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Abstract— Model-based RL is a promising approach for real-
world robotics due to its improved sample efficiency and gen-
eralization capabilities compared to model-free RL. However,
effective model-based RL solutions for vision-based real-world
applications require bridging the sim-to-real gap for any world
model learnt. Due to its significant computational cost, standard
domain randomisation does not provide an effective solution
to this problem. This paper proposes TWIST (Teacher-Student
World Model Distillation for Sim-to-Real Transfer) to achieve
efficient sim-to-real transfer of vision-based model-based RL
using distillation. Specifically, TWIST leverages state observa-
tions as readily accessible, privileged information commonly
garnered from a simulator to significantly accelerate sim-to-
real transfer. Specifically, a teacher world model is trained
efficiently on state information. At the same time, a matching
dataset is collected of domain-randomised image observations.
The teacher world model then supervises a student world model
that takes the domain-randomised image observations as input.
By distilling the learned latent dynamics model from the teacher
to the student model, TWIST achieves efficient and effective
sim-to-real transfer for vision-based model-based RL tasks.
Experiments in simulated and real robotics tasks demonstrate
that our approach outperforms naive domain randomisation
and model-free methods in terms of sample efficiency and task
performance of sim-to-real transfer.

I. INTRODUCTION

Deep reinforcement learning (RL) has successfully been
applied to challenging control problems such as dexterous
manipulation [1], locomotion [2], and Atari [3]. A particu-
larly promising approach is model-based RL, which learns
a world model of the environment, and utilises this model
for planning or policy optimisation. Compared to model-free
approaches, model-based RL holds the potential for broader
generalisation [4], improved sample efficiency [5], [6], and
faster adaptation to new tasks [7], [8]. However, while
model-based RL algorithms have been highly successful in
simulated environments [9], [10], their application to real-
world robots remains limited due to the need for unsafe or
costly data collection [11] to train a world model in the real
world.

Instead of training an RL agent directly in the real world,
sim-to-real transfer is a common approach: learning a policy
from easily accessible simulated data and deploying it in the
real environment. In real-world environments, we often do
not have access to accurate state information, and therefore
we wish to learn a policy that utilises images as inputs. To
overcome the gap between the simulator and the real world,
domain randomisation (DR) is often employed. DR exposes
the policy to a wide range of simulated environments during
training to improve generalisation to the real environment.
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However, a significant drawback of DR is that policy training
on randomised environments requires much more data [12].
Therefore, RL with DR can be extremely computationally
intensive and may require weeks of computation time for
training to converge [1].

The vast majority of existing work on sim-to-real trans-
fer is applied to model-free RL [13], [14], [12], [15]. In
this work, we address the uninvestigated area of sim-to-
real transfer for model-based RL trained from images. By
leveraging model-based RL algorithms, we benefit from the
improved sample efficiency of model-based approaches [5].
However, to address the sim-to-real gap, it is still necessary
to apply DR. Similar to applying DR to the model-free case,
naı̈vely applying DR to model-based approaches increases
the amount of data required to train a suitable world model,
and is therefore computationally very demanding [8].

To address this, we propose Teacher-Student World model
Distillation for Sim-to-Real Transfer (TWIST). TWIST lever-
ages privileged information in a simulator to achieve efficient
and robust sim-to-real transfer for model-based RL. In par-
ticular, TWIST utilises two world models, a teacher and a
student, to learn the environment. The input to the teacher is
state information that is only accessible within the simulator.
The teacher model is therefore unaffected by appearance
changes as introduced by DR and can learn to represent
the environment dynamics within a compact latent space
much more efficiently than a vision-based model. The teacher
model then supervises a student world model by encouraging
it to encode domain-randomised image observations to the
same latent representation as the teacher. We demonstrate
that TWIST provides efficient and effective sim-to-real trans-
fer for model-based RL, outperforming the standard DR-
based approach almost by an order of magnitude in terms of
success rate when applied to real-world manipulation tasks.

