
Sim-to-Real Learning for Humanoid Box Loco-Manipulation

Jeremy Dao, Helei Duan, Alan Fern

Abstract— In this work we propose a learning-based approach
to box loco-manipulation for a humanoid robot. This is a
particularly challenging problem due to the need for whole-
body coordination in order to lift boxes of varying weight,
position, and orientation while maintaining balance. To address
this challenge, we present a sim-to-real reinforcement learning
approach for training general box pickup and carrying skills for
the bipedal robot Digit. Our reward functions are designed to
produce the desired interactions with the box while also valuing
balance and gait quality. We combine the learned skills into
a full system for box loco-manipulation to achieve the task of
moving boxes from one table to another with a variety of sizes,
weights, and initial configurations. In addition to quantitative
simulation results, we demonstrate successful sim-to-real transfer
on the humanoid robot Digit. To our knowledge this is the first
demonstration of a learned controller for such a task on real
world hardware.

I. INTRODUCTION

Most reinforcement learning (RL) research for legged
robots focuses on locomotion skills such as walking, running,
and navigating various terrains [1–5]. On the other hand,
most RL research for object manipulation has focused on
non-legged robots with fixed or stable bases (e.g. grounded
robotic arms) [6–8]. RL has been much less explored for
loco-manipulation with legged robots, which involves both
movement with and manipulation of objects. In particular, we
are unaware of any work that has demonstrated successful
sim-to-real RL for loco-manipulation with a bipedal humanoid
robot. This is a particularly challenging problem due to the
need for full-body coordination to manipulate and move
objects while also maintaining balance.

The main goal of this paper is to design and evaluate a
sim-to-real RL approach for loco-manipulation with a real
humanoid robot. In particular, our target task is to walk up
to a box, stop, pick up the box, carry it to another table, and
then set it down. Using data-driven RL for this purpose has
the potential to facilitate generalizion to boxes of different
sizes, masses, poses, and locations. Designing a sim-to-real
RL solution, however, raises a question. There is ambiguity
about what is the “best” or most desirable way to pickup
and move a box. How should the hands move, and how
should the overall motion of the body coordinate with the
hands to produce smooth, non-agressive motion that is still
robust? Furthermore, what kind of dense reward signal can
we provide to faciliate learning such a motion?

*This work is supported by the NSF Grant No. IIS-1849343 and DARPA
Contract N66001-19-2-4035.

All authors are with Collaborative Robotics and Intelligent Systems
Institute, Oregon State University, Corvallis, Oregon, 97331, USA.

Email: {daoje, duanh, afern}@oregonstate.edu.

Fig. 1: We learn box loco-manipulation policies in simulation and
transfer directly to real hardware. We break the task down into 5
separate policies: WALK, STAND, PICKUP, WALKWITHBOX, and
STANDWITHBOX.

This paper addresses this challenge by making the follow-
ing contribtions:

• We construct a reward function for learning a “box
pickup” skill and the associated locomotion skills. By
designing these functions with box interaction in mind,
specifying when the hands should move to contact the
box, and when to apply forces to move the box, along
with regulating the motion of the hands, we can learn
smooth, gentle motions that still achieve the task.

• Compared to previous works on locomotion [2–5], we
find that for box pickup using a “relative” action space,
where the policy outputs are PD setpoint commands to
be added to the current joint position, is more suited for
learning box pickup. This change in action space results
in faster learning and less forceful interaction with the
box.

• We present a full box loco-manipulation system where
each skill, standing and walking with and without a
box, and box pickup, is individually learned. We show
successful sim-to-real on the humanoid robot Digit,
which to our knowledge is the first demonstration of a
learning controller achieving a loco-manipulation task
on real world hardware.

II. RELATED WORKS

A. Loco-Manipulation for Humanoids

Much of prior research on loco-manipulation for humanoids
has been largely model-based and focuses on mostly static ma-
nipulation tasks. Model-based approaches have been explored

2024 IEEE International Conference on Robotics and Automation (ICRA 2024)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 16930

[9, 10] for lifting up boxes, planning a whole-body motion
and compensating for the extra force applied by the box.
However, these methods produce very conservative motion
to ensure absolute stability at all times, resulting in pickup
motions that take over 20 seconds to be completed. Planning
based approaches [11–13] have been explored for producing
long loco-manipulation trajectories, with [11] even showing
hardware results. Work focused on locomotion [14, 15] has
explored how to modify a humanoid’s gait when interacting
with objects. These strategies often augment some baseline
gait controller to account for and modify the motion of the
manipulated object.

