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Abstract— Robot navigation using deep reinforcement learn-
ing (DRL) has shown great potential in improving the per-
formance of mobile robots. Nevertheless, most existing DRL-
based navigation methods primarily focus on training a policy
that directly commands the robot with low-level controls, like
linear and angular velocities, which leads to unstable speeds
and unsmooth trajectories of the robot during the long-term
execution. An alternative method is to train a DRL policy
that outputs the navigation path directly. Then the robot can
follow the generated path smoothly using sophisticated velocity-
planning and path-following controllers, whose parameters are
specified according to the hardware platform. However, two
roadblocks arise for training a DRL policy that outputs paths:
(1) The action space for potential paths often involves higher
dimensions comparing to low-level commands, which increases
the difficulties of training; (2) It takes multiple time steps to
track a path instead of a single time step, which requires
the path to predicate the interactions of the robot w.r.t. the
dynamic environment in multiple time steps. This, in turn,
amplifies the challenges associated with training. In response
to these challenges, we propose PathRL, a novel DRL method
that trains the policy to generate the navigation path for the
robot. Specifically, we employ specific action space discretization
techniques and tailored state space representation methods
to address the associated challenges. Curriculum learning is
employed to expedite the training process, while the reward
function also takes into account the smooth transition between
adjacent paths. In our experiments, PathRL achieves better
success rates and reduces angular rotation variability compared
to other DRL navigation methods, facilitating stable and smooth
robot movement. We demonstrate the competitive edge of
PathRL in both real-world scenarios and multiple challenging
simulation environments.

I. INTRODUCTION

DRL navigation methods have shown great potential in
improving the flexibility and adaptability of mobile robots
in complex and changing scenarios [1]. Most existing DRL
navigation methods intend to train a policy that directly
commands the robot with single-step low-level controls, like
linear and angular velocities. However, it is challenging
for most DRL algorithms to memorize long histories of
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Action Distribution

Fig. 1. Illustration of the path generation. The area surrounded by two red
dotted lines denotes the potential path area. The control points in different
colors are sampled by the DRL policy, and the final sampling path (red
solid line) is formed through path continuation (Bézier curve).

low-level controls, which may lead to unstable speeds and
unsmooth trajectories of the robot during the long-term
execution and cannot achieve typical driving maneuvers [2].
It is also hard to train a DRL policy converging to the
almost zero exploration from the balance of exploration and
exploitation [3], which makes the outputs of the policy easy
to drift. On the other hand, a human-friendly mobile robot
is expected to drive stably and smoothly.

The decoupling of the control module from the planning
module enables the robot to follow fluctuating path outputs
using stable control actions. In this paper, we propose
PathRL, a DRL-based navigation method that outputs navi-
gation paths, which can be followed smoothly by the robot
using sophisticated path-tracking algorithms [4]–[6]. This
form of DRL network makes the robot action predictable due
to the low-level controls that are got by the control module,
which is predictable in multiple time steps. Moreover, we
also benefit from the flexibility and adaptability of the DRL
policy. The behavior policy limits the path generated by the
imitation learning-based method, and our proposed PathRL
as a policy-based DRL algorithm employs more flexibility. In
PathRL, the trained policy focuses on generating proper paths
for the robot in various dynamic environments, which is more
robust for various robots with different motion models and
can also benefit human-robot interaction [7], [8].

It is challenging to train a navigation policy that outputs
paths as the paths often involve the higher-dimensional policy
space. As shown in Fig. 1, in PathRL, we use Bézier curve
to fit the navigation path via the current position of the
robot and other three control points generated by the DRL
policy. Notice that, each pair of adjacent control points has
a fixed interval in the longitudinal direction. Then these
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three control points can be specified by the DRL policy
via three continuous numbers for corresponding values in
the horizontal direction. To facilitate subsequent citation and
description, we name the above method of setting control
point coordinates as semi-discrete operations. In this way,
the DRL policy can specify a path via these three continuous
numbers, which is slightly more complex than the DRL
method in [9] where the policy outputs two continuous
numbers corresponding to linear and angular velocities,
respectively. In PathRL, we employ three consecutive path-
based frames of sensor information and relative targets as
inputs of the navigation policy, as shown in Fig. 3. The
state of each frame is extracted from the state space upon
the termination of semi-MDP options [10] (once a path
has been completely followed). We also apply curriculum
learning [11] to speed up the training process.

