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Abstract— In this paper, we present a probabilistic and
unconstrained model predictive control formulation for robot
navigation under uncertainty. We present (1) a closed-form
approximation of the probability of collision that naturally
models the propagation of uncertainty over the planning
horizon and is computationally cheap to evaluate, and (2) a
collision-cost formulation which provably preserves forward
invariance (i.e., keeps the robot away from obstacles) when
combined with the probability formulation. Notably, our
formulation avoids hard constraints by construction, which in
turn avoids abrupt transitions in robot behavior around the
constraint boundaries ensuring graceful navigation. Further,
we present proof for the forward invariance and the stability
of the approach. We compare the efficacy of our method with
the baseline [1], which the proposed approach builds on. We
demonstrate that the approach results in confident and safe
robot navigation in tight spaces by smoothly slowing down the
robot in low survivability environments (e.g., tight corridors),
but also allows it to move away from obstacles safely when
needed.

I. INTRODUCTION

Robots’ ability to navigate safely and efficiently in real-
world scenarios is critical for their widespread deployment.
The past two decades have seen significant advancement
in robotics, enabling them to move beyond controlled
laboratory and industrial scenes and into unstructured
environments. Consequently, robot vacuums, self-driving
cars, and home monitoring robots operate in everyday
environments where they can interact and assist humans. Yet,
existing navigation methods still encounter challenges when
deployed in highly constrained settings such as public spaces
and household environments [2], [3], [4], [5].

Navigating indoor environments is particularly challenging
due to their constrained spaces, tight corridors, and the
presence of dynamic agents such as humans and pets.
Besides, the imperfect sensing and estimation errors make
the robot and obstacle locations uncertain. As a result, the
navigation algorithms need to consider such uncertainties
for safe and reliable navigation. While a conservative
robot that always stays away from obstacles is safe, it
is equally important for the robots to be efficient and
capable of traversing narrow spaces, making sharp turns,
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and accepting some risk when necessary. However, finding a
compute-efficient solution that produces safe and graceful
robot motion without being overly conservative in such
probabilistic settings is still an open challenge [6].

A. Related Work

Velocity obstacle (VO) [7] computes a set of collision-
free relative velocities between the agent and the obstacle for
safe navigation. RVO [8] improves VO by assuming equal
responsibility between agents in a multi-agent setting, and
the idea is formulated as a linear programming problem in
ORCA [9]. However, VO and its variants plan in the velocity
space and can result in arbitrary acceleration between time
steps. A class of methods uses model-predictive control
(MPC) to produce predictive navigation behavior by planning
over a horizon. In [10], [11], ORCA constraints are
combined with MPC to generate collision-free trajectories
with smooth velocity variations. In [12], authors present a
local planner based on model predictive contouring control
(MPCC) for maneuvering in unstructured environments.
Recently, learning-based approaches have shown impressive
navigation performance in some cluttered scenarios. GA3C-
CADRL [13] presents an RL-based navigation approach that
outperforms ORCA in many scenarios. Performer-MPC [14]
presents a trainable MPC framework to navigate challenging
scenarios using a cost function with learnable components.
Although Performer-MPC outperforms conventional MPCs
in the evaluated scenarios, the cost function is learned
individually per scenario, thus lacking generalizability.
In general, learning-based methods suffer from a lack
of explainability, safety guarantees, and sim-to-real gap.
Moreover, they provide limited scope for tuning the
navigation behavior after the training phase, which can be
desirable in real world deployment.

For safe navigation under sensing and localization
uncertainties, it is imperative to consider uncertainty. In [15],
[16], the authors inflate the obstacle configuration by a
safety distance to account for the localization and sensing
uncertainties. While inflated obstacles aid in maintaining a
safe distance, they can prevent robots from entering tight
corridors and doorways typical in many indoor environments.