Prior work that has used learning for humanoid or bi-
manual manipulation tasks have been mostly trajectory based
or rely on demonstrations as targets for imitation learning. For
example, Seo et al. (2023) uses teleoperation to obtain expert
trajectories to imitate, while Liu et al. (2023) uses motion
tracked human demonstrations for a similar manipulation
tracking task. This requirement of prior expert data can
introduce another failure point in the learning system, as
motion tracking error or alignment error between the human
and robot data can cause componding issues down the line.

B. RL for Loco-Manipulation

The use of learning for loco manipulation has been largely
centered around mobile base or quadraped robots with an
attached manipulator arm. Due to the inherent stability of such
a system a common strategy is to separate out the locomotion
and manipulation control in to two separate modules. Ma et al.
(2022) utilizes RL for only locomotion while the manipulator
arm is controlled by a MPC planner, while Sun et al. (2022)
learns separate grasping and navigation policies. We utilize a
similar separation of locomotion and manipulation skills, in
that locomotion and box pickup are separate control policies,
but unlike Ma et al. (2022) our learned policies control all the
joints, so that coordinated full body motion is always possible.
Fu et al. (2022) and Arcari et al. (2022) both learn a more
unified control approach that commands both the legs and
manipulator arm from the same controller. Fu et al. (2022)
learns a policy that executes base velocity and end effector
position commands from a higher level planner, while Arcari
et al. (2022) learns from a MPC trajectories.

Perhaps the most relevant prior work to our research is Xie
et al. (2023), which targets the same humanoid box pickup
and locomotion task that we do. We follow a similar strategy
of breaking down the task into different skills with a control
policy for each. The main differences that we try to improve
upon is to remove the reliance on trajectory tracking and
focus more on hardware execution instead of an animation
setting.

III. SYSTEM OVERVIEW

We break down the full box loco-manipulation task into 5
distinct behaviors: 1) WALK, for basic walking, 2) STAND, for
transitioning to a standing position after walking, 3) PICKUP,
for picking up the box, 4) WALKWITHBOX, for walking while
holding a box, and 5) STANDWITHBOX for transitioning to

Walking

Standing

Box Pickup

Walking w\
Box

Standing w\
Box

Fig. 2: Allowed transitions between the 5 different policies.

standing while holding a box. For each behavior we learn a
distinct control policy, which has behavior specific command
paramters. Box loco-manipulation involves only a subset of
the possible transitions between these policies. For example,
we will never go directly from walking to box pickup, and
instead will always use standing as an inbetween behavior.
Fig. 2 shows the allowed behavior transitions that we target
for the box loco-manipulation task.

All of our policies follow the same general learning
framework, with changes mainly to the reward function
to learn different skills. Following prior work on bipedal
locomotion [23] we use an LSTM neural network with two
128-dimensional recurrent hidden layers to represent our
policies, with the inputs and outputs adapted for the Digit
humanoid robot, which has 20 DoFs and 10 unactuated joints.
The input to each policy is a pair (s, c), where s is the 67-
dimensional robot-state vector and is the same for all policies,
and c contains a policy specific command. The policy runs
at 50Hz and outputs actions corresponding to PD setpoint
targets for each actuated joint. These are passed to a PD
controller running at 2kHz with fixed gains.

We train policies in simulation using the MuJoCo physics
engine [24] and use the actor-critic PPO algorithm [25] with
a clipped objective and gradient clipping. To facilitate sim-
to-real transfer, we use dynamics randomization [26] during
training on parameters such as body mass, joint damping,
body center of mass location, and friction. Ranges for these
randomizations can be found in table Table I. Rather than
use a state estimator during training and testing, we simply
use the true simulation state and apply random noise on top
of it. We train using 80 cores on a dual Intel Xeon Platinum
8280 server.

Each of our reward functions is defined in terms of a
distinct set {(ri, wi)} of paired reward terms and weights.
The corresponding reward function is then defined by:

R =
∑
i

wiexp(−ri)

In most cases, each of the reward terms will represent some
cost to be avoided, so that the negative exponential will be
smaller for larger costs. The state variables used below to
define the reward functions are defined in Table II.