In our experiments, we employ the soft actor-critic (SAC)
algorithm [12] as the DRL method for the training. During
the training, the robot is driven by a path-following algorithm
that follows the paths generated by the trained policy while
given a fixed linear velocity. The robot will follow the new
path only after it has completed the following of the previous
one, which follows a typical semi-MDP process [10] with
temporal abstraction [13], [14]. During the execution, this
path-following process can be interrupted when the robot is
approaching obstacles to achieve more safety navigation. Our
experiments in both real-world scenarios and multiple chal-
lenging simulation environments show that PathRL enables
an explicable and predictable DRL navigation policy while
maintaining the strategic diversity of DRL agents.

The main contributions of our work are summarized in the
following:

• We propose a novel end-to-end DRL-based method,
PathRL, that directly outputs navigation paths without
relying on the supervised learning paradigm and is
competent for a variety of complex scenarios.

• We implement semi-discrete operations on the action
space to reduce the difficulty of policy training. We
utilize three consecutive path-based frames as network
inputs to enhance the performance of navigation strate-
gies in dynamic and complex environments. We design
a reward function to ensure that the output path is
smoother and satisfies the smooth transition between
adjacent paths.

• Extensive experiments demonstrate the promise of the
PathRL in achieving superior yet smoother driving tra-
jectories.

II. RELATED WORK

Classical navigation methods, like Time Elastic Band
(TEB) algorithm [15], Optimal Reciprocal Collision Avoid-
ance (ORCA) [16] and Social Force Model (SFM) [17],
may take a lot of hard work to find proper parameters
in various scenarios. Supervised learning based navigation
methods, like [18] and [19], rely heavily on a large amount
of labeled data, while the quality of which directly affects
the performance of the trained policy.

Recently, there have been many DRL-based works on
robot motion planning and collision avoidance. [20] used the
asynchronous deep deterministic policy gradients (ADDPG)
algorithm with low-dimensional LiDAR data (10 returns)
as input to create a navigation system with good obstacle
avoidance capabilities. In the field of social navigation,
[21] provided a crowd navigation method where both the
pedestrian map and the sensor map were used to allow
pedestrians to follow different collision avoidance strategies.
In these works, the DRL network directly replaces the entire
navigation stack and outputs end-to-end navigation instruc-
tions. However, these end-to-end methods try to predict low-
level control commands for the robot, which may lead to
unstable actions and unsmooth driving trajectories.

APF-RL [22] combined the strengths of Artificial Potential
Functions (APF) with DRL, employing the SAC algorithm
to dynamically adjust the two input parameters of the APF
controller: the intermediate goal and the k-parameter. PRM-
RL [23] used PRM as a global planner and DRL as a
local planner to complete long-range navigation tasks. The
majority of these methods incorporate elements of traditional
approaches, with some serving as learning subsystems within
classic architectures, while others focus on training individ-
ual components of traditional methods. The emphasis here
lies in highlighting the distinction of our approach from
previous methods. We aim to leverage the flexibility and
adaptability inherent in DRL to train an end-to-end policy
network capable of directly generating paths.

The following works are more similar to our method
in the idea of path generation. [2] leveraged expert prior
knowledge to learn high-level motion skills instead of low-
level control skills. In contrast, our method focuses on
searching feasible paths directly from the policy space in
an end-to-end manner without any expert prior knowledge.
[24] addressed the problem of predicting proper paths for
robots. In this work, the navigation problem is modeled as a
deep Markov model, the driving distance and rotation angle
of the robot are output at each step, and the final navigation
path is formed by combining the multi-step outputs of the
algorithm. The method in [24] can achieve good performance
in static scenarios, however, it does not perform well in
dynamic scenarios.

III. METHOD

A. Reinforcement Learning Components

In DRL, we formulate robot’s navigation as a Markov
Decision Process (MDP) problem. Specifically, an MDP is a
tuple {S,A,P,R, γ}, where S is the state space, A is the
action space, P presents the transition probability between
states, and γ is the discount factor in (0, 1).

1) State Space: In our formulation, a state st = (mt, gt)
at time step t consists of two parts: an egocentric costmap
mt and a relative target pose gt.