Robust MPC planners consider a bounded set of
uncertainties to plan a safe trajectory and can provide
safety guarantees [17]. However, accounting for the entire
uncertainty set can result in infeasible solutions in dense and
crowded scenarios. Moreover, the uncertainty distribution
such as from Kalman filters, could be unbounded. In [18],
a nonlinear-MPC is used for trajectory planning where the
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robot’s bounding volume is enlarged by 3 − σ confidence
bound. Like other bounding volume expansion methods they
can result in conservative behavior or infeasibility.

Recently, chance constraints have been widely used
for decision-making under uncertainty [19], where the
optimization maintains the probability of the collision
constraint violation below a threshold. However, evaluating
chance-constrained optimization is computationally
intractable, and the constraints are generally approximated
by assuming Gaussian uncertainty [20] or simple agent
dynamics such as single integrator [21] for tractable
implementation. Groot et al. [22] reformulate the chance-
constrained optimization using a scenario approach and
explicitly constrain the joint collision probability of the
planned trajectory over the obstacles. Although chance
constraints are less conservative than bounding volume
expansion, continually accepting some risk could be
inappropriate. Moreover, transitioning across the user-
defined probability threshold can result in infeasibility,
requiring drastic transitioning behavior such as aggressive
braking, which is generally unsuitable for real robots.

Park et al. [1] present MPEPC, a stochastic MPC
formulation that generates smooth local trajectories through a
low-dimensional, unconstrained optimization. The approach
desires probabilistic safety guarantees that are more suitable
for real-world scenarios with uncertainty. In [23], this
approach has been extend with a terminal cost formulation
to reduce deadlocking behavior.

B. Main Contribution

We address the problem of over-conservatism in stochastic
trajectory planning by presenting two novel contributions that
build on the MPEPC [1], a stochastic MPC framework for
navigation. Our main contributions are as follows:

• A closed-form approximation of the collision
probability that naturally models the propagation of
uncertainty over the planning horizon by incorporating
the flattening of the probability distribution. This
generalized collision probability improves navigation
behavior by resulting in more confident (higher
velocity) motion in tight corridors. (Sec. III)

• A collision cost that in addition to limiting the robot’s
velocity under high collision probability, encourages the
robot to navigate away from obstacles when desirable.
Thus reducing conservative freezing behavior. (Sec. IV)

• Further, we provide proof for the forward invariance and
stability of our navigation approach. (Sec. V)

We present experimental results in both simulated
and real-world complex static environments, demonstrating
improved navigation behavior compared to the baseline [1].
Further, we analyze the tunable parameters of the collision
probability and the collision cost function to demonstrate
their effect on the navigation behavior.

II. PRELIMINARIES

We present an overview on the trajectory parameterization
and the stochastic MPC framework used in our work.

A. Closed Loop Trajectory Parameterization

Consider navigating a robot to a target pose T located at a
distance r away from the robot. Let θ denote the orientation
of T with respect to the line of sight between the robot and
T . Let δ denote the orientation of the robot with respect
to the line of sight. Then the coordinates given by (r, θ, δ)
define the target T relative to the robot’s pose.

Given a target T , Park et al. [24] define a pose-following
control law that can navigate the robot towards (r, θ, δ). The
control law is given by,

ω =
v

r

[
k2(δ − arctan(−k1θ)) +

(
1 +

k1
1 + (k1θ)2

)
sin δ

]
. (1)

Here, v and ω define the linear and angular velocity,
respectively, while k1 and k2 are gain parameters. A
curvature-dependent velocity is chosen based on the
maximum velocity vmax. Given z∗ = (r, θ, δ, vmax), the
control law completely describes the trajectory of the robot
converging to T . Thus, z∗ parameterize a set of closed-loop
trajectories that are realizable by the robot and smooth.

