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Abstract—Deep reinforcement learning (RL) has shown
promising results in robot motion planning with first attempts in
human-robot collaboration (HRC). However, a fair comparison
of RL approaches in HRC under the constraint of guaranteed
safety is yet to be made. We, therefore, present human-robot
gym, a benchmark suite for safe RL in HRC. We provide
challenging, realistic HRC tasks in a modular simulation
framework. Most importantly, human-robot gym is the first
benchmark suite that includes a safety shield to provably
guarantee human safety. This bridges a critical gap between
theoretic RL research and its real-world deployment. Our
evaluation of six tasks led to three key results: (a) the diverse
nature of the tasks offered by human-robot gym creates
a challenging benchmark for state-of-the-art RL methods, (b)
by leveraging expert knowledge in form of an action imitation
reward, the RL agent can outperform the expert, and (c) our
agents negligibly overfit to training data.

I. INTRODUCTION

Recent advancements in deep reinforcement learning (RL)
are promising for solving intricate decision-making pro-
cesses [1] and complex manipulation tasks [2]. These ca-
pabilities are essential for human-robot collaboration (HRC),
given that robotic systems must act in environments featuring
highly nonlinear human dynamics. Despite the promising
outlook, the few works on RL in HRC confine themselves to
narrow task domains [3]. Two primary challenges impeding
the widespread integration of RL in HRC are safety concerns
and the diversity of tasks. The assurance of safety for RL
agents operating within human-centric environments is a
hurdle as agents generate potentially unpredictable actions,
posing substantial risks to human collaborators. Current HRC
benchmarks [4], [5] circumvent these safety concerns by
focusing on interacting with primarily stationary humans.

In this paper, we propose human-robot gym!', a suite
of HRC benchmarks that comes with a broad range of tasks,
including object inspection, handovers, and collaborative
manipulation, while ensuring safe robot behavior by integrat-
ing SaRA shield [6], a tool for provably safe RL in HRC.
With its set of challenging HRC tasks, human-robot gym
enables training RL agents to collaborate with humans in a
safe manner, which is not possible with other benchmarks.
Human-robot gym comes with pre-defined benchmarks
that are easily extendable and adjustable. We then track all
relevant performance and safety metrics to allow an extensive
evaluation of the solutions. Our benchmark suite features the
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Fig. 1. Human-robot gym presents eight challenging HRC tasks.

following key elements that lower the entry barrier into the
field of RL in HRC:

o Pre-defined tasks, see Fig. 1, with varying difficulty,
each with a set of real-world human movements.

« Auvailable robots: Panda, Sawyer, IIWA, Jaco, Kinova3,
UR5e, and Schunk.

o Provable safety for HRC using SaRA shield in addition
to static and self-collision prevention.

o High fidelity simulation based on MuJoCo [7].

o Support of joint space and workspace actions.

o Highly configurable and expandable benchmarks.

o Environment definition based on the OpenAl gym stan-
dard to support state-of-the-art RL frameworks, such as
stable-baselines 3 [8].

o Pre-defined expert policies for gathering imitation data
and performance comparison.

« Easily reproducible baseline results, see Sec. V.

This article is structured as follows: Sec. II introduces pre-
vious work in RL for HRC, compares human-robot gym
to other related benchmarks in the field, and gives a short
overview of imitation learning approaches. Sec. III presents
our benchmark suite in detail. We then present additional
tools supporting users to solve human—-robot gym tasks
in Sec. IV. Sec. V evaluates our benchmarks experimentally
and discusses the results. Finally, we conclude this work in
Sec. VL.

II. RELATED WORK

Semeraro et al. [3] summarize recent efforts in machine
learning for HRC. They identify four typical HRC applica-
tions: collaborative assembly [9], [10], object handover [11]—
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[13], object handling [14], [15], and collaborative manufac-
turing [16].

Recent developments in RL evoke the need for compa-
rable benchmarks in various applications. One of the most
used benchmark suites for robotic manipulation is robosuite
[17], which offers a set of diverse robot models, realistic
sensor and actuator models, simple task generation, and a
high-fidelity simulation using MuJoCo [7]. Further notable
manipulation benchmarks are included in Orbit [18], which
focuses on photorealism; Behavior-1K [19], which provides
1000 everyday robotic tasks in the simulation environment
OmniGibson; and meta-world [20] for meta RL research.

