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Abstract— Safe reinforcement learning (Safe RL) refers to a
class of techniques that aim to prevent RL algorithms from
violating constraints in the process of decision-making and
exploration during trial and error. In this paper, a novel model-
free Safe RL algorithm, formulated based on the multi-objective
policy optimization framework is introduced where the policy
is optimized towards optimality and safety, simultaneously. The
optimality is achieved by the environment reward function that
is subsequently shaped using a safety critic. The advantage
of the Safety Optimized RL (SORL) algorithm compared to
the traditional Safe RL algorithms is that it omits the need
to constrain the policy search space. This allows SORL to
find a natural tradeoff between safety and optimality without
compromising the performance in terms of either safety or
optimality due to strict search space constraints. Through
our theoretical analysis of SORL, we propose a condition for
SORL’s converged policy to guarantee safety and then use
it to introduce an aggressiveness parameter that allows for
fine-tuning the mentioned tradeoff. The experimental results
obtained in seven different robotic environments indicate a
considerable reduction in the number of safety violations along
with higher, or competitive, policy returns, in comparison to
six different state-of-the-art Safe RL methods. The results
demonstrate the significant superiority of the proposed SORL
algorithm in safety-critical applications.

I. INTRODUCTION

Reinforcement learning (RL) is a class of machine learning
methods where an agent learns to make decisions by inter-
acting with an environment to maximize rewards. However,
the trial-and-error nature of training RL algorithms makes
them challenging to use in safety-critical applications where
the execution of some actions might lead to system failure.
To tackle this, Safe RL algorithms aim to incorporate safety
into the learning process to ensure that the policy learned by
the algorithm avoids dangerous states. These algorithms have
been applied successfully in various real-world domains such
as robotics [1], [2] and autonomous driving [3] showing their
great potential to enable the control of real-world systems
with a minimized total number of failures.

As reviewed extensively in [4]–[6], most of the Safe
RL methods utilize the Constrained Markov Decision Pro-
cess (CMDP) framework. Algorithms under this framework
specify a level of safety that the policy must adhere to
while exploring unknown states and improving its reward
performance. However, a major disadvantage of this class
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Fig. 1: Visualization of the simulated safety-concerned
robotics environments used to evaluate SORL in the

context of three main safety topics of system-level safety
(a-d), collision avoidance (e,f) and safe manipulation (g).

The top row also showcases some possible constraint
violation for the system-level safety benchmarks.

of algorithms is their susceptibility to converge to a subop-
timal policy due to suboptimal tuning of the safety-related
hyperparameters.

To mitigate this, our work presents a novel model-free
Safe RL algorithm, named Safety Optimized Reinforcement
Learning (SORL), designed to enhance both safety and
reward performance of the agent, simultaneously. Unlike
conventional methods, we tackle the Safe RL problem as
a multi-objective policy optimization problem, which allows
us to introduce a reward-shaping technique that encourages
the agent to explore the environment safely while striving
to achieve better performance. This formulation provides
an advantage over other model-free Safe RL approaches by
eliminating the need to fine-tune the degree of constraining
the policy search space (i.e., ϵsafe). As a result, the algorithm
will be able to reach a natural trade-off between performance
and safety. Through our analysis of SORL, we guarantee
the safety of its converged policy through a condition.
This condition motivates the introduction of the concept of
aggressiveness in our algorithm which provides an intuitive
way to tune the hyperparameters of the proposed algorithm.

Finally, to demonstrate the effectiveness of our proposed
algorithm we conduct experiments in seven different safety-
concerned simulated robotics problems, which are divided
into three main safety topics, namely system-level safety,
collision avoidance, and safe manipulation. The tasks are
visualized in Fig. 1. The algorithm is compared with six other
state-of-the-art model-free Safe RL methods. Our results
indicate superior performance in both optimality and safety
aspects.
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II. RELATED WORK