Our general approach of combining world model dis-
tillation with DR is applicable to any model-based RL
algorithm. In our implementation, we specifically use the
DreamerV2 model architecture [9] to learn the world models
and associated policies, and apply our approach to a set
of simulated and real robotics environments. We show that
our approach successfully achieves transfer to real-world
environments, and outperforms naı̈ve DR and model-free
approaches in terms of sample efficiency and performance.
Our work demonstrates empirically, that there is significant
potential for sim-to-real transfer of model-based RL, extend-
ing its applicability to a wide range of real-world robotics
applications.
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II. RELATED WORKS

The key concepts that TWIST builds upon include model-
based RL, sim-to-real transfer, and distillation using privi-
leged information. We review the relevant literature of each
of these concepts in turn.

Model-based RL has emerged as a promising approach
to solving complex control problems by leveraging a learned
dynamics model [16], [17], [18]. To achieve the desired
behaviour, the dynamics model (or “world” model) can be
used for planning [5], [19], [10], [20], or policy optimi-
sation [16], [9], [21], [22]. To handle partially observable
environments [23] with high-dimensional observations such
as images, a common approach is to employ a recurrent
state-space model (RSSM) [24], [16], [17], which predicts
transitions in a compact latent space with a recurrent module.
Despite considerable success on simulated environments,
such as Atari [25] and DMControl [26], applications of
vision-based model-based RL to real-world robotics tasks
remain limited due to the need for a large number of
samples to train the world model [27], [28]. Existing works
on model-based RL from images for robotics [27], [28]
build upon a suite of Dreamer algorithms [29], [9], [21],
which achieves state-of-the-art performance on simulated
domains by optimising a policy using only synthetic data
generated by the model. DayDreamer [27] relies upon either
state information or discretised action-spaces to simplify
robotics tasks, and to facilitate learning a model from data
collected directly in the real world. Existing approaches to
transferring Dreamer from simulation to real robots either
require state information [30] or only demonstrate transfer
to near-identical real-world environments [28].

Sim-to-real transfer [31] trains a policy using simulated
data, and deploys the policy in the real world. Existing
approaches to sim-to-real transfer utilise techniques such as
domain randomisation (DR) [32], system identification [33],
and domain adaptation [34]. DR is a particularly simple,
yet effective approach to expose agents to a wide range of
instances of the same environment by randomising visual
and dynamics parameters. By training policies using DR,
agents become more robust to domain mismatches [32].
Previous work on sim-to-real transfer using DR has been
primarily applied to model-free RL methods [13], [35], [36]
or imitation learning [37].

Compared to sim-to-real transfer of model-free RL algo-
rithms, model-based sim-to-real methods remain relatively
unexplored. To our knowledge, [30] is the only work to
transfer a model-based method across the sim-to-real gap.
The authors accomplish this using a state-based Dreamer
model that requires privileged information in the real world.
Enabling sim-to-real transfer of Dreamer from image obser-
vations will help to unleash the potential of model-based RL
for real-world applications where state information is not
available.

Leveraging privileged information to accelerate the train-
ing of policies is a common approach. Specifically, [13], [35]
utilise information asymmetric actor-critic methods to train
the critic faster via access to the privileged information while
providing only images for the actor.

Another common technique to make use of the privilege

information is Distillation, which transfers knowledge about
a task from one or multiple teachers to a student. In RL,
knowledge transfer is generally achieved via policy distilla-
tion: training a student policy to imitate a teacher policy [38],
[14], [39], [40], [41]. Our work is most closely related in
spirit to [38], [14], [41] in that distillation and DR are used to
efficiently train a teacher policy from privileged information
and distil it into a student policy for sim-to-real transfer.
However, for distillation, the prior works focus on model-
free RL, which often requires additional trajectories collected
by either the teacher or student policy to match the action
distribution.

In contrast to these works, we consider model-based RL
conditioned on image observations and introduce a novel
method for world model distillation. Our approach achieves
knowledge transfer by supervising a student world model
instead of a policy without the need for additional data
collection during the distillation. We demonstrate that our
approach achieves strong performance for sim-to-real trans-
fer in both simulated and real environments.