None of the benchmarks mentioned above include humans
in the simulation. There are, however, some benchmarks that
provide limited human capabilities with a specific research
focus. First, the robot interaction in virtual reality [21] and
SIGVerse [22] benchmarks include real humans in real-time
teleoperation through virtual reality setups. Unfortunately,
this approach is unsuitable for training an RL agent from
scratch due to long training times. Closest to our work are
AssistiveGym [4] and RCareWorld [5]. These benchmark
suites provide simulation environments for ambulant caregiv-
ing tasks. RCareWorld provides a large set of assistive tasks
using a realistic human model and a choice of robot ma-
nipulators. However, AssistiveGym and RCareWorld focus
on tasks where the human is primarily static or only features
small, limited movements. Comparably, our work focuses on
collaborative tasks, where the human and the robot play an
active role, and the human movement is thus complex. Fur-
thermore, one primary focus of human-robot gym is hu-
man safety, which other benchmarks only cover superficially.
Also closely related to our work is HandoverSim [23], which
investigates the handover of diverse objects from humans to
robots. Here, prerecorded motion-capturing clips steer the
human hand. However, these movements only capture the
hand picking up objects and presenting them to the robot.
From that point onward, the hand remains motionless [23].
Compared to our work, HandoverSim (a) does not supply
motion data while the handover is ongoing, (b) has a much
narrower selection of tasks, and (c) excludes safety concerns.

We utilize learning from experts [24] to provide the first
results on our benchmarks. Currently, we mainly rely on
two techniques: reference state initialization, which lets the
agent start at a random point of an expert trajectory [25],
and state-based imitation reward, which additionally rewards
the agent for being close to the expert trajectory [26]. We
explicitly decided against behavior cloning techniques [27]
as they merely copy the expert behavior and often fail to
generalize to the task objective [24].

III. BENCHMARK SUITE

We base human-robot gym on robosuite [17], which
already provides adjustable robot controllers and a high-
fidelity simulation environment with MuJoCo. Primarily, our
environment introduces the functionality to interact with
a human entity, define tasks with complex collaboration
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P i ~
)
' Inverse kinematics
AEEF ’

5, Gioint f272mmmo o n o .
1 Static collision prevention
N Y,

Al
]

. N\
Environment

( Sense human J

( Simulate human )

J/

Fig. 2. A typical workflow of an RL cycle in human-robot gym.
Optional elements are depicted with dashed borders, and the inner loop of
the environment step is executed L times, e.g., L = 25. In this example, the
agent returns an action in Cartesian space corresponding to a desired end
effector position, which is converted to a desired joint position using inverse
kinematics. Our collision prevention alters the action if the desired joint
position results in a self-collision or a collision with the static environment.
The shield calculates the next safe joint positions, which the joint position
controller converts into joint torques that are then executed in simulation.

objectives, and evaluate human safety. In the following sub-
sections, we describe our benchmarks, the typical workflow
of human-robot gym, and its elements in more detail.

A. Benchmark definition

We define a benchmark in human-robot gym by its
robot (R), reward® (C), and task (©) following the defini-
tion in [28, Eq. 1]. All our benchmarks are described by
modular configuration files via the Hydra framework [29],
which makes human-robot gym easily configurable and
extendable. Each benchmark has a main configuration file,
consisting of pointers to configuration files for the task and
reward definition, robot specifications, environment wrapper
settings, expert policy descriptions, training parameters, and
RL algorithm hyperparameters.

a) Robot: We currently support seven different robot
models: Panda, Sawyer, IIWA, Jaco, Kinova3, URS5e, and
Schunk.

b) Reward: The reward in our environments can be
sparse, e.g., indicating whether an object is at the target po-
sition, and dense, e.g., proportional to the Euclidean distance
of the end effector to the goal. Furthermore, environments
can have a delayed sparse reward signal, which should mimic
a realistic HRC environment, where the agent receives the
task fulfillment reward shortly after the action that completes
the task. An example of a delayed reward is when a handover
was successful, but the human needs a short time to approve

2We can convert our rewards into costs used in [28] by c = —r.
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the execution. The reward delay serves as an additional
challenge for the RL agents.

c) Task definition: Each task in human-robot gym
is defined by a safety mode, objects, obstacles, human
motions, and a set of goals, adding to the task definition
of [28]. Human—-robot gym features tasks that reflect the
HRC categories introduced in [3]. Additionally, we selected
two typical coexistence tasks: reach as well as pick and place.
Furthermore, we provide a pipeline to generate new human
movements from motion capture data, which allows users
to define their own tasks and extend human—-robot gym.
Table I displays the default settings of each task that we use
in our experiments, and a subjective estimate of the authors
on the relative difficulty of each task regarding manipulation,
length of the time horizon, and human dynamics. The details
of the safety modes are discussed in Sec. IV-A.