Numerous approaches in the literature address safe rein-
forcement learning. Altman et al. [7] studied RL algorithms
under CMDP framework which aims to train them while
satisfying certain constraints. In this regard, Lagrangian
methods [8] are widely employed for efficient CMDP reso-
lution. Shen et al. [9] introduced the risk-sensitive policy
optimization (RSPO) algorithm which decreases the LR
optimization term to 0 sequentially. Furthermore, Tessler et
al. [10] introduced Reward-constrained policy optimization
(RCPO), which optimizes policy and Lagrange multiplier
via dual gradient descent. Furthermore, Zhang et al. [11]
proposed the First-Order Policy Optimization (FOCOPS)
method, which identifies the optimal update policy through
constrained optimization in a nonparametric policy space and
subsequently maps it back into the parametric policy space.
Stooke et al. [12] incorporated proportional and derivative
control into the Lagrange multiplier updates.

Moreover, another approach in the literature to tackle the
problem of Safe RL is through modifying unsafe actions
locally, meaning they modify the action when it is identified
as leading to an unsafe state. Srinivasan et al. [13] uses
LR formulation and rejects unsafe policy actions above a
safety threshold. Dalal et al. [14] applies a modification to
the reward policy’s action using a safety layer that solves
its formulation analytically. Furthermore, Yu et al. [15]
proposed SEditor that trains a safety editing policy that
modified the selected actions considered as unsafe into safe
actions. Koller et al. [16] introduce a learning-based model
predictive control (MPC) framework with high probabilities
of safety constraint satisfactions which is attained through
a Gaussian process statistical model. Hsu et al. [17] intro-
duced an unsupervised action planning method that stores
the agent’s recovery actions for leaving unsafe areas in
a dedicated replay buffer, subsequently utilizing it when
the agent faces an unsafe state. Safe model-based policy
optimization (SMBPO) [18] proactively plans a brief horizon
into the future to anticipate and prevents safety violations
by applying penalties to unsafe trajectories. Recovery RL
[19] balances exploration and safety through the utilization
of either a backup policy, employed for ensuring safety, or
MPC to determine the optimal action sequence.

Finally, it is noteworthy that most of the aforementioned
methods require the specification of the extent to which
the policy is limited, whether using CMDP framework or
attempting to detect unsafe actions, which necessitates the
careful fine-tuning of the safety threshold.

III. PRELIMINARIES

In this section, the basic background concepts and formu-
lations are explained. First, the MDP framework is explained
and the safety critic and reward penalty framework are
discussed.

A. Markov decision process

Reinforcement learning is trained under Markov Deci-
sion Process (MDP) framework which is presented as <

S,A, P, r, γ, µ > and is outlined in [20]. The MDP is
composed of a state space S, an action space A, and a
reward function r : S ×A×S 7→ R. The transition function
P : S×A×S 7→ [0, 1] determines the probability P (s′|s, a)
of transitioning from state s to s′ by executing action a. The
initial state distribution, µ : S 7→ [0, 1], and the discount
factor, γ ∈ [0, 1), are also included. Finally, the policy
π : S 7→ ∆A is the probability distribution over actions,
with π(a|s) indicating the likelihood of taking action a at
state s. The value function of a policy π for a state-action
pair (s, a) and the resulting recursive equation, called the
Bellman equation, can be written as:

Qπ
r (s, a) = Est∼P,at∼π[

∞∑
t=0

γtr(st, at)|s0 = s, a0 = a]

= Es′∼P [r(s, a) + γV π
r (s′)]

(1)

The ultimate objective of an RL algorithm is to maximize
the expected discounted cumulative return given the initial
state distribution µ:

π∗ = argmax
π∈Π

Jπr = argmax
π∈Π

Eπs0∼µ[
∞∑
t=0

γtrt] (2)

B. Safety critic

The safety critic Qπ
safe as described in [13], is based on

the safety-aware MDP framework, which is represented as
< S,A, P, r, c, γ, γsafe >. The safety critic’s discount factor
is denoted by γsafe, and the safety signal c(s) is used to
determine whether a given state s is safe or not:

c(s) =

{
1 if s ∈ Sunsafe

0 otherwise
(3)

The main purpose of the safety critic is to estimate the
likelihood of a policy failure in the future, based on the
expected cumulative discounted probability of failure:

