
Gen2Sim: Scaling up Robot Learning in Simulation
with Generative Models

Pushkal Katara∗, Zhou Xian∗, Katerina Fragkiadaki

Carnegie Mellon University

https://gen2sim.github.io/

Abstract— Generalist robot manipulators need to learn a
wide variety of manipulation skills across diverse environments.
Current robot training pipelines rely on humans to provide
kinesthetic demonstrations or to program simulation environ-
ments and to code up reward functions for reinforcement
learning. Such human involvement is an important bottleneck
towards scaling up robot learning across diverse tasks and
environments. We propose Generation to Simulation (Gen2Sim),
a method for scaling up robot skill learning in simulation by
automating generation of 3D assets, task descriptions, task
decompositions and reward functions using large pre-trained
generative models of language and vision. We generate 3D
assets for simulation by lifting open-world 2D object-centric
images to 3D using image diffusion models and querying LLMs
to determine plausible physics parameters. Given URDF files
of generated and human-developed assets, we chain-of-thought
prompt LLMs to map these to relevant task descriptions,
temporal decompositions, and corresponding python reward
functions for reinforcement learning. We show Gen2Sim suc-
ceeds in learning policies for diverse long horizon tasks, where
reinforcement learning with non temporally decomposed re-
ward functions fails. Gen2Sim provides a viable path for scaling
up reinforcement learning for robot manipulators in simulation,
both by diversifying and expanding task and environment
development, and by facilitating the discovery of reinforcement-
learned behaviors through temporal task decomposition in RL.
Our work contributes hundreds of simulated assets, tasks and
demonstrations, taking a step towards fully autonomous robotic
manipulation skill acquisition in simulation.

I. INTRODUCTION

Scaling up training data has been a driving force behind
the recent revolutions in language modeling [1], image
understanding [2], speech recognition [3], image generation
[4], to name a few. This begs the question: can we scale
up robot data to enable a similar revolution in robotic skill
learning? One way to scale robot data is in the real world,
by having multiple robots explore [5] or by having humans
provide kinesthetic demonstrations [6], [7], [8]. This is a
promising direction; however, safety concerns and wear and
tear of the robots hinder robot exploration in the real-world,
and collecting kinesthetic demonstrations scales poorly as it
is time-consuming and labor-intensive [8]. Another way to
scale robot data is in simulation, by developing simulated
environments, defining tasks and their reward functions, and

∗ Equal contribution.
The authors are with School of Computer Science, Carnegie Mellon

University <pkatara, xianz1, katef>@cs.cmu.edu

training robot policies with reinforcement learning, augment-
ing visuals and physics parameters to facilitate transfer of
policies to the real world [9]. Such sim2real paradigm has
seen recent successes in robot locomotion [10], [11], [12],
[13], object re-orientation [14], [15], and drone flight [16].
These examples, though very important and exciting, are still
fairly isolated.

A central bottleneck towards scaling up simulation envi-
ronments and tasks is the laborious manual effort needed for
developing the visuals and physics of assets, their spatial
arrangement and configurations, the development of task
definition and reward functions, or the collection of pro-
grammatic demonstrations. Tremendous resources have been
invested in developing simulators for autonomous vehicles
[17], warehouse robots, articulated objects [18], home envi-
ronments [19], [20], [21], etc., many of which are propri-
etary and not open-sourced. Given these considerations, an
important question naturally arises: How can we minimize
manual effort in simulation development for diverse robotic
skill learning?

In this paper, we explore automating the development of
simulation environments, manipulation tasks and rewards for
robot skill learning, by building upon latest advances in large
pre-trained generative models of images and language. Our
system strives to automate all stages of robot learning: from
generating 3D assets, textures, and physics parameters, to
generating task descriptions and reward functions, leading
to automated skill learning in diverse scenarios, as shown
in Figure 1. This generative pipeline was first proposed in a
recent position paper [22], described as a promising pathway
towards generating diverse data for generalist robot learning.
In this paper, we present Gen2Sim, the first attempt and
realization of such a generative paradigm. We automate 3D
object asset generation by combining image diffusion models
for 3D mesh and texture generation, and LLMs for querying
physical parameters information. We showcase how LLMs
and image generative models can diversify the appearances
and behaviors of assets by producing plausible ranges of
textures, sizes and physical parameters, achieving “intelli-
gent” domain diversification. We automate task description,
task decomposition and reward function generation by few-
shot prompting of LLMs to generate language descriptions
for semantically meaningful tasks, concerning affordances
of existing and generated 3D assets, articulated or not,

2024 IEEE International Conference on Robotics and Automation (ICRA 2024)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 6672

Fig. 1: Gen2Sim is an automated generative pipeline of
assets, tasks, task decompositions, and rewards functions for
autonomous robotic skill reinforcement learning in simula-
tion. Here we show 12 generated tasks, concerning affor-
dances of diverse types of object assets and their combina-
tions.
alongside their reward functions. Gen2Sim is able to generate
numerous object assets and task variations without any
human involvement beyond few LLM prompt designs. We
successfully train RL policies using our auto-generated tasks
and reward functions. We also demonstrate the usefulness of
our simulation-trained policies, by constructing digital-twin
environments from given real scenes, allowing a robot to
practice skills in the twin simulator and deploying it back to
the real world to execute the task.

In summary, we make the following contributions:
• We show how pre-trained generative models of images

and language can help automate 3D asset generation
and diversification, task description generation, task
decomposition and reward function generation that sup-
ports reinforcement learning of long horizon tasks in
simulation with minimal human involvement.