B. TDypical workflow

Fig. 2 displays a typical workflow of an RL cycle in
human-robot gym. The actions of the RL agent can be
joint space @joinc Or workspace actions aggr. If aggr is se-
lected, the inverse kinematics wrapper determines Pijoint, desired
from PEggE, desired and returns the joint action. The workspace
actions can include the end effector orientation in SO(3).
However, in our experiments, we only use the desired
positional difference of the end effector in Cartesian space
QpEF = PEEF desied — PEEF @S actions, where the grip-
per is pointing downwards. This simplification to a four-
dimensional action space (three positional actions and a grip-
per action) is common in literature [2], [30], [31]. Training in
joint space showed similar performance in first experiments
but required significantly more RL steps until convergence
due to the larger action space.

The RL action might violate safety constraints. Users can,
therefore, implement safety functionalities as part of the
outer RL loop or the inner environment loop. We present how
our additional tools use both variants to prevent collisions
with static obstacles and guarantee human safety in Sec. IV.
The step function of our environment executes its inner loop
L times. Every iteration of the inner loop runs the optional
inner safety function, the robot controller, one fixed step of
the MuJoCo simulation, and the human measurement. After
executing the action, the environment returns an observation
and a reward to the agent.

C. Human simulation

Our simulation moves the human using motion capture
files obtained from a Vicon tracking system. All movements
are recorded specifically for the defined tasks and include
task-relevant objects in the scene, ensuring realistic behavior.
A limitation of using recordings are instances where the
recording must be paused until the robot initiates a specific
event, e.g., in a handover task. Previous works show an
unnatural human behavior in these cases. To address this
limitation, we incorporate idle movements representing the
human waiting for an event to trigger. For each recording,
keyframes can designate the start and end of an idle phase.

Once reached, the movement remains idle until an event
predicate o is true, at which point it progresses to the
successive movement. The predicate o is true when the
robot achieves a task-specific sub-goal and thereafter, e.g.,
handing over an object. Instead of simply looping the idle
phase, which would lead to jumps in the movement, we alter
the replay time of the recording by a set of D superimposing
sine-functions:

t, ift<t;Vog

Lo . (1
tr + > visin ((t — tr) w;), otherwise,
i=1

where v; and w; define the amplitude and frequency of the
i-th sine-function during idling respectively and both are
randomized at the start of each episode. The replay time can
also reverse in the idling phase. The recordings to replay
are randomly selected at the start of each episode, and their
starting position and orientation are slightly randomized to
avoid overfitting.

D. Observation

Human-robot gym features typical task-related and
robotic observations, as shown in Table II. Objects, ob-
stacles, goals, and human bodies have a measurable pose
T € SE(3). These objects are observable through the fol-
lowing projections (adapted from [28, Tab. II]): position in
world (W) and end effector (E) frame pyw : SE(3) — R3,
pE : SE(3) — R3, Buclidean distance to the end effec-
tor d: SE(3) — R*, and the orientation in world frame
given through quaternions ow : SE(3) — SO(3). The task-
specific elements in Table II include those necessary to ful-
fill the task, i.e., Tobj,a; a = 1, . 7A, Tobs7b7 b= 1, ey B,
Tyeoal,e;c=1,...,C, and Tyogy,a,d = 1,..., D, with A ob-
jects, B obstacles, C' goal poses, and D human bodies. The
robot information contains its joint positions and velocities as
well as the end effector position, orientation, and aperture. In
our experiments, we found that reducing the number of ele-
ments in the observation, e.g., only providing measurements
of the human hand positions instead of the entire human
model, is beneficial for training performance. To emulate
real-world sensors, users can optionally add noise sampled
from a compact set and delays to all measurements, further
reducing the gap between simulation and reality. In addition
to the physical measurements, the user can define cameras
that observe the scene and learn from vision inputs.