The egocentric costmap1 is a 84 × 84 grid map that is
generated by a 3D laser sensor with 180◦ field of view

1http://wiki.ros.org/costmap 2d

9279



and presents information about the environment around the
robot, including the shape of the robot and the observable
appearances of various obstacles.

The relative target pose gt = (xg
t , y

g
t , α

g
t ) of the robot

includes the relative position of the navigation target point
(xg

t , y
g
t ) and the relative target orientation αg

t of the robot
w.r.t. the current global pose (xt, yt, αt) of the robot at time
t, i.e., this relative target pose gt is the local pose for the local
coordinate system when the pose of the robot is identified
as the origin.

In pathRL, the input of the DRL network is three con-
secutive path-based frames. These three frames contain the
sensor information and relative target poses of the robot at the
poses of (x−2

t , y−2
t , α−2

t ), (x−1
t , y−1

t , α−1
t ), and (xt, yt, αt),

respectively. Notice that, we define the two nearest consec-
utive paths that the robot must follow to reach its current
pose (xt, yt, αt) as P−1

t and P−2
t , respectively. We use

(x−1
t , y−1

t , α−1
t ) and (x−2

t , y−2
t , α−2

t ) to denote the starting
poses of the robot for these two paths, respectively.

As shown in Fig. 2, we can specify the input of the
DRL policy, i.e., three consecutive path-based frames, as
s⃗t = (st−(τ1+τ2), st−τ1 , st), where st−(τ1+τ2) = (m−2

t , g−2
t )

denotes an egocentric costmap and a relative target pose w.r.t.
the pose (x−2

t , y−2
t , α−2

t ) of the robot, st−τ1 = (m−1
t , g−1

t )
w.r.t. the pose (x−1

t , y−1
t , α−1

t ), and st = (mt, gt) w.r.t. the
pose (xt, yt, αt). We use τ1 to denote the amount of the time
steps for following the path P−1

t and τ2 to denote the amount
of the time steps for following the path P−2

t .

ot−4

ot−3

ot−2

ot−1

ot

G

Fig. 2. Consecutive path-based frames for the DRL-based navigation policy.
The gray circular and rectangular block denote static obstacles, green dots
denote the trajectories of pedestrians, and G denotes the target point. In
the current scenario, the three consecutive path-based frames are expressed
as s⃗t = (st−4, st−2, st), as the robot takes 2 time steps to follow each
of the two previous paths, and sensor-based frames are expressed as s⃗t =
(st−2, st−1, st).

2) Action Space: In this paper, we intend to train a
DRL policy that outputs navigation paths directly. In our
formulation, we use Bézier curve to fit the navigation path
via the current position of the robot and other n control
points generated by the DRL policy. As shown in Fig. 1,
the action space is the possible control points that can be
selected in the rectangular area in front of the robot, which
is high-dimensional. Therefore, to reduce the dimension of
the action space and the training difficulty, we discretize the
selection of longitudinal coordinate values for these n control
points.

In specific, the n control points are identified as (l1t , h
1
t ),

(l2t , h
2
t ), . . ., (l

n
t , h

n
t ), where the point (l, h) denotes the local

longitudinal coordinate l and the local horizontal coordinate
h when the current pose (xt, yt, αt) of the robot is considered
as the origin of the local coordinates. We assign a fixed
interval between two adjacent longitudinal coordinates, i.e.,
li+1
t − lit = l1t = d for 1 ≤ i < n. In our experiments, we

set n = 3 and d = 0.4/3m, then l1t , l2t , and l3t are assigned
to be 0.4/3m, 0.8/3m, and 0.4m, respectively.

Notice that, the previous path P−1
t is specified by the

starting pose (xt−τ , yt−τ , αt−τ ) of the robot and n local
control points (l1t−τ , h

1
t−τ ), . . ., (lnt−τ , h

n
t−τ ), where τ is

the amount of the time steps for following the path P−1
t .

Particularly, the current position (xt, yt) of the robot at time t
is the ending position of the robot for the previous path P−1

t ,
then (xt, yt) is equivalent to the global position for the last
control point (lnt−τ , h

n
t−τ ) of P−1

t , i.e.,

xt = lnt−τ cos(αt−τ )− hn
t−τ sin(αt−τ ) + xt−τ ,

yt = lnt−τ sin(αt−τ ) + hn
t−τ cos(αt−τ ) + yt−τ .

