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Abstract— Models with fewer parameters are necessary for
the neural control of memory-limited, performant robots. Find-
ing these smaller neural network architectures can be time-
consuming. We propose HyperPPQO, an on-policy reinforcement
learning algorithm that utilizes graph hypernetworks to es-
timate the weights of multiple neural architectures simulta-
neously. Our method estimates weights for networks that are
much smaller than those in common-use networks yet encode
highly performant policies. We obtain multiple trained policies
at the same time while maintaining sample efficiency and
provide the user the choice of picking a network architecture
that satisfies their computational constraints. We show that our
method scales well - more training resources produce faster con-
vergence to higher-performing architectures. We demonstrate
that the neural policies estimated by HyperPPO are capable
of decentralized control of a Crazyflie2.1 quadrotor. Website:
https://sites.google.com/usc.edu/hyperppo

I. INTRODUCTION

A common practice in robot learning (particularly deep
reinforcement learning) is to fix a network size and architec-
ture and train it to approximate the near-optimum policy for
a given task. For locomotion tasks with only proprioceptive
sensing, networks of ~ 256 neurons and ~ 3 layers are
commonly employed [1], while for exteroceptive sensing,
the configuration of the network varies with the data modal-
ity [2]. For tasks that require the neural network controller to
be deployed onto a real robot, especially one with memory
and computational constraints such as the Crazyflie2.1, with
which we experiment here (192Kb of onboard RAM) [3],
the choice of network size and architecture is of paramount
importance.

There has been significant recent progress in neural archi-
tecture search (NAS) [4]. However, this has not focused on
applications to neural robotic control. The problem of finding
small yet performant neural networks for robot control is
further exacerbated by the fact that performance and size
of neural networks are not directly correlated [5]. Here, we
build on the approach in [5] and present a method (Figure 1)
that trains thousands of architecturally unique neural control
policies simultaneously. We give the user the ability to
choose an architecture that fits within their computation con-
straints and meets their performance requirements. We note
that post-training, the weights for any chosen architecture
can be estimated in one forward pass of our trained model.
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Fig. 1: For a given task and a large architecture search space,
HyperPPO learns to estimate weights for multiple architec-
tures simultaneously. The user can choose an architecture
based on their performance requirements and computational
constraints from the set of learned policies.
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Contributions: The method proposed in [5] is off-policy.
Such methods tend to be sample-efficient yet time-inefficient
in training (when one measures wall-clock training time).
Here we present an on-policy method (HyperPPO) that
simultaneously produces thousands of policies, each with a
unique architecture. HyperPPO has sample efficiency similar
to one training run of regular proximal policy optimization
(PPO) and results in unique performant policies for each
architecture. We propose two versions of HyperPPO: with
vectorized standard deviations (HyperPPO-VSD), suitable
for the setting when training data are abundant and a fast
simulator is available, and with common standard deviation
(HyperPPO-CSD), suitable in the setting when gathering
data is harder. We analyze and ablate the trade-offs of each
version. We benchmark HyperPPO-VSD on GPU acceler-
ated environments and HyperPPO-CSD on the quadrotor
simulator, QuadSwarm [6]. We show that small networks
estimated by HyperPPO-VSD are capable of outperforming
the same networks obtained by training with regular PPO.
We also show that the weights estimated by HyperPPO-
CSD for a tiny neural network (just one hidden layer with 4
neurons) can be successfully deployed on a Crazyflie2.1 for
autonomous flight control.

II. RELATED WORK
A. Proximal Policy Optimization (PPO)

PPO is a widely adopted on-policy learning algorithm [7].
As opposed to off-policy learning algorithms, PPO provides
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separate loops for sample collection and training. This sep-
aration allows for massive parallelization, which provides
trained policies more quickly. Further, PPO has been shown
to have better stability. The governing equations of PPO are
as follows.
(o) = T elod
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r4(0) is the importance sampling ratio function between
the policy that is used to collect data and the k’th version
of the policy. V™ (s;) is the value function estimated by
the critic for the policy 7y at the state s;.The generalized
advantage estimate is given by AT?. Finally, Ly, (0) is the
clipped loss objective.

Off-policy methods tend to be slower than on-policy meth-
ods, as the latter can be optimized easily. Further, on-policy
methods have fewer hyperparameters and can have higher
convergence stability if we have sufficient environment in-
stances [8]. Optimizations needed to improve the perfor-
mance of PPO are documented in [9]. A benefit of using PPO
is the ability to scale with more computational resources.
The availability of highly parallelized environments [10] and
GPU-based physics engines [11], [12], have been shown
to work well with PPO [13], [10]. For exploration, PPO
generally samples its actions from a stochastic policy. The
mean is obtained as the output from a parameterized state-
conditioned network. The standard deviation is obtained
either with another state-conditioned network or is simply
characterized as a (non-state-conditioned) array whose values
are directly modified during training. Here, we will consider
the later version.

