
Offline Goal-Conditioned Reinforcement Learning for Safety-Critical
Tasks with Recovery Policy

Chenyang Cao, Zichen Yan, Renhao Lu, Junbo Tan∗ and Xueqian Wang∗

Abstract— Offline goal-conditioned reinforcement learning
(GCRL) aims at solving goal-reaching tasks with sparse re-
wards from an offline dataset. While prior work has demon-
strated various approaches for agents to learn near-optimal
policies, these methods encounter limitations when dealing with
diverse constraints in complex environments, such as safety
constraints. Some of these approaches prioritize goal attainment
without considering safety, while others excessively focus on
safety at the expense of training efficiency. In this paper, we
study the problem of constrained offline GCRL and propose
a new method called Recovery-based Supervised Learning
(RbSL) to accomplish safety-critical tasks with various goals. To
evaluate the method performance, we build a benchmark based
on the robot-fetching environment with a randomly positioned
obstacle and use expert or random policies to generate an offline
dataset. We compare RbSL with three offline GCRL algorithms
and one offline safe RL algorithm. As a result, our method out-
performs the existing state-of-the-art methods to a large extent.
Furthermore, we validate the practicality and effectiveness of
RbSL by deploying it on a real Panda manipulator. Code is
available at https://github.com/Sunlighted/RbSL.git.

I. INTRODUCTION

Reinforcement Learning (RL) enables robots to learn
different skills automatically and has achieved great success
in many robotic tasks such as navigation, manipulation, loco-
motion, etc [1]–[5]. Goal-conditioned reinforcement learning
is a significant branch of RL, which aims at learning skills
to reach distinct goals by adding goal information into the
state [6]–[8]. Recently, offline goal-conditioned reinforce-
ment learning has garnered attention among researchers.
It utilizes a supervised learning approach to train general-
purpose policies from an offline dataset [9]. Thus, robots can
avoid incurring real-world training costs without interacting
with the environment. However, actions generated by such
methods are unconstrained, which potentially results in dan-
gerous behaviors, such as collision with surrounding objects,
or even causing damage to the robot itself. For example, a
robot attempts to manipulate an object to a specified location
while a glass bottle blocks the path. If it ignores the obstacle,
it may break the glass and cause a mess. Therefore, it is
imperative for the agent to acquire a safe policy that prevents
violations of constraints.

Prior works in offline GCRL [9]–[14] focus on reaching
the goals along the shortest path by interacting with an
offline dataset. Since the agent cannot further explore the
environment to get the desired goal, imitation learning is used

All of the authors are with the Center for Intelligent Control
and Telescience, Tsinghua Shenzhen International Graduate
School, Shenzhen, China. ccy22@mails.tsinghua.edu.cn,
tjblql@sz.tsinghua.edu.cn, wang.xq@sz.tsinghua.edu.cn

∗Corresponding author: Junbo Tan and Xueqian Wang

to solve the sparse reward and out-of-distribution (OOD)
problems [9]. However, it probably ignores security during
policy training due to violations of constraints [15]. In
our experiments, constraint violations tend to impede task
completion, so planning a path to bypass the regions beyond
the constraints will lead to better performance. To achieve
this goal, we propose enhancing offline goal-conditioned re-
inforcement learning methods by incorporating mechanisms
for constraint management.

By defining a cost function, the RL problem with con-
straints is called a constrained Markov decision process
(CMDP) [16]. Many prior works integrate constraint satis-
faction into the optimization problem and set a Lagrange
multiplier to formulate an unconstrained problem [17]. In
the offline setting, several recent works try to bridge the gap
between offline RL and safe RL, such as penalizing unseen
actions [18] or constructing an optimization problem with a
stationary distribution correction technique [19]. The above-
mentioned methods are limited in two aspects. Firstly, the
training efficiency is hindered by the conflict between seek-
ing a more optimal policy and adhering to cost constraints.
Secondly, there exist estimation errors in the value functions
that prevent effective cost reduction below the constraint
threshold.

In this paper, we propose Recovery-based Supervised
Learning (RbSL) to overcome the above shortcomings. It
can be divided into two policies: the goal-conditioned policy
and the recovery policy. Utilizing the advantages of imitation
learning, we first train an offline policy with hindsight
relabeling [7] and OOD action detection [10] to learn goal-
reaching tasks. Next, we propose a recovery policy to keep
the running trajectory away from the unsafe area [20]. Such
structure design helps balance the targets of goal attainment
and constraint satisfaction.

In addition, the quality of the dataset also has a significant
effect on training results, which is rarely discussed in prior
works. Hence, in order to achieve better performance of the
recovery policy, we filter out unsafe trajectories from the
dataset and keep successful ones to guide safe actions at the
boundary of constraints. Besides, we undertake a cost-value
relabeling strategy to improve the training efficiency of the
recovery policy.

The main contributions are summarized as follows:
• Supervised learning and reinforcement learning are

integrated to solve the offline problem. Besides, the
OOD action detection technique is proposed to further
enhance the policy performance.