3) Reward Function: The DRL policy aims to maximize
the cumulative reward. In robot navigation tasks, the primary
goal of the robot is to reach the target without collision within
a limited time. Based on this goal, the robot’s trajectory
is further required to be smoother. Therefore, the reward
function of the algorithm is defined as follows:

rt = rgoal
t + rsafe

t + rcurvature
t + rstraight

t ,

where rt is the sum of four parts, rgoal
t , rsafe

t , rcurvature
t and

rstraight
t .

In particular, rgoal
t is the reward when the robot reaches

the local target:

rgoal
t =

{
rarr, if target is reached,
0, otherwise.

rsafe
t specifies the penalty when the robot encounters a

collision:

rsafe
t =

{
rcol, if collision,
0, otherwise.

We use the rcurvature
t to encourage the DRL algorithm to

output paths with less curvature:

rcurvature
t = −ε1(

N∑
i=0

k(x)), x =
i

N
∈ [0, 1],

where N is the total number of points after the discretization
of the path, ε1 is a hyper-parameter and k(x) is the curvature
of the path at the ith point. The following formula defines
k(x):

k(x) =
∥B′

(x)×B
′′
(x)∥

∥B′(x)∥3
,

where B(x) means Quadratic Bézier curve function. The
intuition behind the definition of rcurvature

t is that the larger
the curvature of points along the path, the more unstable
the robot’s motion becomes, and thus the penalty should be
greater.
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The purpose of rstraight
t is to encourage the DRL algorithm

to generate paths that maximize alignment with the direction
of the vehicle body. This strategic approach ensures the
smooth transition between adjacent paths, thereby enhancing
the smoothness of the robot’s movement trajectory.

rstraight
t = ε2(Lmin − L),

where ε2 is a hyper-parameter, Lmin is the length of the
shortest path, which is related to the action space dimension
and the distance between the path points, and L is the length
of the path output by the DRL algorithm. The intuition
behind the definition of rstraight

t is to avoid sharp angles
between adjacent paths. In our experiments, we set rarr =
500, rcol = −700, N = 100, ε1 = 0.4 and ε2 = 200.

Algorithm 1: SAC for the generation of paths

1 Initialize the policy network π, the value network,
and various hyperparameters;

2 Clear the experience buffer Buffer D;
3 for epoch = 1, . . . , E do
4 for step t = 1, . . . , Tep do
5 at = π(⃗st);
6 a⃗t = Bézier(at);
7 if A path has been followed in its entirety

then
8 a = a⃗t;

9 st+1, rt = path follow(a);
10 if A path has been followed in its entirety

then
11 deque s⃗t+1 append st+1;
12 D ← D ∪ {s⃗t, at, rt, s⃗t+1};
13 Sample batch B ∼ D to update SAC

network;
14 if robot has stopped then
15 s⃗t = reset();

Fig. 3. An overview of the entire process and the structure of the policy
network. The egocentric costmap is fed into a fully convolutional network
for the feature extraction. The extracted features are then concatenated with
the relative target pose of the robot and input into a fully connected network
to output the final coordinates of the path points.

B. Training by Curriculum Learning for Obstacle Avoidance

It remains challenging to achieve an optimal policy
through the above method stably and efficiently. Therefore,
we employ curriculum learning [11] to assist and speed up
the training process. Overall, we design a two-stage training
process for curriculum learning in our experiments. In the
first stage, we perform the DRL agent in two kinds of

environments for the training, both of which were conducted
in a static scenario with gradually increased complexity (4
and 16 static obstacles, respectively). At this stage, we intent
to enable the DRL agent to learn basic navigation abilities
and obstacle avoidance capabilities. In the second stage, we
continuously train the DRL agent obtained from the first
stage in environments with much more complex dynamic
scenarios, which enable the DRL agent to learn a more robust
navigation strategy to interact with dynamic obstacles.

IV. EXPERIMENTS

A. Experiments on simulation scenarios
Here we consider three different types of scenarios, i.e.,

static, pedestrian, and multi-agent scenarios, to generate
random environments in our customized simulator [9] to
collect experiences for the training of the navigation policy.
Fig. 4 illustrates environments for these three scenarios,
respectively.