• We deploy our method to generate hundreds of assets,
and hundreds of manipulation tasks, their decompo-
sitions and their reward functions, for both human-
developed and automatically generated object assets.

For code, videos and qualitative video results, please visit
our project website: https://gen2sim.github.io/.

II. RELATED WORK

Large Language Models for task and motion planning
in robotics Large language models (LLMs) map instructions
to language subgoals [23], [24], [25], [26] or action programs
[27] with appropriate plan-like or program-like prompts.
LLMs trained from Internet-scale text have shown impressive
zero-shot reasoning capabilities for a variety of downstream

language tasks [1] when prompted appropriately, without any
weight fine-tuning [28], [29], [30], [31]. LLMs were used
to generate task curricula and predict skills to execute in
Minecraft worlds [32], [33], [34] Following the seminal work
of Code as Policies, many works map language to programs
over given skills [35] or hand-designed motion planners
[36]. Our work instead maps task descriptions into task
decompositions and reward functions, to guide reinforcement
learning in simulation, to discover behaviours that achieve
the generated tasks. Work of [37] also uses language for
predicting reward functions for robot locomotion, but does
not consider task generation and decomposition or interac-
tion with objects. Our work is the first to use LLMs for
task decomposition and reward generation, as well as asset
generation.

Automating 3D asset creation with generative models
The traditional process of creating 3D assets typically in-
volves multiple labor-intensive stages, including geometry
modeling, shape baking, UV mapping, material creation,
texturing and physics parameter estimation, where different
software tools and the expertise of skilled artists are often
required. It is thus desirable to automate 3D asset generation
to automatically generate high-quality assets that support
realistic rendering under arbitrary views and have plausible
physical behaviours during force application and contacts.
The lack of available 3D data and the abundance of 2D image
data have stimulated interest in learning 3D models from
2D image generators [38], [39]. The availability of strong
2D image generative models based on diffusion led to high-
quality 3D models from text descriptions [40], [41], [42] or
single 2D images using the diffusion model as a 2D prior
[43], [44], [45]. In this work, instead of a text-conditioned
model, we use a view and relative pose conditioned image
generative model, which we found to provide better prior
for score distillation. Some methods attempt to use videos of
assets and differentiable simulations to estimate their physics
parameters and/or adapt the simulation environment, in an
attempt to close the simulation to reality gap [46], [47], [48].
Our effort is complementary to these works.

Procedural demonstration generation using symbolic
planners Many recent works procedurally generate scenes
and demonstration trajectories using planners that have ac-
cess to privileged information to solve the task, and distill
the demonstration solutions into learning-based policies that
operate directly from pixel or point-cloud input [49], [50],
[51]. Task and motion planners [52], [53], [54], [55] use
predefined symbolic rules and known dynamics models, and
infer discrete task plans given instruction with lookahead
logic search [53], [56], [52], [53], [54], [55]. These methods
predominantly rely on manually-specified symbolic transi-
tion rules, planning domains, and grounding, which limits
their applicability. Indeed, works of [50], [51] demonstrate
their results on relatively simple multi-object box stacking
tasks. Scene procedural generation in the aforementioned
works [50], [51], [57] entails randomizing locations and
number of given 3D models under weak supervision from a
human that defines the task and the possible location candi-

6673

Fig. 2: The Gen2Sim components. Gen2Sim generates 3d assets by lifting object-centric 2D images to 3D. It then uses
both generated assets and assets obtained from other publicly available datasets to populate scene environments. Afterwards,
it queries LLMs to generate meaningful task descriptions for the assembled scenes, as well as decompose the generated task
descriptions to sub-tasks and their reward functions.

dates. In contrast, we unleash the common sense knowledge
and reasoning capabilities provided by LLMs and use them
to suggest task descriptions, task decompositions, and reward
functions. We then use reinforcement learning to discover
solution trajectories instead of TAMP-based search.

Simulation environments for robotic skill learning In
recent years, improving simulators for robot manipulation
has attracted increasingly more attention. Many robotic ma-
nipulation environments and benchmarks [58], [59], [18]
are built on top of either PyBullet [60] or MuJoCo [61]
as their underlying physics engines, which mainly support
rigid-body manipulation [62], [63], [64], [65], [66]. Recently,
environments supporting soft-body manipulation ([67], [18],
[68], [69], [70], [71]) provide capabilities for simulating
deformable robots, objects and fluids. Our automated asset
and task generation are not tied to any specific simulation
platforms and can be used with any of them.

III. GEN2SIM

Gen2Sim generates 3D assets from object-centric im-
ages using image diffusion models and predicts physical
parameters for them using LLMs (Section III-A). It then
prompts LLMs to generate language task descriptions and
corresponding reward functions for each generated or human-
developed asset, suitable to their affordances (Section III-B).
Finally, we train RL policies in the generated environments
using the generated reward functions. We additionally show
the applicability of the simulation-trained policy by con-
structing digital twin environment in simulation, and deploy
the trained trajectory in the real world (Section III-C). See
Figure 2 for our method overview.