III. PRELIMINARIES

In this section, we describe our problem setting and the
Dreamer model-based RL algorithm [29], [9], [21]. We
implement our approach using Dreamer as it is a com-
monly used state-of-the-art model-based RL algorithm that
demonstrates the capability of our world model distillation
approach.

A. Problem Formulation
The real environment is a partially observable

Markov Decision Process represented by the tuple
(S,O,A,P, I, r, γ, S), where: S is a set of continuous
states, O is a set of image observations, A is a set of
continuous actions, P : S × A × S → R is the transition
function, I : O × S → R is the observation function,
r : S × A → R is the reward function, γ is the discount
factor, and S is the initial state distribution. The goal is to
maximise the expected discounted reward E [

∑∞
t=0 γ

trt].
In our problem setting, we do not have access to the

real environment during training. Instead, we have access
to a simulator that approximates the real environment. In the
simulator, we have direct access to privileged information,
s ∈ S, in addition to randomised image observations o ∈ O.

B. Dreamer
Dreamer [9], [21] is a model-based RL method that learns

a world model from pixels or state observations and trains
an actor-critic agent by leveraging imagined trajectories from
the world model.

a) World Model: Dreamer uses a Recurrent State Space
Model (RSSM) [17] to learn the dynamics of environments,
consisting of the following modules:

RSSM



Sequence model: ht = fϕ (ht−1, zt−1, at−1)

Representation model: zt ∼ qϕ (zt | ht, xt)

Dynamics predictor: ẑt ∼ pϕ (ẑt | ht)

Reward predictor: r̂t ∼ pϕ (r̂t | ht, zt)

Decoder: x̂t ∼ pϕ (x̂t | ht, zt)
(1)
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Fig. 1: Overview of TWIST. While a teacher world model is trained from privileged information, domain-randomised image
observations are collected for distillation. The teacher supervises a student trained from the domain-randomised images to
imitate the compact latent states of the teacher. The student world model is then transferred to real-world environments.

All modules are implemented as neural networks param-
eterised by ϕ. In the RSSM, the state is jointly represented
by a recurrent deterministic component, ht, and a stochastic
component represented by a categorical distribution. At each
step, the RSSM uses ht to compute two distributions over
the stochastic state: zt and ẑ. The stochastic posterior state zt
encodes information about the current input observation xt,
while the prior state ẑt is a prediction of the posterior state
zt without access to the current input observation. Therefore,
by learning to predict ẑt, the model learns to predict the
dynamics of the environment. Given the posterior state, the
decoder and reward predictor are trained to reconstruct the
current input observation xt and the reward rt, respectively.
These models are jointly learned by minimising the negative
variational lower bound [42].

L(θ) .
= Eqθ(s1:T |a1:T ,x1:T )

[ T∑
t=1

(− ln pθ(xt | ht, zt)

− ln pθ(rt | ht, zt) + βKL [qθ(zt | ht, xt)∥pθ(ẑt | ht)]
]

(2)
Once the model has been trained, it can be rolled out

without access to any input observations by utilising the
prior ẑ in place of the posterior z. This enables the model to
generate unlimited synthetic or imagined trajectories of the
form: {{ht, ẑt, at, rt}t=T

t=0 }, where T is the time horizon for
imagination.

b) Actor-Critic Learning: To learn a policy, Dreamer
leverages an actor-critic algorithm that is trained using syn-
thetic data generated by the world model. Given a particular
RSSM state (ht, ẑt), the critic is trained to predict the total
expected reward. The actor (i.e. the policy) is trained to
output a distribution over actions, π(at|ht, ẑ), that maximises
the total expected reward given the current state.

IV. TWIST: TEACHER-STUDENT WORLD MODEL
DISTILLATION FOR SIM-TO-REAL TRANSFER

Dreamer is capable of efficiently solving diverse vision-
based continuous control tasks in simulated environments by
explicitly learning a task-agnostic world model. To transfer
Dreamer to real-world robotics tasks, domain randomisation
(DR) is required to bridge the gap between simulation

and real-world environments. However, DR dramatically
increases the number of samples, and therefore computation
time, required for training. To address this issue, we propose
TWIST (Teacher-Student World Model Distillation for Sim-
to-Real Transfer) to efficiently train a world model for
vision-based tasks in simulation which readily transfers into
real-world environments. In this section, we describe our
approach to distilling the teacher to the student world model
(see Fig. 1).