B. Neural Architecture Search

Neural architecture search [4] is the process of searching
for an optimal neural architecture for a given task. While
reinforcement learning has been used for NAS [14], the use
of NAS for reinforcement learning-based policies is still an
under-explored area. NAS has tremendous opportunities in
robotic control as on-board compute size poses an architec-
ture search constraint.

Differentiable Architecture Search (DARTS) [15] is a
machine learning technique used to automate the process of
finding optimal neural network architectures for tasks by in-
troducing a continuous relaxation of the discrete architecture
space, allowing gradient-based optimization methods to be
used. In [16] DARTS was used for reinforcement learning
policies. In [17] a differentiable approach was used for
architecture search for robotic learning - the first to deploy
a NAS-based neural controller on a robot. Efficient Neural
Architecture Search (ENAS) [14] optimizes the architecture
search process by sharing parameters across child models,
reducing the computational overhead of evaluating multiple
architectures. [18] and [19] utilize ENAS to find the best-
performing architecture for RL tasks.

Another family of methods in NAS is one-Shot Model Ar-
chitecture Search through Hypernetworks (SMASH) [20]. A
primary network (hypernetwork [21]) is trained to estimate
the optimal weights for a variable architecture secondary net-
work. Once this hypernetwork is trained, the optimal weights
for all architectures in a search space can be estimated, and
the one with the best objective can be chosen. The idea of
Graph Hypernetworks (GHN) was introduced in [22]. The
computational graph of an architecture is provided as input,
and common message-passing techniques akin to those found
in GNNs are used to generate the weights of that architecture
as its output. GHN benchmarking against other DARTS and
ENAS methods shows that it only uses a fraction of the
search cost associated with other NAS methods. Following
this [23] introduces GHN2, which employs a gated graph
network for better generalization of the hypernetwork. Hy-
pernetworks have been studied for learning dynamics [24],
continual learning [25], and online policy adaptation [26],
but their application for variable policy architectures remains
under-studied.

[5] introduced Graph Hyper Policies (GHP) that utilized
a GHN to estimate the weights of robotic policies for
manipulation and locomotion. This was done using off-policy
reinforcement learning, specifically, Soft Actor critic [27]
for locomotion and Hindsight Experience Replay[28] with
Deep deterministic policy gradients [29] for manipulation.
For a given architecture graph representation of a network
g, this network, hg, can estimate the policy m, = hg(g),
where the estimated weights are ¢. It was also shown in [5]
that directly estimated weights of smaller policies were more
performant than policies of the same architecture obtained
by behavior cloning based distillation methods. Since these
methods are off-policy, they are extremely sample efficient
and can learn to estimate weights for multiple policies with
the same number of samples as it would be to learn for
a single architecture. A drawback for this method though
is that it is not time efficient. As noted in the paper,
this method had a ~ 5x training time increase. This can
amount to a large amount of time considering that off-policy
methods are already time inefficient as compared to on-
policy methods. Further, this method does not scale well
with more compute resources as data collection is not a
bottleneck for Q learning. From a constraint architecture
search point of view, searching for architectures for robotic
control, hypernetwork-based methods are an alluring option
as having multiple options during deployment would reduce
experimentation time drastically.

C. Deep Reinforcement Learning for Quadrotor Control

There is significant recent work in the control of quadro-
tors with direct rotor thrusts by using deep reinforcement
learning (DRL). [30] investigates stabilizing a quadrotor
with hash initialization, and a neural network policy with
two hidden layers with 64 neurons in each layer. [31] can
train control policies with minimal prior knowledge about a
quadrotor’s dynamics parameters and can transfer a single
control policy to multiple quadrotor platforms with two
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hidden layers with 64 neurons in each layer. [32] uses model-
based DRL for the hover control of a quadrotor (up to
6 seconds with 3 minutes of training data with 2 hidden
layers with 250 neurons in each layer). [33] proposes control
policies that can achieve 60 km/h on a physical quadrotor by
using 2 hidden layers with 128 neurons in each layer. [34]
and [35] use DRL to design decentralized control policies
that can fly quadrotor swarms in various scenarios with
significant collision avoidance ability in the real world with
two encoders, both consisting of 2 hidden layers, with only
16 and 8 neurons, respectively.