B. Robot Navigation via Stochastic MPC

MPEPC [1] presents a local trajectory planner based on
unconstrained model predictive control. At each planning
cycle, the planner optimizes to choose a suitable trajectory
parameter z∗ that maximizes the robot’s progress towards
the goal while maintaining safety and smoothness of the
trajectory. Let qz∗ : [0, T ] → C denote the continuous
trajectory generated by smooth control law for the parameter
z∗ over a time horizon T. Here, C ≃ R2 × S1 is the
configuration space of the robot. For trajectory evaluation,
the continuous trajectory is divided into N trajectory
segments. The trajectory cost function is given by,

J =

N∑
i=1

psi ·Jprogressi +Jactioni +(1−psi) ·Jcollisioni (2)

1) Survivability (psi ): The probability of collision (pci )
over the ith trajectory segments is modeled as a bell-shaped
function.

pci
(
doi , σi

)
= exp

(
−

d2oi
σ2
i

)
(3)

where doi is the minimum distance (non-negative) between
the robot and the closest obstacle and σi is an uncertainty
measure associated with the robot’s localization. The
collision probability is used to define the notion of
survivability (psi ), which is the probability of the trajectory
being collision-free until the current segment.

psi =

i∏
k=1

(1− pck) (4)

2) Uncertainty Estimation: Given an initial uncertainty
σ(t0) associated with the robot’s localization, the uncertainty
grows over the planning horizon and is modelled as a
function of the robot’s speed [25]. The uncertainty at a time
ti at the end of the ith trajectory segment is given by,

σ(ti) = min(σ(t0) +
∑i

k=1

√
λv · v̄2k + λω · ω̄k

2, σmax). (5)

9322



(a) Baseline pc (b) Generalized pc (proposed)

Fig. 1: The surface of the collision probability as a function of
distance to obstacle and uncertainty values. From the contour plot
for the σ axis, we can observe that, for the Baseline pc (Eqn. 3),
the area under the curve monotonically increases with increasing
uncertainty value, while for the generalized pc (Eqn. 8), the
probability distribution flattens with increasing uncertainty value.

v̄ and ω̄ are the average linear and angular velocities of the
robot over the trajectory segment. λv and λω are constant
weights. The maximum uncertainty is given by σmax.
Equation 5 models the intuition that, for a stationary robot,
it is not entirely accurate for the uncertainty to grow over
the planning horizon. In addition, for feedback controlled
systems, the uncertainty is bounded by some σmax.

3) Progress Cost (Jprogress): The progress term measures
the distance travelled towards the target T over the
trajectory segment. NF is the navigation function; in our
implementation it is the Euclidean distance to goal.

Jprogressi = NF (qz∗(ti))−NF (qz∗(ti−1))

4) Action Cost (Jaction): The action cost is a quadratic
function on the velocity and limits large actions.

Jactioni = (cv · v2i + cω · ω2
i ) · h

Here, cv, cω are constant weights and h denotes the time
duration of the trajectory segment.

5) Collision Cost (Jcollision): The collision cost is a
function on the robot’s velocities and discourages motion
when the robot is under a high probability of collision.

Jcollisioni = r0 + rv
(
|vi|+ |ωi|

)
· h.

Here, r0, rv are constant weights and h denotes the time
duration of the trajectory segment.

III. GENERALIZED COLLISION PROBABILITY

As the uncertainty propagates over the planning horizon,
we are less confident about the robot’s localization. Thus,
the uncertainty in the robot’s relative position grows, leading
to a flattening of the collision probability distribution. That
is, given a long enough planning horizon, the distribution
eventually flattens to a uniform distribution.

A limitation of the bell-shaped collision model (Eqn. 3)
is its inability to model this propagation of uncertainty. As
a result, the probability of collision for any finite distance
d increases monotonically with growing uncertainty. In
practice, this deficiency manifests itself as a robot behaving
conservatively in narrow spaces when it is physically safe to
move faster. To address this issue, we present a generalized
collision probability which is closed-form approximation that
naturally models the flattening behavior with a minimal
number of tunable parameters.

A. Modeling Flattening of Collision Probability

In cases where uncertainty is high, an estimated distance of
zero to an obstacle no longer guarantees a collision. Thus, we
require the robot to significantly overlap with the obstacle to
be certain of a collision (i.e., pc = 1). That is, we must have
a certain level of penetration or minimum collision depth to
be certain of a collision.

