented a Zonotope Agreement of Prediction
and Planning (ZAPP) to overcome the gap between predic-
tion and planning numerical representations for mobile robot
motion planning in interactive scenes. The method leverages
zonotopes to enable continuous-time reasoning for planning,
whereas most prediction frameworks are based on discrete
time. Numerical experiments show that this enables increased
safety, and a significant safety boost over discrete time
planning, when generating interactive motion plans in mobile
robot settings. Future work will explore alternative methods
of extending from discrete to continuous time and alternative
representations of reachable sets and uncertainty. We note
that ZAPP can extend to include strict safety guarantees with
techniques such as [19], [33], [34], [57], [58]. Furthermore,
we plan to conduct hardware trials to validate the proposed
approach.
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