IV. LEARNING LOCO-MANIPULATION SKILLS

A. Box Pickup Policy

We want to train a control policy that is capable of picking
up boxes. It should be able to handle boxes of varying sizes
and masses, along with the box starting in a range of positions

16931

Body Mass [−0.2, 0.2]

Joint Damping [−0.5, 2.5]

Ground Friction [−0.3, 0.2]

Center of Mass Position [−0.05, 0.05]

TABLE I: Dynamics randomization ranges. All ranges are in
percentage values, so a range of [−0.2, 0.2] corresponds to a range
of ±20% of the original value.

px,t position of x at time t p∗x,t
target position of x

at time t

Fx, y
contact force

between x and y cx, y

contact indicator
between x and y
(1 if in contact,

0 otherwise)

Φx roll angle of x Θx pitch angle of x

vx velocity of x ax acceleration of x

q∗x
quaternion

orientation of x pi
x/y/z

x/y/z position of i

ut action at time t τ torque

TABLE II: Definition of state variables used in reward functions.

in front the robot. In addition, we aim to learn pickup behavior
that has smooth, natural motions and timings (e.g. not too fast
or too slow). To define the pickup behavior we break it down
into two phases: 1) a contact phase, where the hands aim to
make contact with the box, and 2) the lift phase, where the
hands aim to move the box to a target position. The phases
are dictated by hand selected times, relative to the start of
the behavior, which is time t = 0. In particular, the contact
phase ends at time tcontact = 100 and then lift phase ends at
tlift = 175.

The command input c to the pickup policy consists of: 1)
box dimensions, mass, and starting pose, 2) the target position
to move the box, and 3) two phase indicators pcontact and plift,
which each go linearly from 0 to 1 from the start to end of
each phase. For ease of hardware testing, we assume that the
box pose is only explicitly known at the start of the behavior.
Once the box is picked up and has moved, we approximate
the pose with the average pose of the hands, which avoids
the need for real-time estimation of box pose. Given that the
hands are in contact with the box, it is reasonable to assume
that the box centroid position is going to be roughly between
the hands.

The action space of box pickup policy differs from the
locomotion policies. In particular, the locomotion policies add
the policy’s action output to a static “neutral” offset. Rather,
for box pickup we found that adding the action output to
the current motor positions resulted in faster learning (see
Section V). This is likely due to the much larger variance
in motion profile of the pickup behavior from the neutral
position compared to locomotion behavior.
Scenario Distribution. At the beginning of each training
episode, we spawn a box in a random location in front of the
robot. The task is then to move the hands to the box, pick it
up, and move it to a randomized target location above the
table. The starting box location may be randomized within 35
to 50cm in front of the robot, ±30cm to the side of the robot,
and be on the ground or up to 1.3m in the air. The starting

Fig. 3: Example hand position trajectory for a box pickup. The
hands start from the initial robot pose, move to the side of the box
(shown in blue), make contact with it, and then bring it to the target
location. In this example the target location is directly above the
box.

box yaw orientation may be ±22.5◦. The target location is
randomized within the same range, except the z position of
the target will only be above the starting location. The box
length, width, and height may each be between 20 to 45cm,
and the mass may be between 1 to 10kg.
Reward Function. To train box pickup policies, we take
inspiration from previous work on learning locomotion
policies [5, 23]. Those works described walking through
stance and swing phases, in other words specifying how and
when the feet should contact with the ground. This general
principal of perscribing contact can be applied to almost
any interaction task, and is the main idea we utilize for our
reward function. In contrast to locomotion, box pickup is
a non-periodic behavior and we use a non-periodic clock
signal with phase reference points tcontact and tlift to define
the reward.

In particular, the reward function has the form

R = Rtraj +Rbox +Rstand +Rreg

where Rtraj rewards hand motion consistent with a box pickup,
Rbox is designed to encourage proper interaction with the
box, Rstand aims to ensure the robot is stably standing, and
Rreg aims to regulate forces to ensure smoothness and help
sim-to-real transfer. Below we describe the set of reward
terms used to define each of these components noting that
the weights for each term are provided in Table III.