• Separate policies are used to ensure safety for the task

2024 IEEE International Conference on Robotics and Automation (ICRA 2024)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 2838

and constraints without a substantial reduction in the
success rate.

• The recovery dataset is reshaped to improve the safety
of the recovery policy.

II. RELATED WORK

A. Goal-Conditioned Reinforcement Learning

Goal-conditioned reinforcement learning tries to solve
problems with sparse rewards and multiple goals, which has
been studied in many works [6]–[8], [21], [22]. Hindsight
experience relabeling (HER) [7] is a method that relabels
the failure trajectories to successful experiences to maximize
training efficiency. HPG [6] combines HER with policy gra-
dient to achieve a stable estimation of the goal-conditioned
value function. GCSL [8] uses HER and imitation learning
to learn an optimal policy.

Many works extend the above-mentioned methods to an
offline setting, where agents do not interact with the envi-
ronment. WGCSL [9] extends GCSL to the offline setting
by using weighted supervised learning. GoFAR [11] utilizes
value iteration over a dual form of GCRL. Other methods like
Actionable Model [10] are based on Q-learning and attempt
to address OOD errors by reducing the selection of actions
outside the dataset. DQAPG [23] utilizes the method of goal-
swapping for data augmentation, which improved offline
algorithms from another perspective. To solve long-horizon
problem, Li et al. [24] propose a hierarchical trajectory-
level diffusion (HDMI) to discovery subgoals and generate
actions. Our work is inspired by WGCSL and concentrates
on improving the ability to ensure security.

B. Offline Safe Reinforcement Learning

Safe RL algorithms are used to solve constrained opti-
mization problems [16], [17], [25]–[28]. Lagrangian method
[17] is the most common way to deal with constraints
among these algorithms, which adds a multiplier to penalize
the constraint item. However, Lagrangian-based policy faces
difficulties in balancing the trade-off between safety and
exploration. What’s more, in the offline setting, it performs
poorly in limiting the cost value especially when the expert
data is not sufficient. Several prior works have explored
methods for minimizing constraint violations during offline
training [18], [19], [29], [30]. They incorporate offline RL
ideas [31], [32] into safe RL, such as using the stationary
distribution correction estimation technique to optimize the
policy with a cost upper bound [19]. CPQ [18] is a value-
based method that labels the OOD actions unsafe to reduce
the estimation error of cost value.

Another type of safe RL is called Recovery RL [20], which
is composed of a task policy and a recovery policy. Its main
idea is to use a pre-trained policy to shield the agent from
hazardous areas. Guided by a risk Q-value, the recovery
policy is designed to adapt unsafe actions to ensure safety
[33]. Building upon Recovery RL, our method exploits its
potential in an offline setting, a domain that has received
limited attention in prior research.

III. PRELIMINARIES

A. Constrained Goal-augmented Markov Decision Process

We propose a Constrained Goal-augmented Markov Deci-
sion Process (CGMDP) as a variant of a Goal-augmented
Markov Decision Process (GMDP). A CGMDP can be
expressed as a tuple (S,A,G,P,R, γ, C). S,A,G,P denotes
state, action, goal space and transition probability, respec-
tively. γ is a discount factor and r(s, a, g) = 1[∥ϕ(s)−g∥22 ≤
δ] : S × A × G → R is a goal-conditioned binary reward
related to a threshold δ. ϕ means a state-to-goal mapping.
The cost function is c(s, a) : S × A → C. The cost value
V π
C , cost action-value Qπ

C and cost advantage functions Aπ
C

are defined by

V π
C (s, g) := Eπ

[∞∑
t=0

γtc(st, at)|s0 = s, g
]
,

Qπ
C(s, a, g) := Eπ

[∞∑
t=0

γtc(st, at)|s0 = s, a0 = a, g
]
,

Aπ
C(s, a, g) := Qπ

C(s, a, g)− V π
C (s, g).

(1)

In the CGMDP setting, a policy π : S × G → A aims to
maximize the expected return with constraints:

J(π) = max
π

Eg∼p(g),at∼π(·|st,g)
[∞∑
t=0

γtr(st, at, g)
]
,

s.t. JC(π) ≤ l,

(2)

where JC(π) = Eat∼π(·|st,g)
[∑∞

t=0 γ
tc(st, at)

]
denotes the

expectation of discounted cost return and l is the constraint
bound. This constrained optimization problem can be modi-
fied into a Lagrangian form:

min
λ≥0

max
π

E
[∞∑
t=0

γt(r(st, at, g)− λc(st, at)) + λl
]
, (3)

where λ is a Lagrange multiplier.

B. Offline Constrained GCRL

In an offline setting, the training trajectory is sampled
from a static dataset of logged transitions D := {τi}Ni=1 in a
form of τi = (s

(i)
0 , a

(i)
0 , r

(i)
0 , c

(i)
0 . . . ; g(i)). The optimization

problem of constrained GCRL can be described as:

J(π) =max
π

E(st,st+1,g)∼D,at∼π

[∞∑
t=0

γtr(st, at, g)
]
,

s.t. E(st,st+1)∼D,at∼π

[∞∑
t=0

γtc(st, at)
]
≤ l.