Let σc denote the critical uncertainty threshold at which
the flattening effect begins to show; then minimum collision
depth as a function of uncertainty can be represented by

d̃(σ|σc) ≡ λd ·max(σ − σc, 0). (6)

In addition, flattening the probability distribution peak also
causes a spread of the distribution’s tail, which can be
modelled by an effective uncertainty value. The effective
uncertainty σeff is given by

σeff ≡ (1 + λd · λσ) · σ. (7)

Here, λd and λσ are weight parameters for collision depth
and tail spread respectively. Incorporating the collision depth
and effective uncertainty with the bell-shaped collision model
(Eqn. 3), the generalized collision probability is given by

pc(d, d̃, σeff ) = exp

(
− max(d+ d̃, 0)2

σ2
eff

)
. (8)

Where d is the minimum separating distance (or penetration
depth) between the robot and obstacle. For an uncertainty
σ < σc, the effective uncertainty σeff > σ, and the
collision probability is equivalent to the original collision
probability function (Eqn. 3) with a larger uncertainty. While
for σ > σc, the effect of peak flattening and tail spread begins
to show. Thus, our proposed collision probability provides a
larger gradient (than Eqn. 3) to move the robot away from
the obstacle in the initial segments of the trajectory, while
enabling the planner to choose longer trajectories (especially
in tight spaces) due to the modeling of flattening and tail
spread in the later segments of the trajectory. We highlight
that, for parameters σc, λd, λσ set to zero, our proposed
collision model reduces to the baseline model (Eqn. 3). The
baseline and generalized collision probabilities (proposed)
are illustrated in Figure 1. Moreover, with a reliable motion
predictor for dynamic objects, we can extend the formulation
to dynamic obstacles, factoring in relative velocity and
distance over time.

IV. UNFREEZING THE ROBOT

Under a high probability of collision (from Eqn. 4, ps →
0), the collision cost is weighed larger (Eqn. 2) and dictates
the robot’s navigation behavior. The cost function reaches
a minimum when the robot’s velocity is zero, encouraging
the robot to stop or freeze. We propose a collision cost
that smoothly slows down the robot in low survibability
condition, but also allows it to move away from obstacles
when needed, while provably preserving forward invariance.

Let’s consider a scenario with a robot near an obstacle
tasked with reaching a goal location in the free space such
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that a safe trajectory to the goal exists. Due to the low
survivability at the initial state (ps1 → 0), the robot remains
stationary, resulting in an overly conservative navigation
behavior. We can argue that even under such scenarios,
trajectories that increase the distance to the obstacle are safe
as they improve the overall safety.

Our proposed cost function models this behavior in static
environments, and the collision cost is a function of the
robot’s velocity and the change in distance to the static
obstacle (∆do) over the trajectory segment.

We present active and passive collision cost function
which differ in their ability to induce motion in the robot
in the absence of any progress cost. The first case maintains
the collision term passive and merely helps the robot move
towards the goal in desirable cases in the presence of a
negative progress cost. In the second case, the term is active
and the cost can repulse the robot from obstacles to improve
safety even in the absence of a negative progress cost.

A. Case 1: Passive Collision Term

Here, we maintain the range of collision cost as non-
negative (i.e., Jcollision ≥ 0). The linear velocity term |v| ·h
is the distance traversed in that time step. The ∆do term is a
fraction of the |v|·h term for static obstacles. Thus, weighing
∆dobs term lower than |v| · h ensures the collision term
will remain non-negative, but its positive value is reduced in
trajectory segments that increase the distance to obstacles.
Given a sufficient fraction of the progress term is acting, the
robot would be able to move towards the goal.

Jcollisioni
= (c · [|vi|+ |ωi|] · h− c′ ·∆doi) (9)

0 ≤ c′ ≤ c ≤ 1 (10)

B. Case 2: Active Collision Term

Here, we weigh the ∆do larger than the velocity term
and can actively (over-)compensate for the velocity term.
The collision term can have a negative range and provides
a gradient maneuvering the robot away from obstacles even
without a negative progress cost.

