
SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning

Jianlan Luo⇤1, Zheyuan Hu⇤1, Charles Xu1, You Liang Tan1, Jacob Berg2, Archit Sharma3,
Stefan Schaal4, Chelsea Finn3, Abhishek Gupta2 and Sergey Levine1

Fig. 1: Depiction of various tasks solved using SERL in the real world. These include PCB board insertion (left), cable routing (middle), and object
relocation (right). SERL provides an out-of-the-box package for real-world reinforcement learning, with support for sample-efficient learning, learned
rewards, and automation of resets.

Abstract— In recent years, significant progress has been
made in the field of robotic reinforcement learning (RL),
enabling methods that handle complex image observations,
train in the real world, and incorporate auxiliary data, such
as demonstrations and prior experience. However, despite these
advances, robotic RL remains hard to use. It is acknowledged
among practitioners that the particular implementation details
of these algorithms are often just as important (if not more
so) for performance as the choice of algorithm. We posit
that a significant challenge to the widespread adoption of
robotic RL, as well as the further development of robotic RL
methods, is the comparative inaccessibility of such methods. To
address this challenge, we developed a carefully implemented
library containing a sample efficient off-policy deep RL method,
together with methods for computing rewards and resetting
the environment, a high-quality controller for a widely adopted
robot, and a number of challenging example tasks. We provide
this library as a resource for the community, describe its design
choices, and present experimental results. Perhaps surprisingly,
we find that our implementation can achieve very efficient
learning, acquiring policies for PCB board assembly, cable
routing, and object relocation between 25 to 50 minutes of
training per policy on average, improving over state-of-the-art
results reported for similar tasks in the literature. These policies
achieve perfect or near-perfect success rates, extreme robustness
even under perturbations, and exhibit emergent recovery and
correction behaviors. We hope these promising results and our
high-quality open-source implementation will provide a tool for
the robotics community to facilitate further developments in
robotic RL. Our code, documentation, and videos can be found
at https://serl-robot.github.io/

*Equal contribution
1Department of EECS, University of California, Berkeley
2Department of Computer Science, University of Washington
3Department of Computer Science, Stanford University
4Intrinsic Innovation LLC

I. INTRODUCTION

Considerable progress on robotic reinforcement learning
(RL) over the recent years has produced impressive results,
with robots playing table tennis [1], manipulating objects
from raw images [2, 3, 4], grasping diverse objects [5, 6],
and performing a wide range of other skills. However, despite
the significant progress on the underlying algorithms, RL
remains challenging to use for real-world robotic learning
problems, and practical adoption has been more limited.
We argue that part of the reason for this is that the im-
plementation of RL algorithms, particularly for real-world
robotic systems, presents a very large design space, and
it is the challenge of navigating this design space, rather
than limitations of algorithms per se, that limit adoption.
It is often acknowledged by practitioners in the field that
details in the implementation of an RL algorithm might be
as important (if not more important) as the particular choice
of algorithm. Furthermore, real-world learning presents addi-
tional challenges with reward specification, implementation
of environment resets, sample efficiency, compliant and safe
control, and other difficulties that put even more stress on
this issue. Thus, adoption and further research progress
on real-world robotic RL may well be bottlenecked on
implementation rather than novel algorithmic innovations.

To address this challenge, our aim in this paper is to
provide an open-source software framework, which we call
Sample-Efficient Robotic reinforcement Learning (SERL),
that aims to facilitate wider adoption of RL in real-world
robotics. SERL consists of the following components: (1)
a high-quality RL implementation that is geared towards
real-world robotic learning and supports image observations

2024 IEEE International Conference on Robotics and Automation (ICRA 2024)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 16961

and demonstrations; (2) implementations of several reward
specification methods that are compatible with image ob-
servations, including classifiers and adversarial training; (3)
support for learning “forward-backward” controllers that can
automatically reset the task between trials [7]; (4) a software
package that can in principle connect the aforementioned RL
component to any robotic manipulator; and (5) an impedance
controller design principle that is particularly effective for
dealing with contact-rich manipulation tasks. Our aim in this
paper is not to propose novel algorithms or methodology,
but rather to offer a resource for the community to provide
roboticists with a well-designed foundation both for future
research on robotic RL, and other methods that might employ
robotic RL as a subroutine. However, in the process of
evaluating our framework, we also make a scientifically in-
teresting empirical observation: when implemented properly
in a carefully engineered software package, current sample-
efficient robotic RL methods can attain very high success
rates with relatively modest training times. The tasks in our
evaluation are illustrated in Fig. 1: precise insertion tasks
involving dynamic contact, deformable object manipulation
with complex dynamics, and object relocation where the
robot must learn without manually designed resets. For each
of these tasks, SERL is able to learn effectively within 15
- 60 min of training per policy (in terms of total wall-clock
time), achieving near-perfect success rates, despite learning
policies that operate on image observations. This result is
significant because RL, particularly with deep networks and
image inputs, is often considered to be highly inefficient.
Our results challenge this assumption, suggesting careful
implementations of existing techniques, combined with well-
designed controllers and carefully selected components for
reward specification and resets, can provide an overall system
that is efficient enough for real-world use.