(4)

IV. METHOD

The proposed method simplifies the problem (4) into two
parts. The safe goal-reaching problem is addressed through
a supervised learning-based method, while constraints are
managed by a recovery policy. The combination of these
two policies significantly improves training efficiency.

2839

𝓓
𝓓𝑟𝑒𝑙𝑎𝑏𝑒𝑙

𝓓𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦

× √

√

× ×

𝜋𝑔 ← max
𝜃

𝐸[𝑤𝑡log 𝜋𝜃 𝑎𝑡 𝑠𝑡 , 𝑔 + 𝛽𝑄(𝑠𝑡 , 𝑎𝑡 , 𝑔)]

𝜋𝑟 ← max
𝑄

𝐸[𝑄 𝑠𝑡 , 𝑎𝑡 , 𝑔 − 𝜆(𝑄𝐶 𝑠𝑡 , 𝑎𝑡 , 𝑔 − 𝑙)]

Evaluation

𝑸𝑪

𝑎𝑔

𝑎𝑟

Agent Learning

s1 s2 𝑔
…

…

Environment

Possible collision area

(𝒔,⋅, 𝒈)

Recovery Policy

Goal-Conditioned Policy

Fig. 1: An overview of Recovery-based Supervised Learning (RbSL). RbSL first samples data from the environment and
processes them into two datasets. Then, the agent learns a goal-conditioned policy and a recovery policy. In evaluation, we
use the cost Q-value to predict an unsafe state and decide which policy to use.

A. Overview
In order to reach goals safely, we train a cost Q-network

to predict the likelihood of violations, which determines the
switching between two policies:

π(at|st, g) =

{
πg(at|st, g), QC(st, at, g) ≤ l,

πr(at|st, g), QC(st, at, g) > l,
(5)

where πg indicates the goal-conditioned policy and πr de-
notes the recovery policy. The goal-conditioned policy is pri-
marily oriented toward reaching the goal. When it breaches
the constraint, the recovery policy will try to modify the
action in the direction of decreasing the cost Q-value. Our
proposed method is illustrated in Figure 1. Next, in sections
B and C, we will introduce more details of the two policies
and discuss why they behave well in the offline setting.

B. Supervised Learning
In offline GCRL, imitation learning methods like GCSL

[8] mimic actions to ensure that the learned policy is con-
sistent with the data distribution. However, it may perform
sub-optimal behavior in the offline setting as it only focuses
on the success of each task at the end of the episode while
neglecting optimization at each individual step. To overcome
this disadvantage, prior works have tried to estimate the
optimal policy by advantage-weighted regression [34], [35].
Weighted goal-conditioned supervised learning (WGCSL)
can determine the shortest path in offline goal-reaching tasks.
Therefore, we use it as our goal-conditioned policy.

First, we relabel the offline dataset D for supervised
learning. Suppose that D = {st, at, rt, g}, t ∈ [1, T], we
relabel the goal with a future state g′ = ϕ(st′), t

′ ≥ t, where
ϕ is a mapping from state to goal. In an environment with
constraints, we add the information of constraints as a part
of the state into the dataset:

Drelabel =

{
{st, at, rt′ , g′ = ϕ(st′), o}, sT /∈ o,

{st, at, rt, g, o}, otherwise,
(6)

where o indicates an unsafe area. The relabeling reduces
the experience that violates the constraints and increases
successful trajectories to improve learning efficiency.

Next, we use a composed weight to guarantee an optimal
policy in the offline setting. The policy can be trained by
maximizing the following BC-based expectations [36]:

Jwgcsl(π) = E(st,at,g′)∼Drelabel

[
wt,t′ · log πθ(at|st, g′)

]
, (7)

where the weight wt,t′ = γt′−t · exp(A(st, at, g
′)) ·

ϵ(A(st, at, g
′)). The first part γt′−t assigns smaller weight to

sub-optimal trajectories. The second part exp(A(st, at, g
′))

restricts the learned policy to avoid OOD actions. The last
part equals one if A(st, at, ϕ(si)) > Â and equals to ϵ
otherwise, where Â is a threshold and ϵ is a small value.
It leads the policy to the highest return.

To get better performance than imitation learning on
goal-reaching tasks, we consider optimizing the Q-value to
improve the behavior policy. Therefore, we rewrite the policy
improvement (7) following TD3+BC [37] approach:

J(π) = E(st,at,g′)∼Drelabel

[
wt,t′ · log πθ(at|st, g′)

+ α′Qg(st, at, g
′)
]
,

and α′ =
α

1
N

∑
(si,ai)

|Qg(si, ai, g′)|
,

(8)

where α is a hyper-parameter to balance maximizing Q-value
and minimizing the BC term. Since α is highly influenced
by the scale of Q-value, we add a normalization term
1
N

∑
(si,ai)

|Qg(si, ai, g
′)| into it.