Fig. 4. Illustration of the three scenarios for the training. The blue digital
circles indicate the target position of the corresponding robots, red lines
represent the straight paths from the starting point to the target point for
robots, black circle and rectangle blocks specify static obstacles, green dots
denote pedestrian trajectories, and blue boxes on the right show sensor maps
of each robot.

We compare the performance of PathRL with three other
DRL-based navigation methods, i.e., PPO [9], SAC [12]
and PSD [21]. All methods are evaluated in both static
and dynamic simulation environments using an Ackermann
steering robot2 whose length by width is 0.3×0.2. The action
space for both PPO and SAC methods is the linear velocity
and the angle of the front wheel, i.e., v ∈ [0, 0.6] and θ ∈
[−0.785, 0.785]. Notice that, both PPO and SAC methods
share the similar network structure as PathRL as shown
in Fig. 3. PSD is a crowd navigation method that enables
efficient and smooth motion planning within highly crowded
and dynamic environments. It’s important to mention that
we have modified the network output of PSD to support
Ackermann steering robots. We have also well justified the
training details for all methods to achieve good performance
as shown in our previous work [9], [25]. In this paper, we
show that DRL policies as trained by PathRL that directly
output paths can greatly improve the speed stability and
trajectory smoothness of the robot.

We introduce four metrics to evaluate the performance
of navigation policies trained by different DRL methods in
multiple scenarios as the following:

• Success rate (SUCC): the radio of episodes in which
the robot reaches the target pose without collision.

2Note that, it is more challenging for DRL methods to train a navigation
policy for a robot with additional kinematic constraints like an Ackermann
steering robot comparing with a differential robot. We use Bézier curves
to guarantee kinematic feasibility. Dynamic constraints (acceleration, curva-
ture) are satisfied by forcibly limiting planning parameters within reasonable
ranges.
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• Average curvature (CUR): the average curvature of the
robot’s driving path at each episode, which evaluates
the stability of the (angular) speeds and the smoothness
of the trajectories for the robot.

• Average length (LEN): the average length of the robot’s
driving path at each success episode.

• Average time (TIME): the average cost time at each
success episode.

In the following, all experimental results for different
methods were obtained from the average results for 1000 ran-
domly generated environments of each scenario. Pedestrians
in the scenario are driven by OCRA and SFM and multi-
agents adopt the self-play strategy without communicating
with each other as shown in [9]. For a fair comparison,
we trained 3 versions of the models for each DRL method
and summary the average performance of each method for
multiple scenarios in following tables.

TABLE I
PERFORMANCE OF DIFFERENT NAVIGATION METHODS

Scenarios Methods SUCC(%)↑ CUR↓ LEN(m)↓ TIME(s)↓

Static Scenario
(16 Obstacles)

PPO 0.979 1.237 5.209 9.177
SAC 0.972 1.418 5.486 9.474
PSD 0.975 1.219 5.136 9.164

PathRL 0.985 0.691 4.804 7.522

Static Scenario
(24 Obstacles)

PPO 0.960 1.454 5.292 9.113
SAC 0.941 1.571 5.761 10.004
PSD 0.958 1.405 5.307 9.154

PathRL 0.968 0.772 5.281 8.249

Dynamic Scenario
(4 Obstacles & 4 Pedestrians)

PPO 0.850 2.519 6.921 11.850
SAC 0.889 1.538 6.858 11.533
PSD 0.911 1.584 7.483 12.988

PathRL 0.889 0.904 8.431 12.632

Dynamic Scenario
(6 Pedestrians)

PPO 0.769 2.027 7.587 14.103
SAC 0.894 1.462 8.452 14.224
PSD 0.926 1.387 9.094 15.867

PathRL 0.875 0.836 14.41 20.268

Dynamic Scenario
(8 Agents)

PPO 0.879 2.197 6.171 11.832
SAC 0.947 3.869 7.004 12.702
PSD 0.909 1.928 7.409 12.364

PathRL 0.998 0.705 7.567 11.642

1) Comparative experiments: Table I shows that PathRL
outperforms the other DRL methods by a considerable im-
provement of “Average curvature (CUR)” without sacrificing
“Success rate (SUCC)”. In dynamic environments, we find
out that both “Average length (LEN)” and “Average time
(TIME)” of PathRL are slightly larger than that of other DRL
methods, as PathRL is required to drive the robot to avoid
dynamic obstacles stably and smoothly, which is preferred
for most real-world applications. Notice that, compared to
PathRL, PSD has additional pedestrian map input, resulting
in a higher success rate in pedestrian scenarios.