However, naively allowing a negative value for our
collision cost by having c′ > c can result in unsafe behavior.
Consider a trajectory that passes through an obstacle initially
but eventually moves to a safe distance away from the
obstacle. In this case, the negative collision cost from moving
away from the obstacle can compensate for the positive
cost from a few trajectory segments in collisions. That is,
even though the trajectory is colliding, the summation of the
collision cost terms over the entire trajectory is negative.
Ideally, we require the robot to be stationary when in a
collision to not worsen the situation by moving.

To ensure this safe behavior, we introduce a function Icoll
that indicates if the trajectory until the current trajectory
segment is collision-free. If not, the ∆do term is reduced
to zero. This ensures that the summation of collision cost
terms over a trajectory is negative only when the robot moves
away from the obstacle using a non-colliding trajectory. The

collision cost is given by,

Jcollisioni
= (c ·

[
|vi|+ |ωi|

]
· h− c′ · Icoll(i) ·∆doi

)
. (11)

The weights c, c′ and the indicator Icoll are defined as,

0 ≤ c ≤ 1, c′ > c (12)

Icoll(i) = Icoll(i− 1) · 1(pc(i) > p∗c). (13)

p∗c is user-defined probability threshold to indicate collision.

V. SAFETY AND STABILITY

In this section, we prove the forward invariance and
stability of our navigation approach in static environments.
For simplicity, we assume a circular agent (ω does not affect
the distance to goal or obstacle) and we consider only the
progress and collision cost terms in the following proofs.
The cost function is given by,

J =

N∑
1

psi ·∆dpi
+ (1− psi) · (c · |vi| · h− c′∆doi),

where, ∆dpi is the progress made towards the goal, and
∆doi is the change in distance to the static obstacle over
the trajectory segment. A negative ∆dpi

implies the robot
moves towards the goal and a negative ∆doi implies the
robot moves towards the obstacle.

Proposition 1. The (1 − psi) term is monotonically non-
decreasing over time. That is, (1− ps1) ≤ (1− ps2) ≤ ... ≤
(1− psn). Proof: From ps definition (Eqn. 4).

Proposition 2. Goal progress (dpi
) and the change in

distance to the static obstacles (doi ) are bounded by the
distance moved over the trajectory segment (product of
robot’s absolute velocity and time step).

∆dpi
= αi · |vi| · h ≤ |vi| · h, −1 ≤ αi ≤ 1 (14)

∆doi = βi · |vi| · h ≤ |vi| · h, −1 ≤ βi ≤ 1 (15)

Definition 1. Let C ⊂ Rn be a set defined as the super-level
set of a continuously differentiable function h : D ⊂ Rn →
R. Then any trajectory qz∗ = argmin J for the system ẋ =
f(x) render the set C invariant. Additionally, minimizing J
outside C either retains or reduces the distance to set C,
showing stability.

Lemma 1. Forward Invariance: A robot starting within a
set C (safe set) continues to remain within C provided the
trajectory is selected by minimizing cost function J .
Proof: The trajectory cost can be written as,

J =

N∑(
psi ·

(
∆dpi −(c · |vi| ·h−c′ ·∆doi)

)
+c · |vi| ·h

)
− c′ ·

N∑
∆doi .

To prove forward invariance, let us consider the robot at
the end of the trajectory has moved closer to the obstacle.
That is,

∑N
∆doi < 0. This results in −c′ ·

∑N
∆doi > 0.

For |vi| = 0, we have J = 0. Since we minimize J , for the
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(a) t = 0s (b) t = 10s (c) t = 20s

Fig. 2: A robot navigating through a narrow, L-shaped corridor
using the baseline pc formulation in MPEPC [1]. The over-
estimation of the collision probability hinders the robot from
confidently navigating through the narrow corridor.

cost function to induce motion, J should be negative. Thus,
for one or more trajectory segments i, we need

psi ·
(
∆dpi

− (c · |vi| · h− c′ ·∆doi)
)
+ (c · |vi| · h) < 0.