C. Recovery Policy

The recovery policy is responsible for action correction
as shown in Figure 2. We first learn a constraint Q-value
QC(st, at, g) to estimate the future probability of violation:

QC(st, at, g) = E
[∞∑
t′=t

γt′−tct′ |st, at
]

= ct + (1− ct)γE
[
QC(st+1, at+1, g)|st, at

]
,

(9)

where ct indicates the cost function. Recovery RL [20]
pretrains the cost Q-value on the historical trajectories that
contain constraint violations. In contrast, our method trains
the cost Q-value and the goal-conditioned Q-value simultane-
ously as the trajectories contain information about a complete

2840

𝐔𝐧𝐬𝐚𝐟𝐞 𝐚𝐫𝐞𝐚

𝐆𝐨𝐚𝐥
𝝅𝑶𝒓𝒊𝒈𝒊𝒏𝒂𝒍

𝝅𝑹𝒆𝒄𝒐𝒗𝒆𝒓𝒚

Obstacle

𝐔𝐧𝐚𝐛𝐥𝐞 𝐭𝐨 𝐩𝐚𝐬𝐬

𝐒𝐚𝐟𝐞 𝐩𝐚𝐭𝐡

Fig. 2: Recovery policy: we illustrate the recovery policy
on a robotic push task. The original policy will choose the
shortest path to reach the goal while the obstacle blocks its
way and results in failure. In contrast, the recovery policy
will correct the action of entering into an unsafe area and
plan a safe path to the goal.

path. It is necessary for the agent to learn to reach the goal
so that the recovery policy can be effectively updated. To
this end, we consider policy improvement as follows:

πr =argmin
π

E(s,g)∼D,a∼π(·|s,g)
[
Qr(s, a, g)

− λ(QC(s, a, g)− l)
]
,

(10)

where λ represents a Lagrange multiplier in an optimization
problem, chosen to be sufficiently large to constrain the cost
Q-value below l.

In the offline setting, there exists a problem of overes-
timating Q-values caused by OOD actions for the recovery
policy. Hence, we use A′(s, g) to denote an unseen action set
that can not be reached when the agent tries to achieve the
goal g from the state s in the dataset D. Next, let G′(g) be
a set of negative goals different from the desired goal g. We
can assume that any action a′ ∼ A′(s, g) finally leads to a
negative goal g′ ∼ G′(g). Therefore, we can minimize the Q-
value for these negative actions a′ using relabeling. We first
sample a negative action a′ from the soft-max distribution
exp(Qr(s,a

′,g))
Z where Z is a normalization factor. Then we

set the target Q-value to zero as Qtarget(s, a
′, g) ← 0 so

that we alleviate the high value of OOD action and get the
correct recovery policy.

D. Data Processing

In the offline setting, we should collect an offline dataset
D containing data from random policies and experts first.
The task policy and recovery policy are both trained on
D. However, the recovery policy is so sensitive to ran-
dom data that safe actions cannot be learned effectively.
Additionally, some trajectories with zero cost return are
useless for training recovery policy. Therefore, we filter the
dataset D in two steps: 1) filter out random trajectories τi if
R(τi) =

∑T
t=0 γ

tri(st, at, g) = 0 to get an expert dataset
De; 2) filter out some expert trajectories τ ′i if C(τ ′i) =∑T

t=0 γ
tci(st, at) = 0 from De. Finally, we get a recovery

dataset Drec.

Algorithm 1 Recovery-based Supervised Learning

Require: Doffline, number of episodes N , number of
episodes Nr for recovery training, a Lagrangian mul-
tiplier λ

1: Randomly initialize policy πg ,πr, and value function Qg ,
Qr, QC .

2: Filter the recovery dataset and get Dgoal ← Doffline,
Drecovery ← Dfilter

3: for i ∈ {1, . . . N} do
4: Sample a minibatch {(sit, ait, gi, sit+1, r

i
t)}Mi=1 from

the offline dataset Dgoal

5: Relabel the minibatch by using Eq.6:
{(sit, ait, ϕ(sij), sit+1, r

i
t(·, ·, ϕ(sij)))}Mi=1, j ≥ t

6: Update Qg and estimate A(sit, a
i
t, ϕ(s

i
j))

7: Get K percentile Â and update policy πg by Eq.8
8: end for
9: for i ∈ {1, . . . Nr} do

10: Sample a minibatch {(sit, ait, gi, sit+1, r
i
t, c

i
t)}Mi=1

from the offline dataset Drecovery

11: Relabel dataset using Eq.6 and do cost shaping Eq.11
12: Update Qr by TD-error with negative action penalty
13: Update QC by Eq.9
14: Update recovery policy πr by Eq.10
15: end for

To train a recovery policy, we consider cost shaping to
Drec as follows:

c′(st, at) =

c(st, at)− 1, c(st, at) = 1 and

c(st+1, at+1) = 0,

c(st, at), otherwise.

(11)

We reduce the cost by learning actions that prevent the
policy from violating constraints. The cost shaping facilitates
the recovery policy in learning such safe actions.

To sum up, two policies are trained on different datasets
independently. During the evaluation phase, we use both poli-
cies for decision-making to ensure both the task performance
and security. We illustrate our complete method in Algorithm
1.