A. Overview

A simulator affords access to state information in addi-
tion to domain-randomised images. TWIST leverages this
privileged information in order to accelerate the sim-to-real
transfer of model-based RL. Specifically, TWIST initially
trains a teacher world model and associated policy based
on state information. Because the teacher learns from state
information, an accurate world model and strong policy can
be trained from only a small number of samples.

However, in real-world environments, privileged infor-
mation is not usually available. To overcome this issue,
the teacher is distilled into a vision-based student world
model. While training the teacher from the state observations
st, privileged information easily accessible in simulation, a
matching dataset of domain-randomised image observations
ot is generated, denoted as D = {(st, ot, at, rt), ...}. The
student is trained to imitate the RSSM latent states of
the teacher while operating on the corresponding domain-
randomised raw pixel inputs ot from the dataset D. Aligning
these representations enables effective knowledge transfer
and achieves sample-efficient sim-to-real transfer.

B. World Model Distillation

Given the teacher world model trained on state infor-
mation, the teacher supervises the student to imitate the
dynamics of the environment. Specifically, the student is
trained to imitate the prior distribution p(ẑteachert |hteacher

t ),
posterior distribution q(zteachert |hteacher

t , st), and determinis-
tic representations hteacher

t of the teacher for a trajectory τ
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of length L sampled from the dataset, D:

Ldistil(τ) = E{(at,ot,st)}k+L
t=k ∼D

k+L∑
t=k

[
||hteacher

t − hstudent
t ||22︸ ︷︷ ︸

Deterministic representation distillation

+KL[pθ(ẑstudentt |hstudent
t )||pϕ(ẑteachert |hteacher

t )]︸ ︷︷ ︸
Prior distillation

+KL[qθ(zstudentt |hstudent
t , ot)||qϕ(zteachert |hteacher

t , st)]︸ ︷︷ ︸
Posterior distillation

]
(3)

where ϕ and θ represent the parameters of the teacher and
student world model, respectively. Note that the parameter of
the teacher world model ϕ is frozen during the distillation.

In addition to distilling the two stochastic distributions and
deterministic representations, we further derive a training sig-
nal for distribution alignment by matching imagined rollouts
in both the teacher and the student models. (Algorithm 1).
Specifically, a set of initial latent states in each world model
is computed by embedding the trajectories τ sampled from
the dataset D (see lines 6 and 7). Starting from the initial
states of the teacher, we then generate an imagined rollout
τ̂ teacher = {(ẑteacheri , hteacher

i , ateacheri )}t+H
i=t with the time

horizon H using the policy π learned with the teacher model
(line 8). We also collect an imagined trajectory τstudent in
the student world model by replaying the same sequence
of actions {ateacheri }Hi=1 used for trajectory imagination in
the teacher (line 10). Then, we align the prior distribution
p(ẑt|ht) and deterministic representation ht in the trajecto-
ries generated by the teacher and student world model:

Limagined(τ̂
student, τ̂ teacher) =

H∑
i=1

[
||hteacher

i − hstudent
i ||22︸ ︷︷ ︸

Deterministic representation distillation

+KL[pθ(ẑstudenti |hstudent
i )||pϕ(ẑteacheri |hteacher

i )]︸ ︷︷ ︸
Distillation in Imagination

]
(4)

where (hteacher
i , zteacheri ) and (hstudent

i , zstudenti ) are the ith

entries in τ̂ teacher and τ̂ student respectively. To ensure diver-
sity in the imagined trajectories, random noise is added to
the action at sampled from the policy π(at|hteacher

t , ẑteachert )
when rolling it out in the teacher world model. This boot-
straps the trajectories in the dataset D; thus, the student can
imitate the prior distribution and deterministic representation
of the teacher more accurately. The loss function for world
model distillation is therefore L = Ldistill + Limagined. Our
experimental results demonstrate that, after distillation, an
actor trained in the teacher world model successfully trans-
fers to real-world environments as the student world model
is trained to imitate the RSSM latent states of the teacher.