IV. SUPPORTING TOOLS

This section describes additional tools included in
human-robot gym to provide safety and RL training
functionality.

A. Safety tools

We can prevent static and self-collisions in the outer RL
loop by performing collision checks of the desired robot
trajectory using pinocchio [32]. If the trajectory resulting
from the RL action is unsafe, we sample actions uniformly
from the action space until we find a safe action.
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TABLE I
BENCHMARK CHARACTERISTICS

Task HRC category’ Safety mode? Manipulation  Time-horizon  Dynamics Reward Reward delay  No. of motions
Reach coexistence SSM easy easy easy dense no 12
Pick and place coexistence SSM medium medium easy sparse no 12
Object inspection object handling SSM medium medium medium sparse yes 8
Collaborative lifting object handling SSM medium medium medium dense no 9
Robot-human handover object handover PFL medium medium hard sparse yes 15
Human-robot handover object handover PFL hard medium hard sparse yes 11
Collaborative hammering  object manufacturing SSM hard medium hard sparse yes 11
Collaborative stacking object assembly SSM hard hard hard sparse yes 8

Lfrom [3], 2SSM: speed and separation monitoring, PFL: power and force limiting

TABLE II
OBSERVATION ELEMENTS

| Element Observations
& Joint angle q
= | Joint velocity q
_.: EEF aperture 4
~ | EEF pose pw(Teer) ', ow(Teer)
Objects Pw (Tobj), PE(Tobj)s d(Tobj), ow (Tob;)
Obstacles Pw(Tobs)» PE(Tas)> d(Tops), ow(Tobs)
Goal poses pW(Tgoal)a pE(Tgoal)v d(Tgoa])s OW(Tgoa])
@ Goal joint angles Qeoal — g
~ | Object gripped O grip
é Object at target T target
& | Static collision Ocol, stat
Body positions PW(Thody)s PE(Thody)s d(Thody)
Safe human contact O contact
Critical human contact Ocrit

Tp: position in world (W) or end effector (E) frame, d: Euclidean distance, o: orientation, o: predicate

Guaranteeing human safety in the outer RL loop is chal-
lenging, as the time horizon of RL actions is relatively
long, e.g., 200 ms. Hence, checking safety only once before
execution would lead to a very restrictive safety behav-
ior [33]. Therefore, we ensure human safety in the inner
environment loop. We provide the tool SaRA shield intro-
duced for robotic manipulators in [6], [34] and generalized
to arbitrary robotic systems in [33]. First, SaRA shield
translates each RL action into an intended trajectory. In the
subsequent period of an RL action, the shield is executed
L times. In each timestep, the shield computes a failsafe
trajectory, which guides the robot to an invariably safe state.
As defined in [6], an invariably safe state in manipulation is
a condition where the robot completely stops in compliance
with the ISO 10218-1 2021 regulations [35]. Next, the shield
constructs a shielded trajectory combining one timestep from
the planned intended trajectory with the failsafe trajectory.
SaRA shield validates these shielded trajectories through
set-based reachability analysis of the human and robot.
For this, the shield receives the position and velocity of
human body parts as measurements from the simulation. We
assure safety indefinitely, provided that the initial state of
the system is an invariably safe state, by only executing
the step from the intended trajectory when the shielded
trajectory is confirmed safe [6]. In the event of a failed safety
verification, the robot follows the most recently validated
failsafe trajectory, guaranteeing continued safe operation.

Finally, SaRA shield returns the desired robot joint states for
the next timestep to follow the verified trajectory. We then
use a proportional-integral-derivative controller to calculate
the desired robot joint torques.

The default mode of SaRA shield is speed and separa-
tion monitoring, which stops the robot before an imminent
collision. This is too restrictive for close interaction tasks,
such as handovers, as the robot must come into contact
with the human. Therefore, we include a power and force
limiting mode in the tool SaRA shield that decelerates the
robot to a safe Cartesian velocity of 5mms~! before any
human contact, as proposed in [36, Def. 3]. Thereby, our
power and force limiting mode ensures painless contact in
accordance with ISO 10218-1 2021 [35]. As in the speed
and separation monitoring mode, SaRA shield only slows
down the robot if our reachability-based verification detects
a potential collision. Otherwise, the robot is allowed to
operate at full speed. We further plan to include a conformant
impedance controller, as proposed in [37], in SaRA shield in
the future.