V. EXPERIMENTS

Our experiments are carried out in Gym-Robotics envi-
ronments [38] with four classic manipulation tasks. Besides,
Panda-Gym [39] is used for applying RbSL to the sim-to-
real experiments, as shown in Figure 3. In this section, we
aim to answer the following questions:

1) Can RbSL consistently outperform prior methods across
various tasks on datasets of different quality?

2) Can RbSL reach goals with fewer constraint violations
compared to other offline goal-conditioned algorithms?

3) Can RbSL successfully transition from a simulated
environment to real-world applications?

Moreover, in order to verify our method’s robustness, we
change the mixing ratio of expert and random data in the
offline dataset to test the algorithm’s performance. In the

2841

TABLE I: Main Result (averaged over 5 seeds)

Task Mixture of dataset
(expert–random)

AM-lag GCSL WGCSL GoFAR RbSL(Ours)

Success
rate

Cost
return

Success
rate

Cost
return

Success
rate

Cost
return

Success
rate

Cost
return

Success
rate

Cost
return

ReachObstacle 0.1-0.9 1 0.016±0.000 0.997 3.15±0.036 1 1.646±0.004 1 1.886±0.000 1 0.123±0.000

0-1 0.983 0.217±0.071 0.773 17.65±1.144 0.99 6.326±1.971 0.873 7.996±0.684 1 0.21±0.000

PickAndPlaceObstacle

1-0 0.58 1.223±0.521 0.719 6.336±0.859 0.916 4.003±1.21 0.916 2.966±0.089 0.946 0.87±0.276

0.5-0.5 0.447 1.902±0.391 0.68 7.65±1.266 0.86 4.253±0.841 0.91 4.53±1.353 0.936 1.41±0.083

0.2-0.8 0.337 2.654±1.833 0.623 7.816±0.592 0.81 5.28±0.053 0.836 4.47±0.405 0.87 2.14±0.018

0.1-0.9 0.206 2.947±4.172 0.553 9.236±3.295 0.733 9.11±1.411 0.793 6.336±0.341 0.843 2.516±0.75

PushObstacle

1-0 0.639 2.473±0.363 0.71 4.353±0.285 0.813 3.74±1.162 0.723 4.026±1.843 0.896 0.566±0.009

0.5-0.5 0.57 3.2±1.786 0.667 5.233±2.437 0.756 4.633±0.991 0.553 3.96±0.204 0.883 0.553±0.015

0.2-0.8 0.413 4.766±1.103 0.523 6.066±1.703 0.646 4.71±1.251 0.41 5.23±0.504 0.667 2.113±0.464

0.1-0.9 0.083 1.65±2.63 0.393 5.4±0.557 0.526 4.31±0.275 0.343 5.64±2.39 0.603 2.43±0.569

SlideObstacle

1-0 0.336 2.483±0.135 0.313 3.436±0.7 0.33 3.02±0.326 0.523 3.239±0.128 0.556 0.356±0.012

0.5-0.5 0.153 2.81±0.948 0.28 4.749±1.11 0.313 3.25±0.268 0.516 3.023±0.042 0.459 0.77±0.141

0.2-0.8 0.05 1.5±0.551 0.216 3.953±1.233 0.24 2.846±0.264 0.353 2.153±0.239 0.286 1.21±0.058

0.1-0.9 0.02 0.85±1.156 0.176 4.373±2.040 0.15 2.803±0.375 0.293 2.656±0.285 0.243 1.75±0.299

Average - 0.416 2.049 0.545 6.386 0.649 4.281 0.646 4.151 0.726 1.216

rest of this section, the practical significance of the proposed
method is verified.

A. Environment and Experiment Setup

We modify the four manipulation tasks in MoJoCo
[40] Gym-Robotics by adding obstacles: ReachObstacle,
PickAndPlaceObstacle, PushObstacle, SlideObstacle. These
tasks require the robot or object to reach the goal as quickly
as possible without collision. The best case is to find the
shortest path away from the obstacle to attain the goal.

The state space for ReachObstacle is S ∈ R19 consists
of a 10-dim vector about basic environment information
and another 9-dim vector representing obstacle position and
rotation. The rest three tasks have a (25+12)-dim state by
adding the object information and relative positions. The
action space A ∈ R4 contains the increments of the end-
effector in the Cartesian space and control of grippers.

The cost function is defined as

c(st) = 1(st /∈ O), (12)

where O = {o = (x, y, z)|d(oi, si)− Li ≤ ϵ, i = x, y, z} is
a box region and s is the object (or grasp) coordinate. Li is
the sum of object and obstacle sizes in orientation i. ϵ is a
threshold (0.05 in experiments).

In all tasks, the rewards are sparse and binary: the agent
receives +1 if it achieves a desired goal and 0 otherwise. We
collect data with two different policies for offline training,
like the way in [9]. The random dataset is collected by a uni-
form random policy. And the expert chooses an online trained
data-augment TD3+HER policy [21], [41] with Gaussian
noise. Each dataset has 2×106 transitions, enough for offline
algorithms to learn a qualified policy. In our experiments, we
mix the random data and expert data in different proportions
to test the policy’s robustness. The main results are presented
in Table I and Figure 4.