V. IMPLEMENTATION DETAILS

Our encoder and decoder of the teacher world model
consists of three fully connected hidden layers with 512 units
and ELU activation. We use the same architecture for the
encoder, decoder, and actor-critic agent of vision-based world
models as those used in [9]. For distillation, a trajectory of
length L = 50 is sampled from the dataset D (see Eq. 3)
and an imagined trajectory of length H = 15 is generated

Algorithm 1 TWIST: Teacher-Student World Model Distil-
lation for Sim-To-Real Transfer

1: Inputs: Dataset D = {(si, ot, at, rt), ...}; Teacher world
model W teacher

ϕ ; Policy π(at|ht, ẑt)

2: Initialise: Student world model W student
θ

3: while distilling world model do
4: τ = {(at, ot, st)}k+L

t=k ∼ D
5: Compute Ldistill via Eq. 3 using τ
6: Zteacher

τ = {zteachert }k+L
t=k ← qϕ(τ)

7: Zstudent
τ = {zstudentt }k+L

t=k ← qθ(τ)
8: τ̂ teacher = IMAGINE(W teacher

ϕ , Zteacher
τ )

9: Ateacher ← {ai}Hi=1 in τ̂ teacher

10: τ̂ student = IMAGINE(W student
θ , Zstudent

τ , Ateacher)
11: Compute Limagined via Eq. 4
12: θ ← θ − α∇θ(Ldistill + Limagined)

13: function IMAGINE(W , Zinit, A = None)
14: if A is None then ▷ Imagination in W teacher

15: τ̂ ← rollout π for H steps from z ∈ Zinit in W
16: else ▷ Imagination in W student

17: τ̂ ← rollout a ∈ A from z ∈ Z in W
18: return τ̂ ▷ τ̂ = {(ẑi, hi, ai)}Hi=1

(see Eq. 4). All of the agents are trained on a single GeForce
RTX 3090 for 500K environment steps.

VI. EXPERIMENTS

The efficacy of TWIST for sim-to-real transfer is eval-
uated through experiments in both simulated and real-
world environments. The experiments aim to answer the
following questions: (1) does TWIST enable efficient sim-
to-real transfer for model-based RL using DR? and (2) does
the distillation for imagined trajectories improve the task
performance compared to performing distillation only on the
original dataset?

A. Baselines
We compare TWIST against several competitive baselines,

including Dreamer agents with different training methods
and model-free RL. Oracle is a Dreamer agent trained from
privileged information. The performance of the oracle agent
is an upper bound on the performance of our method.
Since we do not have access to state information in real-
world settings, we only provide the performance of the
oracle approach in the experiments conducted in simulation
environments. Dreamer w/ DR is a vision-based Dreamer
agent trained with naive DR. Dreamer w/o DR is an agent
trained without DR. Dreamer State Recon. is a vision-
based Dreamer agent trained to reconstruct state information
from domain-randomised image observations, which is an
alternative way of leveraging privileged information. Lastly,
Asymmetric SAC [13] is a sample-efficient state-of-the-art
model-free RL algorithm suitable for DR. While the critic
network is trained from privileged information, the policy is
trained from domain-randomised image observations.