Notice that, additional smoothing requirements are pre-
ferred for an Ackermann steering robot. We use the average
changes of the steering angle at each step, i.e. ∆θ = θt+1−
θt, as a metric to assess the smoothness and comfort of the
robot’s movement.

Table II summarizes the results of the ∆θ metric for
three reinforcement learning methods. Since PathRL directly
outputs the path and decouples the motion control module
from the DRL policy, it achieves a dramatic improvement
of the stability of the steering angle for the robot comparing
with other DRL methods.

In our setting, the DRL navigation policies are trained
using the experiences collected in various simulation envi-
ronments. Then it is crucial for these policies to be robust in

TABLE II
AVERAGE CHANGES OF STEERING ANGLE FOR DIFFERENT METHODS

Scenarios Methods ∆θ(rad) ↓

Static Scenario
(24 Obstacles)

PPO 0.5527
SAC 0.5584
PSD 0.5498

PathRL 0.0093

Dynamic Scenario
(4 Obstacles & 4 Pedestrians)

PPO 0.8983
SAC 0.5047
PSD 0.4763

PathRL 0.0114

Dynamic Scenario
(8 Agents)

PPO 1.2490
SAC 1.1156
PSD 1.0271

PathRL 0.0023

the presence of the differences between the simulation model
and the real-world robot platform. Notice that, DRL-based
navigation methods that directly commands the robot with
low-level controls are sensitive to parameters of the robot
platform, which limits the generality of methods. Meanwhile,
PathRL directly outputs the path and decouples the motion
control module from the DRL policy. Then, sophisticated
velocity-planning and path-following controllers, whose pa-
rameters are specified according to the real-world robot
platform, can be applied for the robot to follow the paths
generated by the DRL policy. In the following, we consider
the impact for the navigation performance for different
DRL-based navigation methods when varying the maximum
driving speed of the robot platform.

In our experiment, we respectively apply the four DRL
methods to train corresponding navigation policies in the
same simulation environments, where the maximum moving
speed of the robot is 0.2 m/s. Then we test the performance
of these navigation policies in both static and multi-agent
scenarios when the maximum moving speed is increased to
0.4 m/s, 0.6 m/s, and 0.8 m/s, respectively. The experimental
results are summarized in Figure 5, where “x-static” and “x-
magent’ denote the performance of the trained navigation
policy using the DRL method “x” tested in static and mullti-
agent scenarios, respectively. Comparing with other DRL
methods, the performance of PathRL is more robust when
the maximum moving speed is increased, which maintains
the stable success rate and average curvature of moving
trajectories.

Fig. 5. The performance of DRL methods after increasing the maximum
moving speed of the robot in different scenarios.

Additionally, we compare the performance of PathRL with
TEB algorithm in 3D gazebo environments. Notice that,
the DRL navigation policy is trained in previous training
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environments using PathRL, which is only tested in gazebo
environments here and we make every effort to fine-tune
the parameters of the TEB algorithm to achieve improved
performance. We test PathRL and TEB in environments of
two scenarios, i.e., static scenario and dynamic scenario. As
illustrated in Fig. 6, the testing environments of the static
scenario is equipped with 8 possible routes (i.e., global paths)
with different origins and destinations surrounding with
static obstacles. The testing environments of the dynamic
scenario contains 4 different routes surrounding with 25–35
pedestrians which are guided by the social forces model [17],
[26], [27]. Table III summarizes the performance of PathRL
and TEB in testing gazebo environments, where each method
is tested in the same environment for five times. In addition,
we use “NCOLL” to denote the average number of collisions
during the execution of the policy or algorithm in testing
environments.

Fig. 6. 3D Simulation test environments and test routes.