Qπ
safe(s, a) = Est∼P,at∼π

[
c(s) + (1− c(s))

∞∑
t=1

[γtsafec(st)]
]

= Pr[c(s) = 1] + γsafeEs′∼P
[
(1− c(s))V π

safe(s
′)
]

(4)

C. Reward penalty framework

Generally, the main purpose of Safe RL algorithms is to
identify, and avoid, the set of states that violate the safety
constraints, which are refered to as Sunsafe. To do so,
similar to the previous works on Safe RL [18], [21], we can
characterize a subset of the state space that are not considered
unsafe but will lead to an unsafe state inevitably:

Definition 1: A state s ∈ S is considered Irrecoverable
if for any sequence of actions a0, a1, a2, ..., starting from
state s0 = s and following the transition probability st+1 ∼
P (st, at) ∀t ∈ N, there exists some time step t̄ ∈ N s.t.
st̄ ∈ Sunsafe.

Naturally, based on the definition, the safe state space
Ssafe encompasses the subset of the state space which are
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neither categorized as unsafe nor irrecoverable. Correspond-
ingly, an action is considered safe if executing it leads to a
safe state. Furthermore, we can assume a soon occurrence of
safety violation after entering into it an irrecoverable state:

Assumption 1: For any state s0 ∈ Sirrecoverable and
for any sequence of actions a0, a1, . . . starting from s0
and st+1 ∼ P (st, at) ∀t ∈ N, there exists t̄ ∈
{1, ...,H∗} s.t. st̄ ∈ Sunsafe.

Finally, based on the reward penalty MDP
< S,A, P, r̃, γ > which is introduced in [18], the
reward function can be modified as:

r̃(s, a) =

{
r(s, a) if s /∈ Sunsafe

−C otherwise
(5)

where C satisfies the following inequality:

C >
rmax − rmin

γH∗ − rmax (6)

The terminal state cost C ∈ R is used to penalize the RL
agent when unsafe trajectories are executed.

IV. METHOD

In this work, a model-free safe reinforcement learning
algorithm is proposed which uses safety signals to avoid
unsafe regions. In the training process, the safety critic is
used to modify the reward function such that exploration in
unsafe regions is prevented.

A. Multi-Objective Policy Optimization

Unlike the conventional Safe RL setting where the al-
gorithm is trained under the Constrained MDP framework,
we formulate SORL in a multi-objective policy optimization
setting [22], [23]. To this end, we propose Safety-aware
reward penalty MDP < S,A, P, r̃, c, γ, γsafe >. Under
this setting, in multi-objective policy optimization, there are
multiple (often conflicting) objectives and the aim is to
optimize the objectives simultaneously. For this purpose, the
policy performance is defined as a 2-dimensional vector:

J(π) =

[
Jr(π)
Jc(π)

]
=

[
Eτ∼π[

∑∞
t=0 γ

trt]
Eτ∼π[

∑∞
t=0 γ

tct]

]
(7)

Furthermore, according to the Multi-Objective optimiza-
tion literature, the dominance of a policy π relative to π′

can be defined as:

if


Jr(π) ≥ Jr(π

′)

and

Jc(π) ≤ Jc(π
′)

⇒ J(π) ≽ J(π′) (8)

The field of multi-objective deep reinforcement learning
is an active area of research that encompasses various
methodologies aimed at optimizing the expected return of
a set of potentially conflicting reward functions [24]. One
widely-used approach for addressing this challenge involves
scalarizing the reward vector using a scalarization function,
which enables the optimization of the scalarized function
and, subsequently, the optimization of all rewards. In the

context of SORL, the objective is to devise a reward-shaping
scheme (r̂) that optimizes both performance functions by
optimizing a single policy:

Jr̂(π) ≥ Jr̂(π
′)⇒ π ≽ π′ (9)