For the real-world experiment, we employ a Franka Emika
Panda robot for manipulation and an Intel RealSense camera
which is set beyond the robotic arm to capture object
coordinates. Its setup is visualized in Figure 3(c).

(a) Gym-Robotics (b) Panda-Gym (c) Franka Emika Panda

Fig. 3: Goal-conditioned environments: (a) MuJoCo Gym-
Robotics, (b) Panda-Gym, a simulation environment for the
real-world experiment, (c) An experiment environment for
the Franka Emika Panda robotic arm.

B. Baselines

We compare our method with prior offline GCRL and
offline safe RL algorithms. GCSL [8] is an imitation learning
method which shows good performance in goal-reaching
tasks. WGCSL [9] solves the offline GCRL problem by
improving GCSL in the offline setting using AWR [34].
GoFAR [11] is a state-of-the-art offline GCRL method that
is practical in various challenging problem settings. Since
GCRL methods can learn policies to reach goals, they may
cause collisions with obstacles. Therefore, we use AM-lag
[10], an offline safe GCRL, to compare the safety with
our algorithm. It is built on a conservative Q-Learning [42]
method using goal-chaining and simply adds a Lagrangian
multiplier to penalize constraint violations.

C. Evaluations and Results

We evaluate our method in four tasks and record the
success rate and cost return in Table I. The constraint limit
is set as 1.5 in all tasks, which means the average constraint
violation rate is 1.5 every episode. The Lagrangian approach
uses adaptive PID-based Lagrangian multipliers [43] and
the initial value of the lagrangian multiplier is set as 10
which should be set as large as possible. As we can see,
it becomes evident that RbSL consistently performs well
across all settings, achieving the highest average success
rate and the lowest average cost return. In other words,

2842

0 100 200 300 400 500
Epochs

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Di
sc

ou
nt

ed
 R

et
ur

n

AM-lag
GCSL
WGCSL
GoFAR
RbSL

0 100 200 300 400 500
Epochs

0

5

10

15

20

Co
st

 R
et

ur
n

AM-lag
GCSL
WGCSL
GoFAR
RbSL

(a) Reach

0 100 200 300 400 500
Epochs

0

2

4

6

8

10

12

14

Di
sc

ou
nt

ed
 R

et
ur

n

AM-lag
GCSL
WGCSL
GoFAR
RbSL

0 100 200 300 400 500
Epochs

2

4

6

8

10

12

Co
st

 R
et

ur
n

AM-lag
GCSL
WGCSL
GoFAR
RbSL

(b) PickAndPlace

0 100 200 300 400 500
Epochs

0

2

4

6

8

10

Di
sc

ou
nt

ed
 R

et
ur

n

AM-lag
GCSL
WGCSL
GoFAR
RbSL

0 100 200 300 400 500
Epochs

0

2

4

6

8

Co
st

 R
et

ur
n

AM-lag
GCSL
WGCSL
GoFAR
RbSL

(c) Push

0 100 200 300 400 500
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

Di
sc

ou
nt

ed
 R

et
ur

n

AM-lag
GCSL
WGCSL
GoFAR
RbSL

0 100 200 300 400 500
Epochs

0

1

2

3

4

5

Co
st

 R
et

ur
n

AM-lag
GCSL
WGCSL
GoFAR
RbSL

(d) Slide

Fig. 4: Training curves of PushObstacle, PickAndPlaceObstacle, SlideObstacle in the 0.5-0.5 setting and ReachObstacle in
the 0-1 setting. In each figure, the sub-figures show the average number of discounted returns and cost returns per epoch,
where the black dotted line shows the safe constraint limit.

RbSL can reach goals precisely without encountering con-
straint violations. However, we observed that our method
underperforms compared to GoFAR in SlideObstacle, pri-
marily because the recovery policy faces challenges when
handling complex tasks that are less safety-critical. The
previous GCRL methods like GoFAR often lead to more
collisions with obstacles, even though they exhibit good task
performance. Conversely, offline safe RL methods encounter
difficulties in increasing the success rate when attempting
to violate the constraints. Nevertheless, RbSL consistently
demonstrates robust and outstanding performance across
datasets of various quality. To better visualize the effects
of the algorithm, we show training curves in Figure 4. As
evident, there is a significant gap between RbSL and the
baselines, especially the cost return in challenging tasks like
PushObstacle, SlideObstacle. Besides, RbSL exhibits faster
convergence compared to the others. Overall, RbSL achieves
superior task performance by effectively avoiding obstacles,
thereby reducing the likelihood of constraint violations.

D. Real World Deployment

To apply our algorithm to a real robot, we built a sim-
ulation environment in panda-gym [39]. The agent receives
joint positions and velocities of the end-effector as a robotic
state and it is controlled by a 3-dim vector describing the
end-effector’s position in simulation. We compare RbSL with
WGCSL for 100 epochs of training. The simulation result is
shown in Table II.