Rtraj rewards being close to the target trajectory over time
and having a hand orientation of zero using the following
terms:

rhand pos = ∥pleft
hand,t − p∗left

hand,t∥+ ∥pright
hand,t − p∗right

hand,t∥
rhand roll = |Φleft

hand|+ |Φright
hand|

To describe the desired hand motions, we construct a hand
position trajectory by choosing three goal hand positions,
along with a timestamp for each, and linearly interpolate
between them as shown in Figure 3. Each of these goal
positions is based off of the box’s starting position, size, and
the target location. So the generated hand trajectory adapts to
each pickup scenario. For the contact phase, the hands should
first be out along each side of the box, and then eventually
actually touching the box along it’s transverse faces. Since
tcontact is 100 timesteps (2 seconds), we design the hands to
be 10cm besides the box (goal position 1) at 1.5 seconds and

16932

then at 2 seconds the hands should be on the side faces of
the box (goal position 2). The last goal postion 3 occurs at
tlift (3.5 seconds) with the hands on either side of the target
location, spaced evenly with a box’s width distance between
them. We were also able to train policies without this hand
position trajectory. However, we found that these policies
trained significantly slower (see section VII) and had less
success on hardware.

Rbox rewards contact with the box at the correct time (not
too early), lifting it off the table, and moving the box to
the target location with a flat orientation using the following
terms:

rcontact = ln
(
0.05 · cleft

hand,box + 0.05 · cright
hand,box

)
rbox pos = ∥pbox − p∗box∥
rbox orient = |Φbox|+ |Θbox|
rtable = Ftable,box

Note that yaw is not included in rbox orient since some target
locations will be to the side of the robot base. When
considering objects that may be inside the box, rotation about
the gravity axis (yaw rotation) is allowed, but other rotation
axes would disturb the objects. It is important to highlight
the weighting for rcontact, weight wcontact = I[t ≥ tcontact]·],
where I[·] is the indicator function. This causes the contact
reward term to only be active at the end of the first phase,
which helps prevent early contact with the box.

Rstand rewards the robot for standing stably while picking
up the box. This is done by keeping the center of pressure
(CoP) in the middle of the support polygon (or the average
foot location), the torso orientation upright and the feet
orientation facing forward, motor velocity small (try to move
as little as possible), and the feet velocities at zero:

rCoP = ∥pCoP − pavg foot pos∥
rbase orient = 1− ⟨qtorso, (1, 0, 0, 0)⟩2

rfoot orient = (1−
〈
qleft

foot, (1, 0, 0, 0)
〉2
)+

(1−
〈
qright

foot , (1, 0, 0, 0)
〉2

)

rmotor vel = ∥vmotor∥
rfeet vel = ∥vleft

foot∥+ ∥vright
foot ∥

Finally, Rreg encourages smooth motions of both the robot
and box itself. It also rewards gentle hand interaction with
the box:

raction = ∥ut − ut−1∥
rtorque = ∥τ∥
rhand force = ∥F left

hand,box∥+ ∥F right
hand,box∥

rbox acc = ∥abox∥

The total reward R also has two sparse penalties. There is
a −0.1 penalty if there is a self-collision or if the velocity
of either hand exceeds 1.0 m/s. The weightings of each
dense reward term used is in Table III. To encourage useful
exploration, we also use the following termination conditions,
which encourages learning critical aspects of the behavior
before more detailed aspects.

• If the height of the robot torso is less than 40cm.
• If the pitch angle of the robot torso is greater than 35◦.
• If either foot loses contact with the ground.
• If the robot makes contact with the table.
• If the box is on the ground.
• If it has been 0.5 seconds after the contact countdown

and the hands are not in contact with the box.
• If it has been 0.5 seconds after the pickup countdown

and the box is still in contact with the table.
Domain Randomization. In addition to the standard dy-
namics randomization we use for all policies, we also add
randomization to the policy’s estimate of the box mass
(±0.5kg), dimensions (±5cm), and starting location (±5cm).

B. Locomotion Policies

To learn locomotion skills we use the same learning setup
as described in [5, 23] and we refer readers to those works
for more details on the reward function. The only changes
made for this work was an additional reward term on the hand
positions, to keep them in front of the torso and equidistant
from each other.