B. Safety Optimized Reward Shaping

To address Eq. 9, the notion of the reward function as
a vector consisting of the actual reward function r and the
safety signal function c seems plausible. However, it is not
possible to use the safety signal directly in the scalarization
function as it is a sparse function and its immediate value
does not bear much significance. To this end, we propose the
augmented reward function, based on the safety estimate of
the safety critic, defined as:

r̃(st, at) =

{
[1− λQπ

safe(st, at)]r(st, at), if r(st, at) ≥ 0

λQπ
safe(st, at)r(st, at), otherwise

(10)
where λ > 0 is defined as the safety critic significance

factor. Finally, under the safety-aware reward penalty MDP
framework, the final reward shaping will be as follows:

r̂(st, at) =

{
r̃(st, at), if st+1 ∈ Ssafe

−C, otherwise
(11)

C. Safety Guarantee

The aim of this section is to guarantee the safety of the
converged policy when Eq. 11 reward shaping scheme is used
which will help us during the hyperparameter tuning phase.
To prove the theorem, the following assumptions are used:

Assumption 2: The reward function r is bounded in the
range [rmin, rmax] where rmin < 0 and rmax > 0.

Assumption 3: The environment is deterministic in
terms of the safety violations. In other words, for any state
s ∈ S, Pr[c(s) = 1] is either 0 or 1.
In order to provide a safety guarantee we must first study
the irrecoverable states discussed in section III-C. Using As-
sumption 1 allows for further categorizing the irrecoverable
states into levels of unsafety.

Lemma 1: In an environment where Assumption 1
holds, for any trajectory τ = {(s0, a0), ..., (s|τ |, a|τ |)} where
s0 ∈ Sirrecoverable, st ∼ P (st−1, at−1), and s|τ+1| ∼
P (s|τ |, a|τ |) ∈ Sunsafe, and for any t ∈ {1, ..., |τ |} we have:

Qπ
safe(st, at) ≥ (γsafe)

H∗−t (12)
Proof: Recall that from Assumption 1 we know the

length of the trajectory is |τ | ≤ H∗. Moreover, at any
time step t and its corresponding state st, consider the
space of all the trajectories that start from st: Tt = {τ ′ :
(s′0 = st, a

′
0), . . . , (s

′
|τ ′|, a

′
|τ ′|), s

′
|τ ′+1| ∼ P (s|τ ′|, a|τ ′|) ∈

Sunsafe}. Suppose there exists a trajectory τ ′ ∈ Tt with
|τ ′| > H∗ − t. Consequently, the concatenation τ(s0 :
st)∪τ ′ will have a length greater than H∗ which will violate
Assumption 1 since there will then exist a trajectory from
the irrecoverable state s0 with a length greater than H∗.
Therefore, based on the original trajectory τ , we can con-
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clude that max
τ ′∈Tt

|τ ′| ≤ H∗ − t. Finally, by the definition of

the safety critic in Eq. 4 and using Assumption 3, the lower
bound can be achieved.

It is noteworthy that to establish safety bounds for the
safety critic’s evaluation in safe states, we need to make
assumptions about the policy’s behavior and its interactions
with the environment because in some cases, the policy may
choose unsafe actions even in safe states, making the safety
critic’s output an expectation that includes both safe and
unsafe actions. Therefore, to maintain a broad analysis, we
avoid making such limiting assumptions.

Theorem 1: Under the safety-aware reward penalty
MDP framework, let the following condition for safety critic
significance factor λ hold:

rmax
1− γ

− rmax + C

1− γ
γ|τ∗

uwc|

< (
γH

∗

safermax

1− γ
γsafe

−
γH

∗

safermax

1− γ
γsafe

(
γ

γsafe
)|τ

∗
uwc| +

γsafermin
1− γ

)λ

(13)
where C and |τ∗uwc| follow Eq. 6 and Eq. 16, respectively.
Consequently, for any state s we have: Q̂∗(s, a) > Q̂∗(s, a′),
where action a is safe, a′ is unsafe, and Q̂∗ is the Q∗ value-
function following Eq. 11 reward-shaping.