For agile tasks, it is desirable for neural network inference
to have lower latency than sensing. This can become an issue
when the sensing modality is complex (such as vision) or
goal conditioning needs a larger encoder (such as language).
For agile flight control of a quadrotor, [36] utilize a Re-
alSense D435i camera for depth sensing, which runs at 30
Hz while their network inference on an onboard NVIDIA
Jetson TX2 runs at 25 Hz.

III. METHOD

A. Multi Architecture Proximal Policy Optimization

The method proposed in [5] is off-policy. Such methods
tend to be sample efficient, yet time-inefficient in training.
To find an on-policy version of [5], as a first cut, we ran
PPO where the policy is replaced with a graph hyper policy
estimating policies for randomly sampled architectures, on
the halfcheetah environment [37]. This setup is similar to
[5] but with PPO instead of Soft Actor Critic [27]. As the
model trained, we evaluated it on a fixed set of architectures.
We observed that for all architectures, the policies estimated
by the graph hyper policy reach the same reward and collapse
to a single policy. This is because PPO, being an on-policy
algorithm, cannot effectively use data obtained from one
architecture to estimate weights for a different architecture.
This becomes evident on inspecting the equations for PPO
from II-A.

Let us denote the entire search space of architectures by U.
Let the sampled architectures from this space be g ~ U. In
order to use the PPO algorithm for multi-architecture train-
ing, we need to substitute 7y < hg(g) in these equations,
where hyg is a graph hypernetwork parameterized by 6, which
estimates the weights for architecture g. Doing so results in
the following equations:
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We see that the importance sampling ratio, advantage
estimate, and the value function, are all now conditioned
on the current policy’s architecture. Since the architecture
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Fig. 2: Architecture and State concatenated Markov Decision
Process. By augmenting the architecture into the MDP state
space, we can train RL agents with varying architecture.

remains g while estimating all the above values, no mixing
of data between architectures must happen.

B. Intuition

Another way of visualizing the above formulation is by
restructuring the underlying Markov Decision Process. We
concatenate the randomly sampled architecture graph into
the state variable. As shown in figure 2, this allows us to
reformulate the policy as the actions sampled from the policy
estimated by the hypernetwork for that given combination
of graph and state variables. The concatenation of the state
and architecture can be seen while estimating the GAE
fl?e(g ), specifically while estimating the state value function
Ve (s4,g). Practically, we condition the critic network of
PPO with state and architecture and make sure we use the
same architecture’s data for the Bellman update.

C. Algorithm

Based on these changes we propose HyperPPO. As shown
in Algorithm 1, for a given task we start with a predefined
architecture space U. For every iteration of the algorithm,
we sample architecture g; from the search space. For this
work, we restrict the search to the architecture space of Multi
Layer Perceptrons (MLPs). Our architecture search space U
consists of all possible MLPs with four or fewer layers. that
can be constructed with the number of neurons in each layer
being {4, 8, 16, 32, 64, 128, 256}. This gives us 2800 unique
architectures. We use the same graph hyper policy model
as in [5] and estimate policy 7y, for that architecture. We
then collect data {Dy}; using this policy. Using this data
we estimate GAE flfe’“ (99 4nd the ratio function (0, g;).
This process can be parallelized for a meta batch size of
architectures for faster computation. Using these estimates,
we then use SGD to optimize the objective Ly, over the
hypernetwork weights 6.

Just like regular PPO for continuous action spaces, actions
are sampled from a Gaussian distribution. The mean of
the distribution is obtained using the policies estimated
by the graph hyper network. For standard deviations, we
propose two approaches, which lead to two versions of our

10823



method. HyperPPO-VSD (Vectorized Standard Deviations)
constructs a vector of standard deviation arrays, one for each
architecture. This enables independent exploration for all ar-
chitectures. HyperPPO-CSD (Common Standard Deviation)
uses a common standard deviation array for all architectures.
This reduces computation and converges faster.

For our method, we utilize vectorized environments. These
environments enable parallelization and allow us to sample
data for different architectures simultaneously. The larger the
number of environments we can run in parallel the better our
estimates should be for our objective functions.

Algorithm 1 HyperPPO

1: input: Initial Hypernetwork parameters 6.

2: input: Clipping threshold e.