The box locomotion policies follow largely the same
learning setup as the regular locomotion policies, with a
few tweaks to accomodate the box. Similar to the box pickup
policy, the command input c for the box locomotion policy
contains the box dimensions, mass, and a height command
as input. This height command specifies at what height the
box should be held at while walking.
Scenario Distribution. At the start of each training episode
the robot is initialized to a random starting pose (see
Section IV-D for more details), at a random phase in the
walking cycle, and with a random command. The commanded
x velocity may be randomized between [−0.5, 1.0]m/s,
y velocity between [−0.3, 0.3]m/s, turning rate between
[−π/8, π/8]rad/s, and box height between [1.0, 1.3]m. At
a random time during the trajectory the commands with be
randomized again.
Reward Function. The reward function for learning box
locomotion policies is the same as the regular locomotion
policies [5, 23] with the addition of a few terms similar to
the box pickup rewards. These terms form the box reward
we denote as Rbox:

rbox height = ∥pbox − [0.4, 0, hcmd]∥
rbox orient = |Φbox|+ |Θbox|
rbox force = ∥F left

hand,box∥+ ∥F right
hand,box∥

rhand roll = |Φleft
hand|+ |Φright

hand|

There is also an additional termination condition. The box
locomotion policy will always be initialized with a box already
in the hands, and it is not allowed to lose contact with the
box else the training episode will terminate.
Domain Randomization. The regular locomotion policy uses
only the base dynamics randomization described in Section III.
For the box locomotion policy, similar to the box pickup
policies, there is randomization to the policy’s box mass
(±0.5kg) and dimension (±5cm) input.

16933

C. Standing Policies

We want to train standing policies to transition from
walking to static standing states. Since the standing policy
only has the goal of standing still, there is no c input to the
standing policy and it only receives the robot state s.

The standing box policy has the same goal and learning
setup as the normal standing policy, with only minor mod-
ifications to the reward. Since in this case there is a box
that we would like to control, the command input c for the
standing box policy includes the box dimensions, mass, and
a box height command.
Scenario Distribution. At the start of each training episode
the robot is initialized to a random walking state (see
Section IV-D for more details). For the box standing policy
the box height command is also randomized.
Reward Function. The reward function consists of the
following terms (in addition to Rstand and the usual regulator
reward Rreg):

rbase vel = ∥vbase∥
rheight = |hbase − 0.9|
rarm = ∥pleft

arm − [0.15, 0.3,−0.1]∥+
∥pright

arm − [0.15,−0.3,−0.1]∥
rstance width = |(pyleft

foot − pyright
foot)− 0.385|

rstance x = |pxleft
foot − pxright

foot |

Note that here p
left\right
arm denotes the position of the arms in the

torso’s frame. There is also a sparse reward penalty of −0.1
is there is a self collision. The training episode terminates if
the robot has fallen over or if either foot is off the ground
after 100 policy timesteps.

The box standing policy follows the same reward function
with the addition of the box reward Rbox described above.
The termination conditions are the same as well, with an
additional termination if either hand loses contact with the
box.
Domain Randomization. Like the locomotion policies, the
regular standing policy use only the base dynamics random-
ization while the box standing policy has randomization to
the box mass (±0.5kg) and dimension (±5cm) input.

Name Weight Name Weight

Hand Position 0.15 Hand Roll 0.05

Box Position 0.15 Box Orientation 0.05

Table force 0.05 CoP 0.1

Base Orientation 0.05 Foot Orientation 0.1

Motor Velocity 0.05 Foot Velocity 0.05

Hand Force 0.05 Box Acceleration 0.05

Action Change 0.05 Torque 0.05

TABLE III: Reward weightings for the box pickup reward.

D. Skill Transitions

Once we have all 5 necessary box loco-manipulation skills,
we need to connect them together in order to achieve the full
task. Through out execution, we will transtion from one skill
to another, and the policies need to be able to handle such
a transition. Fig. 2 shows the allowed transitions between
different policies. Note that we do not care about every
possible transition between all of the skills, just the ones
that are needed for the box loco-manipulation task we target.
For example we will never go directly from walking to box
pickup, and instead will always use standing as an inbetween
state. Using this we can create a workflow in which one
policy is used to generate an initial state distribution with
which we can use to train the next skill.

More specifically, we first train a regular walking policy.
We then use this to generate many low-speed states from
which we want to transition to standing from. These form
the initial state distribution for training the standing policy.
We can then use the standing policy to generate intial states
for the box pickup policy and so on.