Finally, we apply the offline trained model on the real
manipulator and use joint position control without sim-to-
real fine-tuning. We use HSV color space filtering to obtain
the positions of objects and obstacles in the real world. The
task is pushing the green object to the goal without colliding

object

obstacle

goal

Fig. 5: Leveraging RbSL, we display the example execution
trajectory of push, which involves navigating around an
obstacle to reach the goal.

TABLE II: Simulation Result

Algorithm Success Rate Discounted Return Cost Return

WGCSL [9] 78.3% 11.862 1.493
RbSL(Ours) 96.7% 17.056 0.978

with the red obstacle. The results are shown in Figure 5 and
more details can be found in the supplementary video.

VI. CONCLUSIONS

This paper proposes a novel offline GCRL method to solve
constraints in complex environments by combining a goal-
conditioned policy and a recovery policy. In our experiment,
it is proved that the proposed RbSL can accomplish goal-
reaching tasks with lower cost return and it outperforms the
prior methods. Additionally, RbSL is tested in a real robot
and achieves accomplished returns.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (No.62103225) and the Natural Science
Foundation of Shenzhen (No.JCYJ20230807111604008).

2843

REFERENCES

[1] L. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan, and S. Levine,
“Legged robots that keep on learning: Fine-tuning locomotion policies
in the real world,” in 2022 International Conference on Robotics and
Automation (ICRA), pp. 1593–1599, IEEE, 2022.

[2] M. Wilson and T. Hermans, “Learning to manipulate object collec-
tions using grounded state representations,” in Conference on Robot
Learning, pp. 490–502, PMLR, 2020.

[3] Z. Fu, X. Cheng, and D. Pathak, “Deep whole-body control: learning
a unified policy for manipulation and locomotion,” in Conference on
Robot Learning, pp. 138–149, PMLR, 2023.

[4] S. W. Abeyruwan, L. Graesser, D. B. D’Ambrosio, A. Singh,
A. Shankar, A. Bewley, D. Jain, K. M. Choromanski, and P. R. Sanketi,
“i-sim2real: Reinforcement learning of robotic policies in tight human-
robot interaction loops,” in Conference on Robot Learning, pp. 212–
224, PMLR, 2023.

[5] S. Kumar, J. Zamora, N. Hansen, R. Jangir, and X. Wang, “Graph
inverse reinforcement learning from diverse videos,” in Conference on
Robot Learning, pp. 55–66, PMLR, 2023.

[6] P. Rauber, A. Ummadisingu, F. Mutz, and J. Schmidhuber, “Hindsight
policy gradients,” in International Conference on Learning Represen-
tations, 2018.

[7] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, O. Pieter Abbeel, and W. Zaremba, “Hind-
sight experience replay,” Advances in neural information processing
systems, vol. 30, 2017.

[8] D. Ghosh, A. Gupta, A. Reddy, J. Fu, C. M. Devin, B. Eysenbach, and
S. Levine, “Learning to reach goals via iterated supervised learning,”
in International Conference on Learning Representations, 2020.

[9] R. Yang, Y. Lu, W. Li, H. Sun, M. Fang, Y. Du, X. Li, L. Han,
and C. Zhang, “Rethinking goal-conditioned supervised learning and
its connection to offline rl,” in International Conference on Learning
Representations, 2021.

[10] Y. Chebotar, K. Hausman, Y. Lu, T. Xiao, D. Kalashnikov, J. Varley,
A. Irpan, B. Eysenbach, R. C. Julian, C. Finn, et al., “Actionable
models: Unsupervised offline reinforcement learning of robotic skills,”
in International Conference on Machine Learning, pp. 1518–1528,
PMLR, 2021.

[11] J. Y. Ma, J. Yan, D. Jayaraman, and O. Bastani, “Offline goal-
conditioned reinforcement learning via f -advantage regression,” Ad-
vances in Neural Information Processing Systems, vol. 35, pp. 310–
323, 2022.

[12] J. Hejna, J. Gao, and D. Sadigh, “Distance weighted supervised
learning for offline interaction data,” arXiv preprint arXiv:2304.13774,
2023.

[13] K. Fang, P. Yin, A. Nair, H. R. Walke, G. Yan, and S. Levine,
“Generalization with lossy affordances: Leveraging broad offline data
for learning visuomotor tasks,” in Conference on Robot Learning,
pp. 106–117, PMLR, 2023.

[14] L. Mezghani, S. Sukhbaatar, P. Bojanowski, A. Lazaric, and K. Ala-
hari, “Learning goal-conditioned policies offline with self-supervised
reward shaping,” in Conference on Robot Learning, pp. 1401–1410,
PMLR, 2023.

[15] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati,
and A. P. Schoellig, “Safe learning in robotics: From learning-based
control to safe reinforcement learning,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 5, pp. 411–444, 2022.

[16] E. Altman, Constrained Markov Decision Processes. PhD thesis,
INRIA, 1995.

[17] Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone, “Risk-
constrained reinforcement learning with percentile risk criteria,” The
Journal of Machine Learning Research, vol. 18, no. 1, pp. 6070–6120,
2017.