A. 3D Asset Generation

Gen2Sim automates 3D asset generation by mapping 2D
images of objects to textured 3D meshes with plausible
physics parameters. The images can be 1) real images

taken in the robot’s environment, 2) real images provided
by Google search under relevant category names, e.g.,
“avocado”, or 3) images generated by pre-trained text-
conditioned diffusion models, such as stable diffusion [72],
prompted appropriately to generate uncluttered images of the
relevant objects, e.g., “an image of an individual avocado”.
We query GPT-4 [73] for a list of object categories relevant
for manipulation tasks to search online for or to generate,
instead of manually designing it. Please, visit our project site
for a detailed list of the objects we generated. Given a real or
generated 2D image of an object, we lift it to a 3D model by
minimizing re-reprojection error and maximizing likelihood
of its image renderings using a diffusion model [40], [41].
We provide background on image diffusion models below,
before we describe our 3D model fitting approach.

1) Image diffusion models: A diffusion model learns to
model a probability distribution p(x) by inverting a process
that gradually adds noise to the image x. The diffusion pro-
cess is associated with a variance schedule {βt ∈ (0, 1)}Tt=1,
which defines how much noise is added at each time step.
The noisy version of sample x at time t can then be written
xt =

√
ᾱtx +

√
1− ᾱtϵ where ϵ ∼ N (0,1), is a sample

from a Gaussian distribution (with the same dimensionality
as x), αt = 1 − βt, and ᾱt =

∏t
i=1 αi. One then learns

a denoising neural network ϵ̂ = ϵϕ(xt; t) that takes as
input the noisy image xt and the noise level t and tries
to predict the noise component ϵ. Diffusion models can be
easily extended to draw samples from a distribution p(x|c)
conditioned on a prompt c, where c can be a text description,
a camera pose, and image semantic map, etc [4], [74], [75].
Conditioning on the prompt can be done by adding c as
an additional input of the network ϵϕ. For 3D lifting, we
build on Zero-1-to-3 [76], a diffusion model for novel object
view synthesis that conditions on an image view of an object
and a relative camera rotation around the object to generate

6674

plausible images for the target object viewpoint, c = [I1, π].
It is trained on a large collection D′ = {(xi, ci)}Ni=1 of
images paired with views and relative camera orientations
as conditioning prompt by minimizing the loss:

Ldiff(ϕ;D′) = 1
|D′|

∑
xi,ci∈D′

||ϵϕ(
√
ᾱtx

i+
√
1− ᾱtϵ, ci, t)−ϵ||2.

2) Image-to-3D Mesh using Score Distillation Sampling:
Given an image and relative camera pose 2D diffusion model
p(I|[I0, π]), we extract from it a 3D rendition of the input
image I0, represented by a differential 3D representation
using Score Distillation Sampling (SDS) [40], [77]. We do
so by randomly sampling a camera pose π, rendering a
corresponding view Iπ , assessing the likelihood of the view
based on a diffusion model p(Iπ|[I0, π]), and updating the
differentiable 3D representation to increase the likelihood
of the generated view based on the model. Specifically, the
diffusion model is frozen and the 3D model is updated as:

∇(θ)LSDS(θ;π, c, t) =
Et,ϵ[w(t)(ϵϕ(atI + σtϵ; t, c)− ϵ) · ∇θI],

where I = R(θ, π) is the image rendered from a given
viewpoint π. The loss we use to backpropagate to the 3D
model parameters θ includes an image re-projection loss
for the camera viewpoint of the input image, and score
distillation for the other views, using a pre-trained view and
pose conditioned image diffusion model of [76] to measure
2D image likelihood. We use a two-stage fitting, wherein
the first stage an instantNGP NeRF representation [78] is
used, similar to RealFusion [43], and in the second stage
a mesh-based representation is initialized from the NeRF
and finetuned differentiably, similar to Fantasia3D [41]. More
information of our score distillation sampling can be found
in our website.

3) Texture generation: We augment the textures of our
generated assets using the method of TEXTure [79] which
iteratively edits a mesh’s texture by rendering the mesh from
different viewpoints and updating the rendered 2D images.
While domain randomization [80] randomly re-textures sim-
ulated assets, TEXTure produces diverse yet plausible texture
augmentations.

4) Generating plausible physical properties: The visual
and collision parameters of an asset are generated from the
Image-to-Mesh pipeline discussed above. To define 3D sizes
and physics parameters for the generated 3D meshes, we
query GPT-4 regarding the range of plausible width, height,
and depth for each object, and the range of its mass given
its category. We then scale the generated 3D mesh based
on the generated size range. We feed the mass and 3D mesh
information to MeshLab [81] to get the inertia matrix for the
asset. Our prompts for querying GPT for mass and 3D object
size can be found on our website. We wrap the generated
mesh information, its semantic name, as well as the physical
parameters into URDF files to be loaded into our simulator.

B. Task Generation, Temporal Decomposition and Reward
Function Prediction

Given either generated assets or assets obtained from
publically available datasets, we prompt LLMs to generate
meaningful manipulation tasks considering their affordances,
to decompose these tasks into subtasks when possible, and
to generate reward functions for each subtask. We train
reinforcement learning policies for each (sub)task using the
generated reward functions, and then chain them together
to solve long horizon tasks. Our LLM prompts contain the
following sections:
1. Asset descriptions. We use combinations of assets we
generate using the method of Section III-A, as well as
articulated assets from PartNet Mobility [18] and GAPart-
Net dataset [82]. We populate our simulation environment
with randomly sampled assets. Then, we extract information
from the URDF files including link names, joint types
and limits using automated scripts. For example, an asset
microwave has parts [door, handle, and body], and
joint [door-joint] of type revolute with a joint posi-
tion range [0, 1]. We then describe the extracted configura-
tions of the assets to the LLM, as shown below:
The environment contains the following assets:
1. asset_name: "microwave"

part_cofiguration:
Part 1: "body"
Part 2: "door"