To ensure smooth transitions between policies, we also
linearly interpolate between the two policies’ actions over 10
timesteps. This action “warmup” is applied during training
as well, and so during initial state distribution generation we
save the last applied action along with the robot state.

V. SIMULATION RESULTS

We first conduct quantitative evaluations for the Digit model
in the MuJoCo simulator. Each evaluation averages over 10K
episodes using the same episode generation approach as
described for training. For example, for the evaluation of the
PICKUP policy we randomly sample box pose, mass, size,
and target location.

Overall Policy Performance. For each of the 5 learned
policies we consider an episode a success if: 1) the robot does
not fall over, and 2) the box remains in the robot’s hands at the
end of the episode for behaviors that involve the box. Further,
for behaviors that involve the box, we also measure the error
for successful episodes, which is the distance between the
final position of the box and the commanded target position of
the box. Table IV records the success rate and error for each
of the policies. Overall we see that the policies all achieve
a high success rate and also produce relatively small errors.
These results show that the policies are all quite robust to the
randomization of the scenario distribution and the transition
starting states that they will typically be initiated in.

Limits of PickUp Policy. We also conducted additional
simulation experiments for our most complex full-body
behavior, PickUp. First, we evaluated its performance outside
of the training distribution of box parameters. To do this
we performed an incrementally increasing search for the
maximum box mass, size, and starting pose that the policy can
successfully pickup. In each test, only one parameter type is
varied at a time with all other box parameters kept at the mean
value of the training distribution. In particualar, we turned
domain randomization off and continually incremented the
particular parameter under test until a pickup failure occured.

16934

PickUp Stand StandBox Walk WalkBox

Success % 96.15% 100% 95.25% 96.1% 100%

Error (cm) 7.93 N/A 1.64 N/A 2.39

TABLE IV: Success rate and accuaracy for the 5 behavior policies
as evaluated over 10K random episodes.

Maximum Training Range

Mass (kg) 22.9 [1, 10]

Size (cm) 64 [20, 45]

X displacement (cm) 56 [35, 50]

Y displacement (cm) 41 [-30, 30]

Z displacement (cm) 130 [0,130]

Rotation 45◦ [−22.5, 22.5]◦

TABLE V: Extrapolation perforamnce of the PickUp policy. Each
row shows the maximum successful value for the policy for that
box parameter along with the range used for training.

Table V shows that the learned PickUp policy generalizes
quite well outside of the training distribution and is able
to pickup boxes much larger and heavier than those it saw
during training.

PickUp Ablation. We also perform some ablation studies
on the learning setup with a focus on the PickUp behavior.
To test if a simpler reward setup will still learn, we remove
the hand trajectory tracking reward component. The target
location for each hand p∗ is instead just the center of the left
and right face of the box in the box target position, and does
not change throughout the training episode. We found that
we can still learn a successful box pickup policy, however,
the sample efficiency suffers greatly. As can be seen in Fig. 4,
learning without the hand trajectory (“No Hand Trajectory”),
approximately doubles the number of samples needed to reach
the same reward as learning with the trajectory information
(“Baseline”).

Our PickUp policy uses a different action space than the
locomotion and standing policies. Rather than adding the
policy output to a fixed “neutral” offset robot pose, the PickUp
policy instead adds the policy output to the current joint motor
positions. To test the effect of this change, we train policies
with both action spaces. The reward curves for each are
presented in Fig. 4. As can be seen, using the fixed offset
action space learns (“Absolute Action Space”) significantly
slower, about as slow as not using the hand trajectory. We
did not observe this same loss in sample efficiency for the
standing and walking policies, leading us to believe that when
the desired motion deviates greatly from the fixed position
offset, it is beneficial to use a “relative” action space instead.

VI. HARDWARE RESULTS

We show successful sim-to-real transfer for all trained
policies, including transitions between each skill. We are able
to perform box pickups for multiple boxes with different
masses (from 1kg to 8kg) and sizes. The pickup will also
work for boxes on the ground and those starting on a table. We
refer readers to the attached video for hardware experiments.

To get the pose of the box during hardware experiments

Fig. 4: Reward curve comparison between different learning setups.

we utilize Digit’s on board RGBD camera and an ArUco
marker placed on the box. The box size and mass policy input
is hardcoded beforehand. During hardware execution, skill
transitions, navigation, and walking commands are handled
by a human operator.