From proposition 2, we can write

⇒
(
psi ·

(
αi − c+ c′ · βi) + c

)
· |vi| · h < 0

Since |vi| · h ≥ 0, and by setting the minimum value for
α, β = −1, let us identify the constraint on psi which would
always keep the term non-negative. We get,

psi ≤
c

1 + c+ c′

With initial trajectory segment i = 1 above this psi
threshold (then psi < ps1 , ∀i > 1 from Prop. 1), the cost
function will not induce motion and this loose bound defines
the boundary of the safety set.

C =

{
x ∈ D

∣∣∣∣ ps1 ≥ c

1 + c+ c′

}
We highlight that the Icoll in the active collision term does
not affect the proof. As even if a trajectory passes through
the obstacle (at a trajectory segment k) starting from the
safe set C, the

∑k
∆doi < 0 is true, since the robot moves

towards the obstacle.

Lemma 2. Stability: A robot starting in D outside the safe
set C, selecting a trajectory by minimizing cost J reduces its
distance to the safe set at trajectory end state when it moves.
Proof: Consider the robot is located outside set C, and the
robot moves, that is, J < 0. From the above lemma we know
the when the bound on p1 is not satisfied, the following term
is non-negative. That is,∑N

(
psi ·

(
∆dpi

− (c · |vi| · h− c′ ·∆doi)
)
+ c · |vi| · h

)
≥ 0.

Hence, for J < 0, we need

−c′ ·
∑N

∆doi < 0 ⇒
∑N

∆doi > 0.

That is, the robot moves away from the obstacle. In the
active case, if the trajectory passes through an obstacle then∑N

∆doi > 0 is not possible because of the Icoll.

VI. RESULTS AND DISCUSSION

In this section, we evaluate our approach against the
baseline (MPEPC [1]) in both real-world and Gazebo
simulations using a non-holonomic ground robot measuring
≈ 50cm × 25cm. Our implementation utilizes NLOPT [26],
an off-the-shelf optimization package.

(a) t = 0s (b) t = 10s (c) t = 20s

Fig. 3: The figure illustrates the robot navigating through a narrow,
L-shaped corridor. The proposed pc formulation successfully
navigates the robot to the goal.

(a) Success Rate (b) Mean Velocity (c) Min. dobs

Fig. 4: Heat maps (for σc = 0) illustrating the effect on navigation
performance with λd and λσ values while navigating a narrow U-
shaped corridor. We observe increasing λd improves robots mean
velocity while also affecting success. While increasing λσ increases
the minimum distance to obstacle.

(a) Success Rate (b) Mean Velocity (c) Min. dobs

Fig. 5: Heat maps (for σc = 0.01): We observe increasing the σc

value from Fig. 4 improves the success rate while maintaining a
higher mean velocity than [1] (λd = 0, λσ = 0 case in Fig. 4).

(a) MPEPC [1] (b) w/ Passive Term (c) w/ Active Term

Fig. 6: This figure compares the performance of the original
MPEPC formulation with our proposed approach with passive
(center) and active (right) collision terms. The star indicates the
goal location.

A. Narrow Space Navigation

Figs. 2 and 3 illustrates the robot’s motion through a
narrow, L-shaped corridor. The original collision probability
formulation (Fig. 2) overestimates the collision probability
and behaves conservatively, failing to guide the robot to
the goal. In contrast, the proposed collision probability
formulation (Fig. 3) swiftly navigates the robot through the
corridor. In addition, the proposed formulation results in
confident navigation (higher speed) in the straight section
of the corridor (between t = 0 to 10s).

The tunable parameters (σc, λd, λσ) in pc affect the speed
and safety of the navigation. Through Figs. 4 and 5, we
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(a) t = 0s (b) t = 2s (c) t = 4s (d) t = 0s (e) t = 2s (f) t = 4s

Fig. 7: Real-World Experiments: Snapshots of the robot navigating through a narrow space between the wall and the couch. [Figs.
(a)-(c)] The baseline (MPEPC [1]) is used in this case, which overestimates the collision probability, preventing the robot from navigating
through the passage. [Figs. (d)-(f)] The proposed generalized collision probability is used in this case, which models the propagation of
uncertainty over the planning horizon, helping the planner choose longer trajectories. The robot is seen to navigate confidently through
the passage. The parameter values used are (λd = 1.5, λσ = 0.1, σc = 0.01).