B. Tools for training

To provide a perspective on the performance of RL
agents in our environments, we provide both expert and
RL policies with our tasks. In this work, we consider an
RL agent that learns on a Markov decision process de-
scribed by the tuple (S,A,T,r,Sp,7) in both continuous
or discrete action spaces .A and continuous state spaces
S with a set of initial states Sy. Here, T(Syi1 | Sk, ar)
is the transition function, which denotes the probability
density function of transitioning from state s; to s;+; when
action ay, is taken. The agent receives a reward determined
by the function r: & x A x & — R from the environment.
Lastly, we consider a discount factor v € [0, 1] to adjust the
relevance of future rewards. RL aims to learn an optimal
policy 7*(ay, | s) that maximizes the expected return R =
Y keo v*7 (s, ar, Sp+1) when starting from an initial state
sp € So and following 7*(ayg | sx) until termination at
k= K [38].

C. Pre-defined experts

We define a deterministic expert policy me(ay |sy) for
each task to gather imitation data and compare performance.
The experts are hand-crafted and follow a proportional

7408



control law with heuristics based on human expertise strat-
egy, as described in full detail in the human-robot gym
documentation.

To achieve diversity in our expert data, we add a noise
term to the expert action, resulting in the noisy expert

Te(ak | 8g, k) = me(ar | sk) * frn, 2

where * denotes the convolution of probability distribu-
tions, and f; n is the probability density function of the
noise signal n at time k. To restrain the random pro-
cess from diverting too far from the expert, we choose
a mean-reverting process. In particular, we model n to
be a vector of independent random variables n; and dis-
cretize the univariate Ornstein—Uhlenbeck process [39] to
retrieve an autoregressive model of order one. We can sample
an expert trajectory x = (8g,...,8x) by a Monte Carlo
simulation, where we start in Sy € Sy, and subsequently
follow .§;H_1 ~ T(§k+1 ‘ §;€, dk) with &k ~ ﬁ'e(dk | .§k, k) for
k=0,..., K — 1. For each task in human-robot gym,
we provide the expert policies 7. and 7. together with a set
of M expert trajectories B = {x1,...,xnm} sampled from
Te.

D. Reinforcement learning agents

Soft actor-critic (SAC) [40] serves as a baseline for our
experiments due to its sample efficiency and good per-
formance on previous experiments [6]. We include three
variants of imitation learning to investigate the benefit of
expert knowledge for the RL agent. First, we use reference
state initialization [26] to redefine the set of initial states
to the set of states contained in the expert trajectories
So = {8 8 € x, x € B}. Starting the episode from a state
reached by the expert informs the agent about reachable
states and their reward in long-horizon tasks.

Secondly, we evaluate a state-based imitation reward,
where the agent receives an additional reward signal pro-
portional to its closeness to an expert trajectory x € B in
state space r'sir (Sk, Gk, Sk+1, 8k) = (1—<)r(sk, ag, Sk+1)+
¢ dist(sy — 8x), where 0 < ¢ < 1. For the distance function,
we choose a scaled Gaussian function dist(z) = 2~ *l=l>
with scaling factor % as suggested in [26]. We further
apply reference state initialization when using the state-based
imitation reward, as proposed in [26].

Finally, we adapt the state-based imitation reward
method to an action-based imitation reward, where
the agent receives an additional reward signal propor-
tional to the closeness of its action to the expert ac-
tion TAR(Sk, @k, Sk+1,ar) = (1 — )r(Sk,ar, Sp41) +
cdist(ar — ax), with ap ~ 7e(ax| sk, k). When using
action-based imitation rewards, we sample the expert policy
alongside the RL policy in every step but only execute the
RL action.

V. EXPERIMENTS

This section presents the evaluated RL agents, shows the
performance of the agents in human-robot gym, and

discusses the results. Our experiments aim to answer three
main research questions:

o Can RL be used to complete complex HRC tasks?

o How beneficial is prior expert knowledge in solving

these tasks?

o Does the RL agent overfit to a limited amount of human

recordings in training?