TABLE III
COMPARING PathRL AND TEB IN 3D GAZEBO ENVIRONMENTS

Scenarios Method SUCC(%)↑ NCOLL↓ TIME(s)↓

Static Scenario PathRL 0.900 3 65.326
TEB 0.825 5 77.368

Dynamic Scenario PathRL 0.850 5 76.331
TEB 0.750 8 79.606

2) Ablation study: The input of DRL navigation po-
sition consists three consecutive state frames. In PathRL,
there are two alternative considerations of “consecutive”,
i.e., i) sensor-based three consecutive frames, where s⃗t =
(st−2, st−1, st); ii) path-based three consecutive frames,
where s⃗t = (st−(τ1+τ2), st−τ1 , st). Notice that, path-based
consecutive frames have greater time intervals. The path-
based frames introduces information for a longer span of
time, which can benefit robot collision avoidance in dynamic
scenarios and ensure the smooth transition between adjacent
paths. To evaluate the advantage of path-based consecu-
tive frames, we consider following ablation experiments.
Specifically, we compare the performance of our design
with sensor-based three consecutive frames in a dynamic
scenario. As shown in Table IV, the design of path-based
three consecutive frames achieves a higher success rate and
smoother driving trajectory than the design of sensor-based
three consecutive frames, with slight larger values of “LEN”
and “TIME”.

TABLE IV
PERFORMANCE OF DIFFERENT STATE INPUT

Setting SUCC(%)↑ CUR↓ LEN(m)↓ TIME(s)↓
path-based frames 0.889 0.993 8.758 12.632

sensor-based frames 0.837 1.469 7.905 11.590

Our experiments show that the rstraight term in the
reward function plays an important role in improving the

experimental results and guaranteeing the smooth transition.
On the one hand, without the rstraight constraint, the robot
would twist during its movement, resulting in an uneven
driving trajectory. On the other hand, the inclusion of the
rstraight term also results a significant improvement of the
navigation performance. Table V summarizes the ablation
study.

TABLE V
PERFORMANCE OF DIFFERENT REWARD FUNCTION SETTINGS

Scenarios Rewards SUCC(%)↑ CUR↓ LEN(m)↓ TIME(s)↓
Static Scenario
(24 Obstacles)

PathRL 0.968 0.772 5.281 8.249
PathRL w.o. rstraight 0.936 2.014 7.227 11.460

Dynamic Scenario
(4 Obstacles & 4 Pedestrians)

PathRL 0.889 0.904 8.758 12.632
PathRL w.o. rstraight 0.847 2.461 9.408 15.079

B. Deploy to real-world Ackermann steering robot

We deploy the trained DRL policy to a real-world Ack-
ermann steering robot to test its performance in real-world
static and dynamic environments for collision avoidance. We
use Simultaneous Localization and Mapping (SLAM) [28]
technology for mapping and localization.

As shown in Fig. 7, the platform for the Ackermann
steering robot is based on Agilex hunter2.0 chassis and uses
a 32-line 3D laser sensor. In addition, the robot is equipped
with an RTX 3090 as a computing unit. The size of the robot,
length × width × height, is 0.95m × 0.75m × 1.45m. Our
experiments show that the robot can successfully avoid static
and dynamic obstacles and complete navigation tasks. More
illustrations of the performance of the robot are shown in
our demonstration video.

Fig. 7. The robot and trajectories of the robot in the test environments.

V. CONCLUSIONS

In this paper, we present an end-to-end path generation
method without any expert prior knowledge, PathRL, for
robot collision avoidance using DRL. We diminish the di-
mension of the policy space by decreasing the selection
of longitudinal coordinate values for control points. By
utilizing interpolation curves, we generate smoother paths.
By employing three consecutive path-based frames and re-
ward function constraints, we guarantee a smooth transition.
Additionally, we utilize curriculum learning to expedite the
training process and acquire a more robust navigation policy.

Comparing with DRL-based navigation methods that di-
rectly output low-level control commands, PathRL achieves
fewer changes of driving trajectory curvature and less varia-
tion in angular rotation without sacrificing the success rate.
Moreover, PathRL is more robust for the differences between
the simulation model and the real-world robot platform, as
it provides the decoupling between the planning and the
control modules. In a variety of challenging scenarios in
both simulation and the real world, PathRL achieves the nice
navigation performance.
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