- link_name: "link_0"
- joint_name: "joint_0"
- joint_type: "revolute"
- limit: [0, 1]

Part 3: "handle"
- link_name: "handle_0"
- joint_name: "handlejoint_0"
- joint_type: "fixed"

2. asset_name: "cup"
part_cofiguration:

Part 1: cup
- link_name: "base"
- joint_name: "base_joint"
- joint_type: "fixed"

2. Instructions. These include function APIs that can be used
by the LLM to query the pose of the robot end-effector, as
well as different assets in the given environment:
Available APIs from the simulator are:
returns the pose of the link
get_pose_by_link_name(asset_name, link_name)
returns the pose of the robot gripper
get_robot_gripper_pose(asset_name, link_name)
returns the state of the joint
get_state_by_joint_name(asset_name, joint_name)
returns the limit of the joint
get_limits_by_joint_name(asset_name, joint_name)

Note:
1. Only use the available APIs from the simulator.
2. Generate the reward function code snippets in Python.

3. Examples of task descriptions and decompositions.
These are question-answer pairs that demonstrate task de-
scriptions and their temporal decompositions.
List meaningful manipulation tasks that can be performed
in this environment. Give subtask decomposition and the
order of execution to solve the task. Also, provide the
reward function for each subtask.

The following tasks can be performed in this environment:
1. Open the Microwave Door

6675

2. Close the Microwave Door
3. Pick Cup
4. Place Cup
5. Put the Cup in the Microwave

This task needs to be decomposed into sub-tasks:
- Open the Microwave
- Pick Cup
- Place the Cup in the Microwave

4. Examples of reward functions. These are task to reward
function pairs that present demonstrations of how tasks can
be translated to reward functions, as shown below:
Task: OpenMicrowaveDoor
Task Description: open the door of the microwave
‘‘‘
def compute_reward(env):

reward function
door_handle_pose = env.get_pose_by_link_name("
microwave", "handle_0")
gripper_pose = env.get_robot_gripper_pose()
distance_gripper_to_handle = torch.norm(
door_handle_pose - gripper_pose, dim=-1)
door_state = env.get_state_by_joint_name("microwave",
"joint_0")
cost = distance_gripper_to_handle - door_state
reward = - cost

success condition
target_door_state = env.get_limits_by_joint_name("
microwave", "joint_0")["upper"]
success = torch.abs(door_state - target_door_state) <
0.1

return reward, success
‘‘‘

For the example above, the reward function is comprised of
1) distance between the end-effector and the target part, and
2) distance between the current and the target pose of an
articulated asset, link, or joint.

We provide our prompts on our website. We show in
Section IV that our method can generalize across assets, sug-
gest diverse and plausible tasks, decomposition and reward
functions automatically, using a single in-context example in
the prompt, without any additional human involvement.

C. Sequential Reinforcement Learning for Long Horizon
Tasks

We train policies using Proximal Policy Optimization
(PPO) [83] maximizing the generated reward functions for
each subtask. We train RL for each generated subtask in
temporal order. Once policy training for a subtask converges,
we proceed to the next subtask, by sampling the initial state
of the end-effector and the environment close to the terminal
states of the previous subtask. This ensures policies can be
temporally chained upon training. Our policies are trained
per environment using privileged information of the simu-
lation state to accelerate exploration. Such learned policies
can be used as demonstration data and distilled into vision-
language transformer policies, similar to [8], [84], [85]; we
leave this for future work.

IV. EXPERIMENTS

Our experiments aim to answer the following questions:
1. Can Gen2Sim generate plausible geometry, appearance,

and physics for diverse types of objects and parts, without
human expertise and with minimal human involvement?

Fig. 3: 3D asset generation from Gen2Sim, RealFusion [43]
and Make-It-3D [44]. Gen2Sim uses a view and camera pose
conditioned image generative model during score distillation, which
helps generate more accurate 3D geometry in comparison to the
baselines.

Mass (gram) Length (cm) Width Height

Papaya 500-1000 15-20 10-15 10-15
Cucumber 200-300 15-20 5-7 5-7

Watermelon 5000-7000 30-40 20-30 20-30
Raspberry 3-5 2-3 2-3 2-3
Coconut 600-800 10-15 8-12 8-12

Corn 50-100 10-15 8-12 8-12
Pumpkin 2000-5000 20-40 20-40 20-40
Avocado 150-250 10-12 6-8 4-5

TABLE I: Size and physics parameter generated by LLMs for
a number of generated assets.

2. Can Gen2Sim generate task language goals and reward
functions for novel object categories, novel assets with
different part configurations, and a combination of multiple
assets in an environment?

3. Can the generated environments and reward function
lead to successful learning of RL policies?

A. Asset Generation
We compare our image-to-3D lifting with two baselines:
1. RealFusion [43], which uses textual inversion of [86] to

learn a word embedding for the depicted object concept in
an image, and uses text-conditioned diffusion with this text
embedding during score distillation.

2. Make-It-3D [44], which uses the same NeRF and
textured mesh two-stage fitting as Gen2Sim, but does not
use a view and pose conditioned generative model, rather a
text-based image diffusion model, similar to [40].

We show comparisons in Figure 3, with images rendered
from 4 different views. Our model generates more plausible
3D model as our image diffusion prior comes from an image
and pose-conditioned model in comparison to approaches
like Fantasia3D or RealFusion which uses text conditioning.
We show generated values for 3D sizes and mass for a
number of example objects in Table I. We see that the
common sense knowledge encoded in LLMs can produce
reasonable physical parameters.