(a) MPEPC [1] (b) w/ Passive Term (c) w/ Active Term

Fig. 8: Real-World Experiments: We evaluate our approach in the
scenario with the robot initially at the goal. Our approach with the
active collision terms is seen to move the robot away from the wall
to improve safety.

demonstrate the influence of tunable parameters (σc, λd, λσ)
on the navigation performance, particularly the success rate,
the mean velocity of the robot, and the minimum distance
to the obstacle. We consider a U-shaped corridor for this
evaluation, and we present the results as a set of 2D heatmaps
for each σc value. We choose three values each for λd and
λσ , which gives us nine permutations for a given σc value.
Each heatmap entry represents an average value from five
simulation runs.

Fig. 4 represents the case with σc = 0. The parameters
λd = 0, λσ = 0 represent the baseline pc. We observe that
the original formulation navigates the robot to the goal safely,
but the robot navigates with a mean velocity of ∼ 0.2m/s,
which is lower than the other cases. In addition, the robot
maintains a minimum distance of ∼ 3.2cm to the obstacles,
which is larger than the other cases.

On increasing the value for λd, the minimum collision
depth required to confirm a collision increases. This reduces
the collision probability in comparison to the original
formulation, resulting in a slightly lower success rate (in
Fig. 4.a)), higher mean velocity (in Fig. 4.b)), and lower
minimum distance to the obstacles (in Fig. 4.c) in comparison
to the original formulation. Increasing the value for λσ

increases the tail spread (increases the effective uncertainty)
and shows a high success rate and increased minimum
distance to the obstacle.

σc determines when the effect of minimum collision depth
starts to act. From Fig. 5, we observe that for σc = 0.01, the
success rate increases while still maintaining the improved
mean robot velocity. Hence, it results in confident navigation
while still maintaining safety.

B. Unfreezing the robot

In Fig. 6, we consider a scenario with the robot located
in close proximity to a wall. The collision probability at the
initial state of the trajectory is near one due to the relatively
small distance to the wall and the localization uncertainties.
For this evaluation, the we use the value c = 0.5 and c′ =
0.49 for the passive collision term, and c = 0.5 and c′ = 0.6
for the active collision term.

In Fig. 6, the robot is tasked with reaching a goal in front
of it (represented by a star). We observe the baseline MPEPC
formulation fails to navigate the robot to the goal, as the
collision cost minimizes the robot’s velocity to remain safe.
In the case of our proposed passive and active collision term
(Fig 6.b-6c), successfully navigates the robot to the goal. We
note that chance constraint methods [20] can be impractical
in such a scenario as the initially high collision probability
leads to infeasible constraints, causing robot freezing.

C. Real-world Experiments

Fig. 7 show a sequence of snapshots of a robot navigating
through a narrow passage between a wall and the couch. We
observe in the case with the proposed approach (Fig. 7.d-
7.f), the robot navigates confidently through the passage,
while with MPEPC (Fig. 7.a- 7.c) the robot hesitates to enter
the passage. Our proposed method distinctly outperforms the
baseline in this case.

In Fig. 8, the robot is already at the goal near a wall. From
a safety standpoint, it is desirable for the robot to increase
its distance to the wall. With the MPEPC formulation and
our proposed approach with passive collision cost, the robot
remains stationary, while the approach with active collision
cost provides a gradient to repulse the robot from the wall.

VII. CONCLUSION AND FUTURE WORK

In this paper, we address the problem of over-conservatism
in probabilistic trajectory planners. We introduced a closed-
form approximation for the collision probability, which
results in confident navigation (i.e., higher velocity) in tight
spaces such as narrow corridors. In addition, we presented
two formulations for collision cost that both slow robots
down in low survivability and allows them to move away
from obstacles. Further, we showed our approach maintains
forward invariance and stability. As a future work, we plan
address more dynamic cases involving multiple pedestrians.
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