We present our results on six human—-robot gym tasks:
reach, pick and place, collaborative lifting, robot-human
handover, human-robot handover, and collaborative stacking.
The evaluation shows results for the Schunk robot with the
rewards listed in Table I. Across all experiments, we execute
L = 25 safety shield steps per RL step (empirically, training
with L = 50 shows similar performance). Our training had
an average runtime of 17.61s per 10> RL steps>. To evaluate
the benefit of expert knowledge in these complex tasks, we
compare the four agents discussed in Sec. IV-D with the
expert. Fig. 3 shows our main results, where we evaluate
the performance every 2 - 10° training steps and trained all
agents on five random seeds. We report the success rate,
which indicates the rate at which the task was successful,
and the reward normalized to the range between the minimal
possible reward and the average expert reward. All plots
show the mean evaluation performance during training and
the 95 % confidence interval (shaded area) in the mean metric
established with bootstrapping on 10* samples.

Our results show that the human-robot gym has a
diverse set of tasks, from which some are already solvable,
e.g., reach as well as pick and place, some show room
for improvement, e.g., collaborative lifting and robot-human
handover, and some are not solvable with the investigated
approaches, e.g., human-robot handover and collaborative
stacking. Comparing these results to the complexity estimate
in Table I, we infer that the two main factors for the difficulty
of a task are the complexity of the manipulation and the
human dynamics. Handling these two areas will be among
the main challenges for RL research in HRC.

The results in Fig. 3 further show that expert knowledge
is beneficial in benchmarks with sparse rewards, with the
action-based imitation reward (AIR) method showing higher
or equal performance compared to the state-based one. In
the pick and place task, the action-based imitation reward
approach outperformed the expert policy and reached a
nearly 100 % success rate. Unfortunately, constructing the
action-based imitation reward requires an expert policy that
can be queried online during training, which is not given
in many manipulation tasks. Interestingly, the agent trained
with a state-based imitation reward shows no significant
improvement over the SAC agent trained only with reference
state initialization in our evaluations. Our results indicate that
starting the environment in meaningful high-reward states
significantly improves performance in sparse reward settings.
Future work could investigate if there are even more effective
forms of reference state initialization that require little to
no expert knowledge. Finally, expert knowledge does not

3Run on ten cores of an AMD EPYC™ 7763 @ 2.45GHz.
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Fig. 4. Ablation study for overfitting to motion data in the training process.

improve performance in our experiments with dense reward
settings, such as reaching or collaborative lifting. We assume
this behavior stems from the fact that the additional action-
based and state-based imitation rewards resemble the dense
environment reward, yielding little additional information.
To address concerns related to overfitting to the limited
amount of human motion profiles, we conduct an ablation
study on the collaborative lifting task, which relies exceed-
ingly on the human motion. This study aims to identify
whether training an RL agent using a limited set of record-
ings instead of simulated behavior is satisfactory. Our dataset
consists of nine unique human motion captures, seven of
which we use as training data, reserving the remaining two
for testing. We then perform a five-fold cross-evaluation,
where we select different training and testing movements
on each split and train RL agents on five random seeds
per split. We report the average performance over the splits
and seeds and the 95% confidence interval in the mean
metric of the trained SAC agent on the respective training
movements (seen data) and test movements (unseen data)
in Fig. 4. The reward performance of the trained agent on
the unseen data is within the confidence interval of the
performance on the training data. Both mean reward and

success rate are only slightly lower on the unseen data, and
the agent performs reasonably well. Therefore, we conclude
that overfitting to the human movements is not a significant
problem of human-robot gym.

VI. CONCLUSION

Human-robot gym offers a realistic benchmark suite
for comparing performance of RL agents and safety func-
tions in HRC. Its unique provision of a pre-implemented
safety shield offers the opportunity to develop efficient HRC
without designing a safety function. Our evaluation insights
reveal the importance of expert knowledge in benchmarks
with sparse rewards, showing that an action-based imitation
reward is a promising approach if an expert is available
online. In terms of practical application, it is noteworthy
that an agent trained in human—-robot gym was success-
fully deployed in actual HRC environments, as presented in
our prior work [33]. These tests underline the critical role
human-robot gym will play as an academic tool and as
a practical approach for tangible robotic issues.
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