6676

B. Automated Skill Learning

Gen2Sim generates diverse task descriptions, task decom-
positions and reward functions automatically for hundreds of
assets, with different category labels and number of joints,
given only a single in-context prompt example regarding
the task decomposition and reward function of the task
“putting a cup in a Microwave” . Then, the model can
generalize to different scenes, asset articulated structures and
task temporal lengths. We show some examples of such
generated task descriptions in Figure 1 and more on our
website. We show examples of task decompositions in Figure
2. We provide our prompts in our project website, alongside
examples of the LLM’s responses.

We learn policies that optimize LLM generated rewards
with PPO, an off-the-shelf model-free RL algorithm [83].
We make use of GPU-parallel data sampling in IsaacGym
[87] for reinforcement learning. Our robotic setup uses
a Franka Panda arm with a mobile base. It is equipped
with a parallel-jaw gripper. Our state representation for
PPO includes the robot’s joint position q ∈ R11, velocity
q̇ ∈ R11 (7-DoF arm, x and y for the mobile base and
2 extra DoFs from the gripper jaws), orientation of the
gripper r ∈ SO(3), and poses and joint configurations of
the assets present in the scene. We use position control
and at each timestep t our policy produces target gripper
pose and configurations which is converted to target robot
configurations through inverse kinematics. A low-level PID
torque controller provided by IsaacGym is used to produce
low-level joint torque commands. We can successfully learn
useful manipulation policies, and the polices are able to solve
the tasks upon convergence. We show videos of such policies
on our website.

Fig. 4: Twin environments constructed and generated tasks for
sim-to-real transfer. Left: real-world. Right: simulated.

C. Twin environment construction and sim-to-real world
transfer

In order to validate the usefulness of the policies trained
in simulation, we construct a twin simulated environment of
our lab’s real-robot setup (Figure 4). We detect, segment,
and estimate the poses of the objects in the scene. For non-
articulated assets, we use our model to lift the detected
object image to corresponding 3D models; for articulated
objects, we select the most similar asset from the [18], and
populated the simulated environment. We train RL policies in
simulation and transfer the joint space trajectory back to our
real-world setup. Our method allows successful execution
of the generated tasks. For more videos of the trained
policies and their task executions in simulation, as well as
the sim2real transfer, please refer to our website.

D. Limitations

Gen2Sim has currently the following two important points
to address towards materializing into a platform for large-
scale robot skill learning that are deployable in real-world:

1. Sim2real transfer of closed-loop policies: Our cur-
rent real-world experiments transfer open loop trajectories
optimized in the constructed twin environment. For closed-
loop policies to transfer to the real world and consume
realistic sensory input, we would need to generate large-scale
augmentations for both visual appearances and dynamics for
each task and sub-task, and then distil the state-based RL
policies to a foundational vision-language policy network.
This is a direct avenue for our future work.

2. Beyond rigid asset generation: The assets we can
currently generate are rigid or mostly rigid objects, which
do not deform significantly under external forces. For ar-
ticulated assets, we are using existing manually designed
and labelled datasets ([18], [82]). To generate articulated
objects, deformable objects and liquids, accurate fine-grained
video perception is required in combination with generative
priors to model the temporal dynamics of their geometry and
appearance. This is an exciting and challenging direction for
future work.

V. CONCLUSION

We have presented Gen2Sim, a method for automating the
development of simulation environments, tasks and reward
functions with pre-trained generative models of vision and
language. We presented methods that create and augment
geometry, textures and physics of object assets from single
images, parse URDF files of assets, generate task descrip-
tions, decompositions and reward python functions, and train
reinforcement learning policies to solve the generated long
horizon tasks. Addressing the limitations including generat-
ing diverse assets with more complex physical properties,
and transfering trained policies to real world are direct
avenues for our future work. We believe generative models
of images and language will play an important role in
automating and supersizing robot training data in simulation,
and in crossing the sim2real gap, necessary for delivering
robot generalists in the real world. Gen2Sim takes one first
step in that direction.

ACKNOWLEDGMENT

This work is supported by Sony AI, NSF award No
1849287, DARPA Machine Common Sense, an Amazon
faculty award, and an NSF CAREER award.

REFERENCES

[1] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell,
S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei,
“Language models are few-shot learners,” 2020. [Online]. Available:
https://arxiv.org/abs/2005.14165

6677

[2] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and
I. Sutskever, “Learning transferable visual models from natural
language supervision,” CoRR, vol. abs/2103.00020, 2021. [Online].
Available: https://arxiv.org/abs/2103.00020

[3] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, “Robust speech recognition via large-scale weak super-
vision,” 2022.

[4] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-resolution image synthesis with latent diffusion models,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 10 684–10 695.

[5] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-
eye coordination for robotic grasping with deep learning and large-
scale data collection,” 2016.

[6] M. Sieb, Z. Xian, A. Huang, O. Kroemer, and K. Fragkiadaki,
“Graph-structured visual imitation,” in Conference on Robot Learning.
PMLR, 2020, pp. 979–989.

[7] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choro-
manski, T. Ding, D. Driess, A. Dubey, C. Finn et al., “Rt-2: Vision-
language-action models transfer web knowledge to robotic control,”
arXiv preprint arXiv:2307.15818, 2023.

[8] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu et al., “Rt-1:
Robotics transformer for real-world control at scale,” arXiv preprint
arXiv:2212.06817, 2022.