Proof: By Assumption 1, if a′ is unsafe, it is going to
lead to an unsafe state in at most H∗ steps. Therefore, by
Assumption 2, the maximum discounted return in the worst-
case scenario can be expressed as a function of the length
of the trajectory before reaching the unsafe state:

Rπwc(|τ |) =
|τ |−1∑
t=0

(γt
[
1− λQπ

safe(st, at)
]
rmax) +

∞∑
t=|τ |

(γt(−C))

(14)
While it is possible to ignore the safety critic term and upper
bound the equation, we provide a tighter upper bound in our
case. We first use Lemma 1 to upper bound the function (in
the following we use the notation x to indicate the variability
of |τ |):

Rπwc(x) ≤
x−1∑
t=0

(γt
[
1− λγH

∗−t
safe

]
rmax) +

∞∑
t=x

(γt(−C))

= (
rmax
1− γ

−
λγH

∗

safermax

1− γ
γsafe

)− rmax + C

1− γ
γx

+
λγH

∗

safermax

1− γ
γsafe

(
γ

γsafe
)x = Ruwc(x)

(15)
To find the maximum unsafe return in the domain x ∈
[1, H∗], we take the derivative with respect to x and set it
to zero: ∂Rπuwc(x)/∂x = 0. By solving this derivative and
ensuring that the trajectory length remains within the range
|τuwc| ∈ [1, H∗], we can determine the trajectory length with

the highest return as:

|τ∗uwc| =




ln(

λγH
∗

safermax

1− γ

γsafe

ln
γ

γsafe
)− ln(

rmax + C

1− γ
lnγ)

lnγsafe

 if ∈ [1, H∗]

argmax
|τ |∈{1,H∗}

Ruwc(|τ |) otherwise

(16)
Hence, Eq. 14 can be upper bounded as:

Rπwc(|τ |) ≤ Ruwc(|τ∗uwc|) (17)

Furthermore, executing the safe action a leads to a safe state
where a safe trajectory can be generated which does not
encounter a safety violation. The discounted return with the
minimum reward (Assumption 2) can be lower bounded as:

∞∑
t=0

(γtλQπ
safe(st, at)rmin) = λrmin

∞∑
t=0

(γtQπ
safe(st, at))

≥ λrminγsafe

∞∑
t=0

(γt) =
λγsafermin

1− γ

(18)
To establish the inequality, we leverage the observation that
Qπ
safe(st, at) ≤ γsafe. This is based on the fact that for

any timestep t, execution of the state-action pair (st−1, at−1)
leads to the safe state st. Hence, Assumption 3 ensures us
that Pr[c(st) = 1] = 0; consequently, the right hand side
equation in Eq. 4 can be simplified as γsafeEs′∼P [V π

safe(s
′)].

Finally, because the expectation operator outputs a value
within the range of zero and one, the observation is justified.
Therefore, since the discounted return of staying safe forever
must always be higher than a trajectory that has a safety
violation, it suffices that:

∆ =
λγsafermin

1− γ
−Ruwc(|τ∗uwc|) > 0 (19)

Rearranging Eq. 19 gives us the condition.
It is possible to derive bounds similar to Theorem 1 with

other variations of Assumption 2. Moreover, intuitively, the
value of ∆ in Eq. 19 determines the degree of aggressiveness
of the algorithm. The closer this value is to zero, the more
the algorithm prioritizes optimality and performance over
its failure rate. Hence, for each task, we define the level
of aggressiveness in SORL by specifying the value of ∆
and fine-tuning λ to align it as closely as possible with the
specified value.

D. Safety Optimized Reinforcement Learning Algorithm

The training process of the SORL algorithm is presented
in Algorithm 1. The proposed algorithm can be built on top
of any Model-Free RL algorithm and uses two safety critic
networks to estimate the cumulative discounted probability of
failure. Two replay buffers are utilized, one for storing all the
transitions and the other one for storing unsafe transitions.
In the training process, the range of the reward function is
computed empirically and, as discussed in Section IV-C, we
update the value of λ to satisfy Eq. 13 and the predefined
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Algorithm 1 Safety Optimized RL