B. Simulated Results
Firstly, we empirically demonstrate the efficacy of TWIST

on a set of continuous control tasks in the Distracting Control
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Tasks (500K Steps) Oracle Dreamer TWIST Dreamer w/o DR Dreamer w/ DR Dreamer State Recon. Asymmetric SAC
Cup Catch 936.6± 0.1 856.6± 29.6 150.7± 80.3 744.3± 93.8 627.0± 194.7 873.0± 11.1
Cartpole, Balance 992.9± 1.7 954.5± 37.4 349.3± 19.0 590.8± 23.0 869.7± 40.4 353.1± 18.6
Cheetah Run 597.1± 24.3 506.0± 54.2 206.5± 40.3 476.4± 61.1 391.6± 4.5 222.5± 20.4
Hopper Stand 501.1± 38.9 483.3± 118.9 42.1± 11.2 471.8± 48.4 358.2± 34.4 57.7± 86.8
Walker Walk 800.4± 53.7 665.8± 80.3 182.7± 3.4 394.6± 25.1 491.0± 145.6 439.4± 57.0
Finger, Easy Turn 904.4± 32.8 798.0± 50.3 182.5± 26.0 440.7± 35.7 553.4± 42.2 304.4± 22.5

TABLE I: Averaged episodic rewards and standard deviation obtained from 100 trials with 3 seeds in the Distracting Control
Suite. The evaluation is conducted using held-out environments.

Fig. 2: Aggregated Interquartile Mean (IQM) of normalised
episodic rewards with 95% bootstrap CI based on 5 tasks
from 100 trials with 3 seeds evaluated using held-out envi-
ronments in Distracting Control. The lack of overlap with
the CIs between TWIST and the baseline methods indicates
that the difference is statistically significant.

Suite [43], an extended version of the DMControl [26].
1) Experiment Setup: First, a teacher world model and

a policy are trained using Dreamer from ground-truth state
information. During training, domain-randomised images are
collected by randomizing the background texture used in
prior work [44] and the colour of objects every timestep for
diverse data acquisition. After training the teacher, we use
the domain-randomised image observations to distil the state-
based teacher world model into a vision-based student world
model. For evaluation, we sample the object colours from
the same distribution as training, but the background texture
is sampled from a held-out test distribution. Therefore, the
distribution of environments for evaluation is different to the
training time environments. Note that DR is applied only at
the beginning of the episode for the evaluation because the
textures are usually consistent at test time.

2) Results: Table I reports the average episodic rewards
for six continuous control tasks evaluated on hold-out scenes
from the Distracting Control Suite. TWIST outperforms the
baseline approaches, including model-free RL, often by sig-
nificant margins. While Asymmetric SAC shows comparable
performance on the simple Cup Catch task, it does not
perform well on more complex tasks because the policy
struggles to learn task-relevant information efficiently from
domain-randomised images due to its visual complexity.
Dreamer State Recon. and Dreamer w/ DR demonstrate
better performance among the baselines. However, learning
task-relevant information and the actor-critic agent jointly
on limited samples is often challenging, resulting in worse
performance compared to our approach. Dreamer w/o DR
does not perform well in any of the six tasks due to the lack
of generalisation to unseen scenes.

To assess the statistical significance of our results, Fig. 2
reports Interquartile Mean (IQM) of normalised episodic
rewards with 95% bootstrap confidence interval (CI) ag-
gregated across 5 tasks in Distracting Control, computed

Fig. 3: Sim-to-real manipulation tasks. (a) Block Push: A
Franka Panda arm pushes the yellow block towards the red
goal marker. (b) Block Lift: The arm grasps the yellow block
and lifts it 10cm above the table

using [45]. The episodic rewards of each task are normalised
by the performance of Oracle Dreamer to aggregate the
results and validate the efficacy of our method. As shown in
Fig. 2, our method is substantially more performant than the
baselines. The lack of overlap with the CIs of the baseline
method further indicates that this difference is statistically
significant.

C. Sim-to-Real Transfer for Manipulation Tasks

In this section, we consider sim-to-real transfer for ma-
nipulation tasks to verify the effectiveness of TWIST in the
real world.

1) Experimental setup: In our experiments, a Franka
Panda robot is used. In real-world experiments, RGB image
observations are taken from a RealSense D435i camera.
In the simulation, agents are trained in Omniverse Isaac
Orbit [46] powered by Omniverse Isaac Sim [47]. DR is
applied to the brightness of the light and texture of the robot
body, background, table, and objects every timestep to collect
diverse image observations. Further, the friction of objects is
randomised in every episode. The action space of the policy
is a delta-position of the end-effector in Cartesian coordinates
with a maximum delta of 2cm.