[9] S. Höfer, K. E. Bekris, A. Handa, J. C. Gamboa, M. Mozifian,
F. Golemo, C. G. Atkeson, D. Fox, K. Goldberg, J. Leonard, C. K.
Liu, J. Peters, S. Song, P. Welinder, and M. White, “Sim2real in
robotics and automation: Applications and challenges,” IEEE Trans
Autom. Sci. Eng., vol. 18, no. 2, pp. 398–400, 2021. [Online].
Available: https://doi.org/10.1109/TASE.2021.3064065

[10] Z. Fu, A. Kumar, A. Agarwal, H. Qi, J. Malik, and D. Pathak,
“Coupling vision and proprioception for navigation of legged robots,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 17 273–17 283.

[11] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor
adaptation for legged robots,” 2021.

[12] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” CoRR,
vol. abs/2010.11251, 2020. [Online]. Available: https://arxiv.org/abs/
2010.11251

[13] Y. Ji, G. B. Margolis, and P. Agrawal, “Dribblebot: Dynamic legged
manipulation in the wild,” 2023.

[14] T. Chen, J. Xu, and P. Agrawal, “A system for general in-hand object
re-orientation,” in Conference on Robot Learning. PMLR, 2022, pp.
297–307.

[15] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin,
B. McGrew, A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas,
J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan,
W. Zaremba, and L. Zhang, “Solving rubik’s cube with a robot hand,”
2019.

[16] E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Mueller, V. Koltun,
and D. Scaramuzza, “Champion-level drone racing using deep rein-
forcement learning,” Nature, vol. 620, pp. 982–987, 08 2023.

[17] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” 2017.

[18] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang,
Y. Yuan, H. Wang, L. Yi, A. X. Chang, L. J. Guibas, and H. Su,
“Sapien: A simulated part-based interactive environment,” 2020.

[19] S. Srivastava, C. Li, M. Lingelbach, R. Martı́n-Martı́n, F. Xia,
K. Vainio, Z. Lian, C. Gokmen, S. Buch, C. K. Liu, S. Savarese,
H. Gweon, J. Wu, and L. Fei-Fei, “Behavior: Benchmark for everyday
household activities in virtual, interactive, and ecological environ-
ments,” 2021.

[20] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain,
J. Straub, J. Liu, V. Koltun, J. Malik, D. Parikh, and D. Batra, “Habitat:
A platform for embodied ai research,” 2019.

[21] C. Gan, J. Schwartz, S. Alter, D. Mrowca, M. Schrimpf, J. Traer,
J. D. Freitas, J. Kubilius, A. Bhandwaldar, N. Haber, M. Sano,
K. Kim, E. Wang, M. Lingelbach, A. Curtis, K. Feigelis, D. M. Bear,
D. Gutfreund, D. Cox, A. Torralba, J. J. DiCarlo, J. B. Tenenbaum,
J. H. McDermott, and D. L. K. Yamins, “Threedworld: A platform for
interactive multi-modal physical simulation,” 2021.

[22] Z. Xian, T. Gervet, Z. Xu, Y.-L. Qiao, and T.-H. Wang, “Towards
a foundation model for generalist robots: Diverse skill learning
at scale via automated task and scene generation,” arXiv preprint
arXiv:2305.10455, 2023.

[23] Y. Zhu, J. Tremblay, S. Birchfield, and Y. Zhu, “Hierarchical
planning for long-horizon manipulation with geometric and symbolic
scene graphs,” CoRR, vol. abs/2012.07277, 2020. [Online]. Available:
https://arxiv.org/abs/2012.07277

[24] D. Xu, R. Martı́n-Martı́n, D. Huang, Y. Zhu, S. Savarese, and L. Fei-
Fei, “Regression planning networks,” CoRR, vol. abs/1909.13072,
2019. [Online]. Available: http://arxiv.org/abs/1909.13072

[25] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents,” arXiv preprint arXiv:2201.07207, 2022.

[26] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng,
J. Tompson, I. Mordatch, Y. Chebotar, P. Sermanet, N. Brown,
T. Jackson, L. Luu, S. Levine, K. Hausman, and B. Ichter, “Inner
monologue: Embodied reasoning through planning with language
models,” 2022. [Online]. Available: https://arxiv.org/abs/2207.05608

[27] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter,
P. Florence, and A. Zeng, “Code as policies: Language model
programs for embodied control,” 2022. [Online]. Available: https:
//arxiv.org/abs/2209.07753

[28] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. H. Chi, Q. Le,
and D. Zhou, “Chain of thought prompting elicits reasoning in
large language models,” CoRR, vol. abs/2201.11903, 2022. [Online].
Available: https://arxiv.org/abs/2201.11903

[29] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig,
“Pre-train, prompt, and predict: A systematic survey of prompting
methods in natural language processing,” CoRR, vol. abs/2107.13586,
2021. [Online]. Available: https://arxiv.org/abs/2107.13586

[30] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language models are few-shot learners,”
2020.

[31] S. C. Y. Chan, A. Santoro, A. K. Lampinen, J. X. Wang, A. Singh, P. H.
Richemond, J. McClelland, and F. Hill, “Data distributional properties
drive emergent in-context learning in transformers,” 2022.

[32] X. Zhu, Y. Chen, H. Tian, C. Tao, W. Su, C. Yang, G. Huang,
B. Li, L. Lu, X. Wang, Y. Qiao, Z. Zhang, and J. Dai, “Ghost in
the minecraft: Generally capable agents for open-world environments
via large language models with text-based knowledge and memory,”
2023.