Despite the success, we do observe sim-to-real issues on
hardware. In particular, we observe policies leaning towards
one direction during hardware execution. We suspect this is
due to imu/oriention estimate differences on hardware. To
counteract this, we offset the orientation input in the same
direction as the observed leaning. While this “center-of-mass
trim” only needed turning once, it was policy specific. We
also found that the selected trim values did not work for the
heaviest boxes (8kg), where we observed the policy leaning
forward, requiring an increase in the trim. We hypthosize that
this error might be caused by force or contact inconsistencies
between simulation and hardware.

VII. CONCLUSION

We presented a learned system for performing box loco-
manipulation on the Digit humanoid robot. We broke box
loco-manipulation down into 5 different behaviors and learn
separate policies for each. We were able to learn policies that
achieve high performance in simulation for boxes of varying
masses, sizes, and starting locations. We also demonstrated
sucessful sim-to-real transfer of those polcies for full loco-
manipulaiton episodes, involving walking to a box, pick it
up, walk to a target location, and setting it down. To our
knowledge this is the first such sim-to-real demonstration
using fully learned policies. Future work will focus on making
our system more autonomous by incorporating planning,
navigation, and vision systems to remove the reliance on a
human operator and ArUco markers. There is also significant
manual design in our reward setup. Many parts of the pickup
are hand chosen, like contact timing and location. Working
to remove this would help learn a more general skill and
could maybe expand to picking up other objects. There is also
room to improve our sim-to-real transfer to hardware. For this
we will consider both enhancing the domain randomization
using in simulation based training, and integrating real-world
hardware data from successful and failed trials into the
learning process.

16935

REFERENCES

[1] G. A. Castillo, B. Weng, W. Zhang, and A. Hereid, “Robust feedback
motion policy design using reinforcement learning on a 3d digit bipedal
robot,” in 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2021, pp. 5136–5143.

[2] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter,
“Deepgait: Planning and control of quadrupedal gaits using
deep reinforcement learning,” IEEE Robotics and Automation
Letters, vol. 5, pp. 3699–3706, 4 2020. [Online]. Available:
https://ieeexplore.ieee.org/document/9028188/

[3] Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth,
and K. Sreenath, “Reinforcement learning for robust parameterized
locomotion control of bipedal robots.” IEEE, 5 2021, pp. 2811–2817.
[Online]. Available: https://ieeexplore.ieee.org/document/9560769/

[4] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
Robotics, vol. 5, p. eabc5986, 10 2020. [Online]. Available:
http://robotics.sciencemag.org/content/5/47/eabc5986.abstract

[5] J. Siekmann, Y. Godse, A. Fern, and J. Hurst, “Sim-to-real learning of
all common bipedal gaits via periodic reward composition,” in 2021
IEEE International Conference on Robotics and Automation (ICRA),
2021, pp. 7309–7315.

[6] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar, “Dexterous
manipulation with deep reinforcement learning: Efficient, general,
and low-cost,” in 2019 International Conference on Robotics and
Automation (ICRA), 2019, pp. 3651–3657.

[7] C. Wang, Q. Zhang, Q. Tian, S. Li, X. Wang, D. Lane, Y. Petillot, and
S. Wang, “Learning mobile manipulation through deep reinforcement
learning,” Sensors, vol. 20, p. 939, 2 2020.

[8] C. Sun, J. Orbik, C. M. Devin, B. H. Yang, A. Gupta, G. Berseth,
and S. Levine, “Fully autonomous real-world reinforcement learning
with applications to mobile manipulation,” in Proceedings of the
5th Conference on Robot Learning, ser. Proceedings of Machine
Learning Research, A. Faust, D. Hsu, and G. Neumann, Eds., vol.
164. PMLR, 08–11 Nov 2022, pp. 308–319. [Online]. Available:
https://proceedings.mlr.press/v164/sun22a.html

[9] H. Arisumi, J.-R. Chardonnet, A. Kheddar, and K. Yokoi, “Dynamic
lifting motion of humanoid robots.” IEEE, 4 2007, pp. 2661–2667.