3: input: Architecture Search space U, Meta-batch size M.
4: for k=1,2,... do

5 fori=1,2,...M do

6 Sample architecture g; ~ U
7: Estimate Policies g, < hg, (¢:)
8
9

Collect trajectories {Dy}; using policy 7,

Estimate GAE A[”* )

10: Estimate importance sampling ratio (6, g;)
11: end for

12: Compute policy update

13: Or+1 = argmazeLe, (6)

14: by taking K steps of minibatch SGD (via Adam)
15: end for

IV. RESULTS AND DISCUSSION

To implement our method, we use the Sample Factory [38]
package. Its efficient design enables us to parallelize data
collection and train Graph Hyper Policies quickly. The
experiments are carried out on standard locomotion tasks
that have been implemented on Brax [11] and Mujoco [39].
We also train on the quadrotor simulator described in
QuadSwarm [6]. All experiments were run 4 seeds at a time
on an AWS g4dn.12xlarge instance with 48vCPU, 4 Telsa
T4 GPUs and 192 GB RAM.

A. Ablations

For our ablations, we train on the Humanoid task in
Brax for 1 billion steps for 8 seeds. We simulated 4096
environment instances in parallel and ran for approximately
200 minutes. Every few steps, we evaluate the performance
of policies estimated by the GHP for every architecture in
the search space. To estimate the quality of all architectures
we find the average reward across all architectures.

1) Vectorized Standard deviations: First, we analyze the
performance of HyperPPO with VSD and CSD. Figure 4
shows this for both CSD and VSD. We see that with CSD,
the average reward grows faster initially. This is because
the standard deviation converges faster with CSD. But with
more training, we see that VSD eventually achieves a larger
reward. As mentioned in IV-A.1, we believe this is because
individual exploration for each architecture can eventually

obtain better performance. Therefore we suggest using the
VSD when massively parallel environments such as Brax or
IsaacGym [12] are available.

2) Architecture Sampling: During experimentation, we
first implemented the uniform architecture sampling as de-
scribed in [5]. On further analysis, we found that the graph
hyper policy has a learning bias toward deeper network
architectures. We believe this is because there are fewer
shallower architectures than deeper ones. To compensate
for this effect, we sample architectures with their sampling
probability inversely proportional to the number of layers.
We shall call this biased sampling.

We run HyperPPO-VSD with both modes of architecture
sampling. From figure 4, we can see that with biased
sampling, we obtain better performance. Further, smaller
networks gained a bigger performance boost with biased
sampling, since more of these were considered during train-
ing. We see similar performance differences between these
ablations in the Brax HalfCheetah task as well. Therefore,
for all other experiments in this paper, we set the architecture
sampling mode to biased sampling.

B. Scaling HyperPPO

Here, we show that HyperPPO can scale up to provide
better results with more computation. We train HyperPPO-
CSD on the Mujoco halfcheetah task for 5 hours while
varying the number of environment instances from which
data are sampled. We run this experiment over 5 seeds, and
at the end of the experiment, we evaluate every architecture
in the search space. Figure 5 shows us the distribution of
performance over all unique architecture policies estimated
by GHP. This plot is similar to those used to evaluate policy
data sets in [40], [41]. The x-axis is the policy’s accumulated
reward, while the y-axis represents the number of policies
with reward greater than x. N represents the number of envi-
ronment instances from which data are sampled. We can see
that scaling up the algorithm with more parallel environments
in HyperPPO with more computation can provide a better
collection of policies over the same time.

C. Brax benchmarks

Having shown that our method scales with performance,
we benchmark HyperPPO-VSD on GPU-accelerated Brax
environments. We use 4 locomotion tasks, namely, hu-
manoid, ant, halfcheetah, and walker2d. On each task, we
train for 1 billion state transition steps and show results
across 8 seeds. During training, every few steps, we evaluate
the GHP on every architecture in the search space. From
this evaluation, we identify architectures that provided the
highest reward, the smallest architectures that provided 90%
of the highest reward, and the smallest architectures that
provided 80% of the highest reward. We call these max,
90%, and 80% architectures respectively. As a baseline,
we train regular PPO also implemented on Sample Factory
with the same hyperparameters, with 3 hidden layers with
256 neurons each. This is a common choice of model
architecture for these locomotion tasks. Figure 3 shows the
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Fig. 4: Ablations. Average reward across all architectures
during training. Left: Action Standard Deviation; Right:
Architecture Sampling.

results of this experiment. For each task, the left plot depicts
rewards attained by the max, 90%, 80% architectures, and the
baseline. The right plot shows the size of these architectures
on a log scale. For all tasks, we see that the number of
parameters required to achieve 90% and 80% of maximum
performance reduces considerably.