[33] S. Lifshitz, K. Paster, H. Chan, J. Ba, and S. McIlraith, “Steve-1: A
generative model for text-to-behavior in minecraft,” 2023.

[34] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan,
and A. Anandkumar, “Voyager: An open-ended embodied agent with
large language models,” 2023.

[35] H. Ha, P. Florence, and S. Song, “Scaling up and distilling
down: Language-guided robot skill acquisition,” arXiv preprint
arXiv:2307.14535, 2023.

[36] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei, “Voxposer:
Composable 3d value maps for robotic manipulation with language
models,” arXiv preprint arXiv:2307.05973, 2023.

[37] W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas, H.-
T. L. Chiang, T. Erez, L. Hasenclever, J. Humplik et al., “Language to
rewards for robotic skill synthesis,” arXiv preprint arXiv:2306.08647,
2023.

[38] T. Nguyen-Phuoc, C. Li, L. Theis, C. Richardt, and Y.-L. Yang,
“Hologan: Unsupervised learning of 3d representations from natural
images,” 2019.

[39] E. R. Chan, M. Monteiro, P. Kellnhofer, J. Wu, and G. Wetzstein, “pi-
gan: Periodic implicit generative adversarial networks for 3d-aware
image synthesis,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2021, pp. 5799–5809.

[40] B. Poole, A. Jain, J. T. Barron, and B. Mildenhall, “Dreamfusion:
Text-to-3d using 2d diffusion,” arXiv, 2022.

[41] R. Chen, Y. Chen, N. Jiao, and K. Jia, “Fantasia3d: Disentangling
geometry and appearance for high-quality text-to-3d content creation,”
arXiv preprint arXiv:2303.13873, 2023.

[42] C.-H. Lin, J. Gao, L. Tang, T. Takikawa, X. Zeng, X. Huang, K. Kreis,
S. Fidler, M.-Y. Liu, and T.-Y. Lin, “Magic3d: High-resolution text-

6678

to-3d content creation,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2023.

[43] L. Melas-Kyriazi, C. Rupprecht, I. Laina, and A. Vedaldi, “Realfusion:
360 reconstruction of any object from a single image,” in CVPR,
2023. [Online]. Available: https://arxiv.org/abs/2302.10663

[44] J. Tang, T. Wang, B. Zhang, T. Zhang, R. Yi, L. Ma, and D. Chen,
“Make-it-3d: High-fidelity 3d creation from a single image with
diffusion prior,” 2023.

[45] B. Shen, X. Yan, C. R. Qi, M. Najibi, B. Deng, L. Guibas, Y. Zhou,
and D. Anguelov, “Gina-3d: Learning to generate implicit neural assets
in the wild,” 2023.

[46] E. Heiden, C. E. Denniston, D. Millard, F. Ramos, and G. S. Sukhatme,
“Probabilistic inference of simulation parameters via parallel differen-
tiable simulation,” 2022.

[47] E. Heiden, M. Macklin, Y. Narang, D. Fox, A. Garg, and F. Ramos,
“Disect: A differentiable simulator for parameter inference and control
in robotic cutting,” 2022.

[48] K. Wang, W. R. J. I. au2, S. Lu, X. Huang, J. Booth, R. Kramer-
Bottiglio, M. Aanjaneya, and K. Bekris, “Real2sim2real transfer for
control of cable-driven robots via a differentiable physics engine,”
2023.

[49] A. Fishman, A. Murali, C. Eppner, B. Peele, B. Boots, and D. Fox,
“Motion policy networks,” 2022.

[50] M. Dalal, A. Mandlekar, C. Garrett, A. Handa, R. Salakhutdinov,
and D. Fox, “Imitating task and motion planning with visuomotor
transformers,” 2023.

[51] M. J. McDonald and D. Hadfield-Menell, “Guided imitation of task
and motion planning,” 2021.

[52] T. Migimatsu and J. Bohg, “Object-centric task and motion
planning in dynamic environments,” CoRR, vol. abs/1911.04679,
2019. [Online]. Available: http://arxiv.org/abs/1911.04679

[53] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in 2011 IEEE International Conference on
Robotics and Automation, 2011, pp. 1470–1477.

[54] M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning,” in Proceedings
of the 24th International Conference on Artificial Intelligence, ser.
IJCAI’15. AAAI Press, 2015, p. 1930–1936.

[55] D. Lyu, F. Yang, B. Liu, and S. Gustafson, “SDRL: interpretable
and data-efficient deep reinforcement learning leveraging symbolic
planning,” CoRR, vol. abs/1811.00090, 2018. [Online]. Available:
http://arxiv.org/abs/1811.00090

[56] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Stripstream:
Integrating symbolic planners and blackbox samplers,” CoRR, vol.
abs/1802.08705, 2018. [Online]. Available: http://arxiv.org/abs/1802.
08705

[57] A. Murali, A. Mousavian, C. Eppner, A. Fishman, and D. Fox,
“Cabinet: Scaling neural collision detection for object rearrangement
with procedural scene generation,” 2023.

[58] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[59] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti,
D. Gordon, Y. Zhu, A. Gupta, and A. Farhadi, “Ai2-thor: An interactive
3d environment for visual ai,” arXiv preprint arXiv:1712.05474, 2017.

[60] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” http://pybullet.org,
2016.