Require: Safety critic significance factor λ and ∆, horizon
H∗

1: Initialize policy πθ, critic Qϕ1 , Qϕ2 , replay buffer D,
safety critic Qψ1

safe, Q
ψ2

safe, replay buffer Dsafe

2: for e = 1, ..., Emax do
3: s1 ← env.reset()
4: for t = 1, ..., Tmax do
5: at ∼ πθ(.|st)
6: ĉt ← max{Qψ1

safe(at|st), Q
ψ2

safe(at|st)}
7: st+1, rt, ct, done← env.step(at)
8: compute empirical rmin, rmax and update C
9: solve and update λ (Eq. 13)

10: if ct == 0 then
11: if rt > 0 then r̂t ←

[
1− λĉt

]
rt

12: else r̂t ← λĉtrt
13: else
14: r̂t ← −C
15: Dsafe ← Dsafe ∪ (st, at, ct, r̂t, st+1)

16: D ← D ∪ (st, at, ct, r̂t, st+1)

17: train πθ, Qϕ1
, Qϕ2

on D
18: train Qψ1

safe, Q
ψ2

safe on D ∪Dsafe
19: if done then Break

∆ value in Eq. 19. It should be noted that in the case
where |τ∗uwc| ∈ (1, H∗), ∆ becomes a non-linear equality
which makes it challenging to derive a closed-form solution.
Therefore, in practice, given an initial value for λ, we find
a solution in the locality of it that satisfies the conditions.

V. EXPERIMENT

In the following section, the performance of SORL is
studied. Particularly, we aim to investigate two questions:

• How does the safety formulation performs compared
with the other model-free off-policy Safe RL algo-
rithms?

• How does the value of ∆ in Eq. 19 affect the perfor-
mance of SORL?

A. Benchmarks and Comparison Methods

In order to evaluate the level of safety that the model can
achieve, we execute it on three safety-concerned categories
of environments:

• System-level safety: RL algorithms are often used to
optimally control robots while adhering to the sys-
tem limits. We assess our proposed model using four
MuJoco environments: Cheetah-no-flip-Velocity, Ant-
Velocity, Hopper-Velocity, and Walker2D-Velocity. In
these environments, the agent must learn to move faster
in the x-direction while avoiding actions that cause
the robot to fall and fail. Additionally, safety viola-
tions occur if the robot exceeds a certain velocity. We
obtained the codebase for Hopper-Velocity, Walker2D-
Velocity, and Ant-Velocity from [25]. For Cheetah-

no-flip-Velocity, the base environment was adopted
from [18] and the Velocity constraint was added to it.

• Collision Avoidance: Besides the inherent robot limits,
additional constraints from the environment can impact
the algorithm. Collision avoidance is one such con-
straint, where the controller aims to control the robot
while preventing collisions with obstacles. We evaluate
our algorithms using Ant-Circle [26] and Drone-Circle
(from Bullet Safety Gym codebase [27]) environments.
These assessments involve controlling robots to move
in circular paths while staying within a safety region
smaller than the circle’s radius.

• Safe Manipulation: Finally, one of the important ap-
plications of Safe RL is safe manipulation. To this
end, we adopt a modified version of the in-hand object
manipulation from Gymnasium Robotics [28] which
uses a dexterous hand to manipulate an egg to achieve
a target pose. In this task, if the hand exerts a normal
force more than a threshold (20 N), the egg will get
crushed and the agent will fail.

The episode ends whenever a safety violation has been
incurred. Moreover, in all the environments, the alive bonus
has been eliminated to evaluate the performance of the safety
algorithms in situations where the original reward shaping
does not explicitly encode safety.

Six model-free Safe RL algorithms are used to showcase
the performance of SORL. The comparison algorithms in-
clude Lagrangian Relaxation (LR), Safety Q-Functions for
RL (SQRL) [13], Model-Free Recovery RL (RRL-MF) [19],
Risk Sensitive Policy Optimization (RSPO) [9], and Reward
Constrained Policy Optimization (RCPO) [10]. Finally, to
study the safety performance of SORL reward shaping,
SAC+C is executed which uses Eq. 5 reward scheme.