Further, by taking the average reward over all seeds,
we identify 80% architectures for each task as (64) for
halfcheetah, (64) for walker2d, (32) for humanoid, and (64)
for Ant. These are all single hidden layer architectures
with either 64 or 32 neurons in them. We trained policies
with these architectures with regular PPO and compared
their performance with policies of the same architectures
estimated by the GHP in HyperPPO-VSD. Table I shows
that the policies estimated by the GHP obtain considerably

2500 1
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Fig. 5: Scaling HyperPPO: The X-axis corresponds to a
total reward, and the Y axis shows the number of architec-
tures that at least achieves x reward. With more environment
instances, the performance of all architectures increases. N
represents the number of parallel environment instances.

more reward on the Halfcheetah, Walker2d, and Humanoid
tasks, while the performance is comparable on the Ant task,
figure 3 suggests that the model has not converged for Ant.

These results show that HyperPPO-VSD can provide mul-
tiple architecture policies with the same sample complexity
as a single PPO run, and further provides higher perform-
ing smaller policies than its regular PPO counterparts. We
believe this increase in performance has two reasons: (a)
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80%

Task Architecture PPO (x102) HyperPPO (x102)
Halfcheetah [64] 80.30 + 49.23 144.80 + 13.36
Walker2D [64] 19.84 £7.18 58.50 + 6.64
Humanoid [32] 182.85 +25.35 | 207.69 £+ 49.12

Ant [64] 71.88 +11.46 70.49 £+ 8.85

TABLE I: Comparison of small policies

Better exploration: The policies are now more stochastic
with HyperPPO-VSD probabilistically choosing different
action distributions during data collection. (b) Distillation
between architectures: Gradients to the hypernetwork from
data of larger architectures can improve policies estimated
for smaller architectures.

D. Quadrotor Drones

We train HyperPPO-CSD on the Quadrotor environment
designed for a Crazyflie 2.1, QuadSwarm [6]. The Crazyflie
2.1 is a severely compute-constrained quadrotor with an
onboard microcontroller running at 168MHz with 168 Kb
RAM. We train the control policy in simulation on a
mixture of single drone goal-based scenarios [34] (static
goal, dynamic goal, random 3D Lissajous trajectory tracking,
and random 3D Bezier curve trajectory tracking), for 500
million state transition steps, and we zero-shot transfer our
control policy to the physical Crazyflie quadrotor. We test our
control policies on the Bezier curve trajectory tracking on the
physical Crazyflie quadrotor, one of the most challenging
scenarios in the simulation, to showcase the flying perfor-
mance of our control policy. As a baseline, we train a policy
with architecture (512,512) (i.e., two hidden layers with 512
neurons each), with the same hyperparameters and scenarios.
Similar to Figure 3, we analyze the training performance
in Figure 6. We see that the best-performing architecture
estimated with HyperPPO-CSD achieves more reward than
the baseline, whose performance is comparable to that of
80% architectures. Across seeds, for this task, we identified
the 80% architecture as (4) (i.e., a single hidden layer 4
neuron network). This small policy was estimated at the end
of training and deployed on the Crazyflie. For evaluating
the physical deployment performance, we generate a random
3D Bezier curve as the desired trajectory and use the neural
network to control rotor thrusts, to track this trajectory. From
Figure 7 we see that the quadrotor is capable of tracking
the desired trajectory with a HyperPPO estimated neural
network, with high success rates. If we wanted to test a
different architecture for physical deployment, instead of
retraining a new network from scratch, we can estimate the
weights for that architecture with one inference step of the
trained GHP model.

While we maintain sample efficiency, we note that a
limitation of our method is a ~ 2-3x training time increase
as compared to regular PPO. At present, we limit ourselves
to Multi-Layer Perceptrons, however, we plan to experi-
ment with architecture search spaces with different types of
networks such as CNNs, LSTM, and Transformers in the
future. Finally, identifying the performance of a candidate
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Fig. 7: Evaluating a single layer 4 neuron network estimated
by HyperPPO-CSD on the Crazyflie2.1. Left: The desired
trajectory created with a random bezier curve. Right: Actual
trajectory of the drone. Top: Frames stacks of the actual
footage of drone flight.

architecture involves estimating it with the GHP and eval-
vating it with a rollout. Identifying the desired architecture
algorithmically during training is a possible future avenue.

V. CONCLUSION AND FUTURE WORK

We present HyperPPO, an on-policy algorithm that learns
multiple architecture policies simultaneously. We show that
the algorithm is fast, sample efficient, and scales with added
computation. We provide two versions: HyperPPO-VSD,
which can be used when data collection is accelerated;
and HyperPPO-CSD, which can be used when computation
is limited and for faster convergence. We show that on
Brax benchmarks, HyperPPO-VSD can quickly estimate
thousands of working policy architectures, and the estimated
small policies outperform PPO on most tasks. Finally, we
show that small policies estimated by HyperPPO-CSD can
be successfully deployed on an actual compute-constrained
platform - the Crazyflie - for neural control.
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