[61] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ international conference on
intelligent robots and systems. IEEE, 2012, pp. 5026–5033.

[62] H.-Y. F. Tung, Z. Xian, M. Prabhudesai, S. Lal, and K. Fragkiadaki,
“3d-oes: Viewpoint-invariant object-factorized environment simula-
tors,” arXiv preprint arXiv:2011.06464, 2020.

[63] N. Gkanatsios, A. Jain, Z. Xian, Y. Zhang, C. Atkeson, and K. Fragki-
adaki, “Energy-based models as zero-shot planners for compositional
scene rearrangement,” arXiv preprint arXiv:2304.14391, 2023.

[64] Z. Xian, S. Lal, H.-Y. Tung, E. A. Platanios, and K. Fragkiadaki,
“Hyperdynamics: Meta-learning object and agent dynamics with hy-
pernetworks,” arXiv preprint arXiv:2103.09439, 2021.

[65] T. Gervet, Z. Xian, N. Gkanatsios, and K. Fragkiadaki, “Act3d: Infinite
resolution action detection transformer for robotic manipulation,”
arXiv preprint arXiv:2306.17817, 2023.

[66] Z. Xian, N. Gkanatsios, T. Gervet, T.-w. Ke, and K. Fragkiadaki,

“Chaineddiffuser: Unifying trajectory diffusion and keypose prediction
for robotic manipulation,” Conference on Robot Learning, 2023.

[67] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim, “Unified particle
physics for real-time applications,” ACM Transactions on Graphics
(TOG), vol. 33, no. 4, pp. 1–12, 2014.

[68] C. Gan, J. Schwartz, S. Alter, M. Schrimpf, J. Traer, J. De Freitas,
J. Kubilius, A. Bhandwaldar, N. Haber, M. Sano et al., “Threedworld:
A platform for interactive multi-modal physical simulation,” arXiv
preprint arXiv:2007.04954, 2020.

[69] X. Lin, Y. Wang, J. Olkin, and D. Held, “Softgym: Benchmarking deep
reinforcement learning for deformable object manipulation,” arXiv
preprint arXiv:2011.07215, 2020.

[70] Z. Xian, B. Zhu, Z. Xu, H.-Y. Tung, A. Torralba, K. Fragkiadaki,
and C. Gan, “Fluidlab: A differentiable environment for benchmarking
complex fluid manipulation,” in International Conference on Learning
Representations, 2023.

[71] T.-H. Wang, A. E. Spielberg, P. Ma, Z. Xian, H. Zhang, J. B.
Tenenbaum, and C. Gan, “Softzoo: A soft robot co-design benchmark
for locomotion in diverse environments,” in International Conference
on Learning Representations, 2023.

[72] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-resolution image synthesis with latent diffusion models,” 2022.

[73] OpenAI, “Gpt-4 technical report,” 2023.
[74] Y. Li, H. Liu, Q. Wu, F. Mu, J. Yang, J. Gao, C. Li, and Y. J. Lee,

“Gligen: Open-set grounded text-to-image generation,” arXiv preprint
arXiv:2301.07093, 2023.

[75] L. Zhang and M. Agrawala, “Adding conditional control to text-to-
image diffusion models,” arXiv preprint arXiv:2302.05543, 2023.

[76] R. Liu, R. Wu, B. V. Hoorick, P. Tokmakov, S. Zakharov, and
C. Vondrick, “Zero-1-to-3: Zero-shot one image to 3d object,” 2023.

[77] H. Wang, X. Du, J. Li, R. A. Yeh, and G. Shakhnarovich, “Score
jacobian chaining: Lifting pretrained 2d diffusion models for 3d
generation,” 2022.

[78] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics
primitives with a multiresolution hash encoding,” ACM Transactions
on Graphics, vol. 41, no. 4, pp. 1–15, jul 2022. [Online]. Available:
https://doi.org/10.1145%2F3528223.3530127

[79] E. Richardson, G. Metzer, Y. Alaluf, R. Giryes, and D. Cohen-Or,
“Texture: Text-guided texturing of 3d shapes,” 2023.

[80] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” 2017.

[81] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and
G. Ranzuglia, “MeshLab: an Open-Source Mesh Processing Tool,” in
Eurographics Italian Chapter Conference, V. Scarano, R. D. Chiara,
and U. Erra, Eds. The Eurographics Association, 2008.

[82] H. Geng, H. Xu, C. Zhao, C. Xu, L. Yi, S. Huang, and H. Wang,
“Gapartnet: Cross-category domain-generalizable object perception
and manipulation via generalizable and actionable parts,” 2023.

[83] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

[84] S. Christen, W. Yang, C. Pérez-D’Arpino, O. Hilliges, D. Fox, and
Y.-W. Chao, “Learning human-to-robot handovers from point clouds,”
2023.

[85] A. Jaegle, S. Borgeaud, J.-B. Alayrac, C. Doersch, C. Ionescu,
D. Ding, S. Koppula, D. Zoran, A. Brock, E. Shelhamer et al.,
“Perceiver io: A general architecture for structured inputs & outputs,”
arXiv preprint arXiv:2107.14795, 2021.

[86] R. Gal, Y. Alaluf, Y. Atzmon, O. Patashnik, A. H. Bermano,
G. Chechik, and D. Cohen-Or, “An image is worth one word: Per-
sonalizing text-to-image generation using textual inversion,” 2022.

[87] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State,
“Isaac gym: High performance gpu-based physics simulation for robot
learning,” 2021.

6679