[18] H. Xu, X. Zhan, and X. Zhu, “Constraints penalized q-learning for safe
offline reinforcement learning,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 36, pp. 8753–8760, 2022.

[19] J. Lee, C. Paduraru, D. J. Mankowitz, N. Heess, D. Precup, K.-E. Kim,
and A. Guez, “Coptidice: Offline constrained reinforcement learning
via stationary distribution correction estimation,” in International
Conference on Learning Representations, 2021.

[20] B. Thananjeyan, A. Balakrishna, S. Nair, M. Luo, K. Srinivasan,
M. Hwang, J. E. Gonzalez, J. Ibarz, C. Finn, and K. Goldberg, “Re-
covery rl: Safe reinforcement learning with learned recovery zones,”
IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4915–4922,
2021.

[21] Y. Lin, J. Huang, M. Zimmer, Y. Guan, J. Rojas, and P. Weng,
“Invariant transform experience replay: Data augmentation for deep re-
inforcement learning,” IEEE Robotics and Automation Letters, vol. 5,
no. 4, pp. 6615–6622, 2020.

[22] N. Dengler, D. Großklaus, and M. Bennewitz, “Learning goal-oriented
non-prehensile pushing in cluttered scenes,” in 2022 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS),
pp. 1116–1122, IEEE, 2022.

[23] W. Yang, H. Wang, D. Cai, J. Pajarinen, and J.-K. Kämäräinen,
“Swapped goal-conditioned offline reinforcement learning,” arXiv
preprint arXiv:2302.08865, 2023.

[24] W. Li, X. Wang, B. Jin, and H. Zha, “Hierarchical diffusion for offline
decision making,” in International Conference on Machine Learning,
pp. 20035–20064, PMLR, 2023.

[25] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy op-
timization,” in International conference on machine learning, pp. 22–
31, PMLR, 2017.

[26] C. Tessler, D. J. Mankowitz, and S. Mannor, “Reward constrained
policy optimization,” in International Conference on Learning Repre-
sentations, 2018.

[27] L. Zhang, Z. Yan, L. Shen, S. Li, X. Wang, and D. Tao, “Safety
correction from baseline: Towards the risk-aware policy in robotics via
dual-agent reinforcement learning,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 9027–9033,
IEEE, 2022.

[28] Q. Lin, B. Tang, Z. Wu, C. Yu, S. Mao, Q. Xie, X. Wang, and D. Wang,
“Safe offline reinforcement learning with real-time budget constraints,”
arXiv preprint arXiv:2306.00603, 2023.

[29] H. Le, C. Voloshin, and Y. Yue, “Batch policy learning under con-
straints,” in International Conference on Machine Learning, pp. 3703–
3712, PMLR, 2019.

[30] Z. Liu, Z. Guo, Y. Yao, Z. Cen, W. Yu, T. Zhang, and D. Zhao, “Con-
strained decision transformer for offline safe reinforcement learning,”
arXiv preprint arXiv:2302.07351, 2023.

[31] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” arXiv
preprint arXiv:2005.01643, 2020.

[32] R. F. Prudencio, M. R. Maximo, and E. L. Colombini, “A survey on
offline reinforcement learning: Taxonomy, review, and open problems,”
IEEE Transactions on Neural Networks and Learning Systems, 2023.

[33] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” in Proceedings
of the AAAI conference on artificial intelligence, vol. 32, 2018.

[34] X. B. Peng, A. Kumar, G. Zhang, and S. Levine, “Advantage-weighted
regression: Simple and scalable off-policy reinforcement learning,”
arXiv preprint arXiv:1910.00177, 2019.

[35] I. Kostrikov, A. Nair, and S. Levine, “Offline reinforcement learning
with implicit q-learning,” in International Conference on Learning
Representations, 2021.

[36] F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from obser-
vation,” arXiv preprint arXiv:1805.01954, 2018.

[37] S. Fujimoto and S. S. Gu, “A minimalist approach to offline reinforce-
ment learning,” Advances in neural information processing systems,
vol. 34, pp. 20132–20145, 2021.

[38] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker,
G. Powell, J. Schneider, J. Tobin, M. Chociej, P. Welinder, et al.,
“Multi-goal reinforcement learning: Challenging robotics environ-
ments and request for research,” arXiv preprint arXiv:1802.09464,
2018.

[39] Q. Gallouédec, N. Cazin, E. Dellandréa, and L. Chen, “panda-gym:
Open-source goal-conditioned environments for robotic learning,”
arXiv preprint arXiv:2106.13687, 2021.

[40] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ international conference on
intelligent robots and systems, pp. 5026–5033, IEEE, 2012.

[41] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International conference on
machine learning, pp. 1587–1596, PMLR, 2018.

[42] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-
learning for offline reinforcement learning,” Advances in Neural In-
formation Processing Systems, vol. 33, pp. 1179–1191, 2020.

[43] A. Stooke, J. Achiam, and P. Abbeel, “Responsive safety in reinforce-
ment learning by pid lagrangian methods,” in International Conference
on Machine Learning, pp. 9133–9143, PMLR, 2020.

2844