B. Implementation settings

The codebase for the comparison methods are adopted
from [19] codebase, and, to have a fair comparison be-
tween the algorithms and evaluate their safety, pretraining
is disabled for all of the algorithms. To this end, SORL
and the comparison methods are built on top of the Soft
Actor-Critic algorithm [29], and, for fair comparison, the
general and common hyperparameters of all the algorithms
are kept the same. In addition to that, with the help from the
problem-specific hyperparamter settings discussed in [18],
we tune the parameters of the comparison algorithms for
each benchmark problem. Moreover, for the hyperparameters
relating to SORL, we set H∗ = 10 for all the cases and
tune the proposed algorithm based on the value of ∆. For
each task, the value of ∆ used to execute SORL is shown
in Fig. 2. During our experimentation of various ∆ values
within the specified environments, we observed significant
variations in the performance of SORL when its change of
value is near the magnitude of 50. The magnitude of change
in ∆ can be largely attributed to the choice of γ and γsafe.
The results illustrate the mean and variance of the execution
of the algorithms with independent random seeds.
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Fig. 2: Benchmark results of SORL compared with six other Safe RL algorithms. (Top row): Return values achieved
during the training phase (higher is better). (Middle row): Episodic failure rates suffered during the training phase (lower
is better). (Bottom row): Pareto optimality plot corresponding to the return and failure rate values (closer to the top right

corner is better). They also display the specific value of ∆ employed for executing SORL. For easier comparison, the
return and failure rate values are normalized and the failure rate is scaled to lie within -1 and 0. The Pareto optimality

solutions are highlighted through the dotted line.

C. Results

For the performance comparison of the different Safe
RL algorithms, as depicted in Fig. 2, we report the reward
performance and the failure rate of the algorithms. Based
on the learning curves, we plot the pareto optimality of the
algorithms based on Eq. 9. Our results show dominant and
superior performance of SORL in both aspects in Fig. 2(a)
and 2(c). Furthermore, in Fig. 2(b), 2(e), and 2(g) we can
see that the proposed algorithm attains significantly bet-
ter safety performance while achieving comparable returns.
Importantly, the suboptimality of the converged policies
of the comparison methods in Fig. 2(b) and 2(c) in one
or both aspects of performance can be seen. Finally, the
results in Fig. 2(d) and 2(f) illustrate SORL’s consistently
higher returns while also maintaining near-dominant safety
performance. Thus, we observe that SORL can strike a great
balance between safety and optimality offering a great novel
solution for safe performance among Safe RL algorithms.

Fig. 3: Undiscounted return of the policy versus the total
number of violations during the training phase.

D. Ablation Analysis

In this section, we study the effect of ∆ on SORL’s per-
formance in two environments. We report the undiscounted
return of the policy the algorithm achieves whenever a safety

violation has occurred which can show sample efficiency of
the algorithm in terms of safety. To gain a better under-
standing of the effect of ∆, we also chose negative values
to study its performance under too aggressive specifications.
As depicted in Fig. 3, while being aggressive in Walker2D-
Velocity helps SORL attain higher returns in lower number
of constraint violations, better performance in Ant-Velocity
requires more conservativeness. This may be due to the
difference in the dynamics of the robots and their constraints
since Ant-Circle also requires a more conservative ∆ value.
The dynamics differences is more evident in the comparison
between (−100,−50) (where there is no safety guarantee)
with ∆ ≈ (500, 300) in their respective tasks which indicates
while being a little more aggressive in one helps in the
reduction of the number of constraint violations, the opposite
holds true for the other task.

VI. CONCLUSIONS

This paper focuses on the problem of safe exploration and
decision-making for RL agents. A novel Safe RL approach
based on multi-objective policy optimization framework was
proposed which optimized the policy toward optimality
and safety, simultaneously. Through theoretical analysis, the
safety of SORL’s converged policy was guaranteed through
a condition which allowed the introduction of the concept
of aggressiveness. The concept provided an intuitive way
to tune SORL’s safety-related hyperparameter. Finally, three
main safety topics (viz., system-level safety, collision avoid-
ance, and safe manipulation) were studied through seven
different tasks in total. We evaluated reward and safety
performance of the proposed algorithm against six other
state-of-the-art model-free Safe RL approaches. The results
showed SORL’s great capability in attaining better safety
performance while achieving better or comparable returns.
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