[10] K. Harada, S. Kajita, H. Saito, M. Morisawa, F. Kanehiro, K. Fujiwara,
K. Kaneko, and H. Hirukawa, “A humanoid robot carrying a heavy
object.” IEEE, 2007, pp. 1712–1717.

[11] A. Settimi, D. Caporale, P. Kryczka, M. Ferrati, and L. Pallottino,
“Motion primitive based random planning for loco-manipulation tasks,”
IEEE-RAS International Conference on Humanoid Robots, pp. 1059–
1066, 2016.

[12] P. Ferrari, M. Cognetti, and G. Oriolo, “Humanoid whole-body planning
for loco-manipulation tasks,” in Proceedings - IEEE International
Conference on Robotics and Automation, 2017, pp. 4741–4746.

[13] S. Karumanchi, K. Edelberg, I. Baldwin, J. Nash, J. Reid, C. Bergh,
J. Leichty, K. Carpenter, M. Shekels, M. Gildner, D. Newill-Smith,
J. Carlton, J. Koehler, T. Dobreva, M. Frost, P. Hebert, J. Borders, J. Ma,
B. Douillard, P. Backes, B. Kennedy, B. Satzinger, C. Lau, K. Byl,
K. Shankar, and J. Burdick, “Team robosimian: Semi-autonomous
mobile manipulation at the 2015 darpa robotics challenge finals,”
Journal of Field Robotics, vol. 34, pp. 305–332, 3 2017.

[14] K. Harada, S. Kajita, F. Kanehiro, K. Fujiwara, K. Kaneko, K. Yokoi,
and H. Hirukawa, “Real-time planning of humanoid robot’s gait for
force-controlled manipulation,” IEEE/ASME Transactions on Mecha-
tronics, vol. 12, pp. 53–62, 2 2007.

[15] S. Sato, Y. Kojio, K. Kojima, F. Sugai, Y. Kakiuchi, K. Okada, and
M. Inaba, “Drop prevention control for humanoid robots carrying
stacked boxes.” IEEE, 9 2021, pp. 4118–4125.

[16] M. Seo, S. Han, K. Sim, S. H. Bang, C. Gonzalez, L. Sentis, and
Y. Zhu, “Deep imitation learning for humanoid loco-manipulation
through human teleoperation,” 2023.

[17] J. Liu, H. Sim, C. Li, and F. Chen, “Birp: Learning robot generalized
bimanual coordination using relative parameterization method on human
demonstration,” 2023.

[18] Y. Ma, F. Farshidian, T. Miki, J. Lee, and M. Hutter, “Combining
learning-based locomotion policy with model-based manipulation for
legged mobile manipulators,” IEEE Robotics and Automation Letters,
vol. 7, pp. 2377–2384, 4 2022.

[19] C. Sun, J. Orbik, C. M. Devin, B. H. Yang, A. Gupta, G. Berseth,
and S. Levine, “Fully autonomous real-world reinforcement learning
with applications to mobile manipulation,” A. Faust, D. Hsu, and

G. Neumann, Eds., vol. 164. PMLR, 9 2022, pp. 308–319. [Online].
Available: https://proceedings.mlr.press/v164/sun22a.html

[20] Z. Fu, X. Cheng, and D. Pathak, “Deep whole-body control: Learning
a unified policy for manipulation and locomotion,” 2022.

[21] E. Arcari, M. V. Minniti, A. Scampicchio, A. Carron, F. Farshidian,
M. Hutter, and M. N. Zeilinger, “Bayesian multi-task learning mpc for
robotic mobile manipulation,” 11 2022.

[22] Z. Xie, J. Tseng, S. Starke, M. van de Panne, and C. K. Liu,
“Hierarchical planning and control for box loco-manipulation,” 6 2023.
[Online]. Available: http://arxiv.org/abs/2306.09532

[23] J. Dao, K. Green, H. Duan, A. Fern, and J. Hurst, “Sim-to-real learning
for bipedal locomotion under unsensed dynamic loads.” IEEE, 5 2022,
pp. 10 449–10 455.

[24] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[25] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” jul 2017. [Online].
Available: http://arxiv.org/abs/1707.06347

[26] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-
to-Real Transfer of Robotic Control with Dynamics Randomization,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, may 2018, pp. 3803–3810. [Online]. Available:
https://ieeexplore.ieee.org/document/8460528/

16936