2) Tasks: We conduct experiments to showcase the suc-
cessful sim-to-real transfer capability of TWIST, focusing on
the block push and block lift tasks (see Fig. 3). The objective
of the block push task is to push a 4cm× 4cm cube towards
a designated red goal marker. If the distance between the
centre of the cube and the goal marker is less than 5cm at
the end of the episode, then the trial is considered successful.
The cube and goal marker positions are uniformly sampled.
For the block push task, we replace the robot’s hand with a
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Fig. 4: Example rollouts of the proposed method on the real-world Block Push task. Our method successfully transfers the
student world model and solves the block push task in the real world.

Fig. 5: Success rate on real-world tasks. The success rate
and standard deviation are calculated from 20 trials with 3
seeds. TWIST significantly outperform baselines including
naı̈ve Dreamer with DR and model-free RL.

3D-printed peg to push the block because the original robot’s
hand often occludes the block from the third-person camera.

The goal of the block lift task is to grasp the cube and
lift it 10cm above the tabletop by the end of the episode. To
train agents in simulation, we define a dense reward function
tailored to each task. Privileged information available in these
tasks includes end-effector position, object pose, and L2
distance between the object and goal position. Additionally,
in the block lift task, a grasp state is used to determine
whether the object is grasped or not. The episode length of
these tasks is 150 timesteps. In real-world experiments, we
randomise the camera position and brightness of the scene
randomly to ensure robustness of the distilled agents.

3) Results: The success rate for each task across 20 trials
averaged over 3 seeds is reported in Fig. 5. Compared to the
baselines, including naı̈ve Dreamer with DR and model-free
RL, TWIST demonstrates significantly better success rates in
both block push and lift tasks. In particular, the block push
task requires an accurate dynamics model to successfully
push the box towards the goal marker, indicating that our
world model is successfully distilled and transferred from
simulation to real-world environments. The baseline methods
often fail to solve the task, because those methods require
more samples to successfully train agents in simulation with
DR [8]. Dreamer State Recon. shows a better success rate
than other baselines. However, it still struggles to learn
task-relevant information in image observations effectively
while exploring environments for solving manipulation tasks.
Although naı̈ve Dreamer agent with DR is also trained from
1M samples (Dreamer w/ DR (1M)), its success rate on the
block push and block lift tasks remains low, indicating the

sample inefficiency of the naı̈ve DR approach.

Fig. 6: Interquartile Mean (IQM) of normalised episodic
rewards with 95% bootstrap CI to ablate the key components
of the proposed distillation method in the Distracting Control
Suite. The following variants are compared: (1) the full
proposed method, (2) without random noise to actions for
imagined distillation, (3) without imagined distillation.

D. Ablation Study
We ablate the distillation for imagined trajectories (imag-

ined distillation) (see Eq. 4) and random noise added to
actions for the imagined distillation in the Distracting Control
Suite. We report normalised aggregated Interquartile Mean
(IQM) with a 95% bootstrap confidence interval. As shown in
Fig. 6, the CI for our method and our method w/o imagined
distillation do not overlap, indicating that the difference in
performance is statistically significant. On the other hand, the
gap between our method and our method w/o random noise
is smaller but still notable in practice. These results high-
light that distillation using imagined rollouts is particularly
important for successful world model distillation.

VII. CONCLUSION

We propose TWIST for efficient sim-to-real transfer of
model-based RL. Specifically, a teacher world model trained
from privileged information supervises a student world
model taking as input domain-randomised image observa-
tions to mimic the compact latent states of the teacher.
Our experiments demonstrate successful distillation from the
teacher world model to the student world model with domain
randomisation in simulated environements and further show
the efficient and robust sim-to-real transfer for robot manip-
ulation tasks into real-world domains.

TWIST is therefore a significant step towards unlocking the
benefits of model-based RL for real-world applications. In
future work we will look to explore fine-tuning the distilled
world model from few real-world image observations to
efficiently acquire new skills in the real world.
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