II. RELATED WORK

Our framework carefully combines existing RL methods
into a complete, efficient, and ready-to-use robotic reinforce-
ment learning system directly in the real world. Here, we
summarize both related prior methods and systems.
Algorithms for real-world RL: Real-world robotic RL
demands algorithms that are sample-efficient, can utilize
onboard perception, and support easily specified rewards and
resets. A number of algorithms have shown the ability to
learn very efficiently directly in the real world [8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19], using variants of off-policy
RL [20, 17, 21, 22], model-based RL [23, 24, 25, 26, 27], and
on-policy RL [28]. These advances have been paired with
improvements in rewards inference from visual observation
through success classifiers [29, 30], foundation-model-based
rewards [31, 32, 33], and rewards from videos [34, 35].
Additionally, algorithmic advancements in reset-free learn-
ing [2, 36, 37, 38, 39] have enabled autonomous training
with minimal human interventions. While these advances
are important, the contribution of this work is to provide a
framework and software package to facilitate reinforcement
learning in the real world with a ready-made choice of

methods that can work well for a variety of tasks. We hope
to lower the entry barrier for new researchers to build better
algorithms and train robotic RL policies in the real world.
Software packages for RL: There are a number of pack-
ages [40, 41, 42, 43] for RL, though to our knowledge, none
aim to directly address real-world robotic RL specifically.
SERL builds on the recently proposed RLPD [44], which
is an off-policy RL algorithm with SOTA sample efficiency.
SERL is not a RL benchmark for different methods [45, 46,
47], although it could be adapted to be so. Rather, SERL
offers a full stack pipeline for robot control, from low-
level controllers, the interface for asynchronous and efficient
training, to additional machinery for inferring rewards and
training without resets. Together, SERL provides an off-the-
shelf package to assist non-experts using RL and their physi-
cal robots to learn in the real world. Unlike prior libraries that
aim to provide implementations of many methods – SERL
offers a full “vertical” integration of components, whereas
prior libraries focus on the “horizontal.” SERL allows users
to define their own tasks and success metrics directly in the
real world, providing the software infrastructure for actually
controlling and training robotic manipulators in these tasks.
Software for real-world RL: Several previous packages
have proposed infrastructure for real-world RL: for dexterous
manipulation [48], tabletop furniture assembly [49], legged
locomotion [20], and peg insertion [50]. These packages are
effective in narrow situations, either using privileged infor-
mation, training setups such as explicit tracking [50, 48],
pure proprioception [20], or limited to imitation learning. In
SERL, we show a full stack system that can be used for a
wide variety of robotic manipulation tasks without requiring
complex privileged training setups as in prior work.

III. PRELIMINARIES AND PROBLEM STATEMENT

Robotic reinforcement learning tasks can be defined via
an MDP M = {S,A, ⇢,P, r, �}, where s 2 S is the
state observation (e.g., an image in combination with the
current end-effector position), a 2 A is the action (e.g., the
desired end-effector pose), ⇢(s0) is a distribution over initial
states, P is the unknown and potentially stochastic transi-
tion probabilities that depend on the system dynamics, and
r : S ⇥A ! R is the reward function, which encodes the
task. An optimal policy ⇡ is one that maximizes the cumula-
tive expected value of the reward, i.e., E[

P1
t=0 �

tr(st,at)],
where the expectation is taken with respect to the initial state
distribution, transition probabilities, and policy ⇡.

While the specification of the RL task is concise and
simple, turning real-world robotic learning problems into RL
problems requires care. First, the sample efficiency of the
algorithm for learning ⇡ is paramount: when the learning
must take place in the real world, every minute of training
comes at a cost. Sample efficiency can be improved by using
effective off-policy RL algorithms [51, 52, 53], as well as
incorporating prior data and demonstrations [54, 44, 55].

Additionally, there are many challenges in real-world
robotic learning besides sample efficiency. For instance, the
reward function r might depend on image observations,

16962

which is difficult to specify manually. For episodic tasks
where the robot resets to an initial state s0 ⇠ ⇢(s0) between
trials, actually resetting the robot (and its environment) into
one of these initial states requires further engineering effort.

Furthermore, the controller layer, which interfaces the
MDP actions a (e.g., end-effector poses) to the actual low-
level robot controls, also requires great care, particularly for
contact-rich tasks where the robot physically interacts with
objects in the environment. Not only does this controller need
to be accurate, but it must also be safe enough that the RL
algorithm can explore random actions during training.

SERL aims to provide ready-made solutions to each of
these challenges, with a high-quality implementation of a
sample-efficient off-policy RL method that can incorporate
prior data, several choices for reward function specification,
a forward-backward algorithm for learning resets, and a
controller suitable for learning contact-rich tasks without
damaging either the robot or objects in the environment.

IV. SAMPLE EFFICIENT ROBOTIC REINFORCEMENT
LEARNING IN THE REAL-WORLD

Our software package, which we call Sample-Efficient
Robotic reinforcement Learning (SERL), aims to make
robotic RL in the real world accessible by providing ready-
made solutions to the problems detailed in the previous
section. This involves providing efficient vision-based rein-
forcement learning algorithms and the infrastructure needed
to support autonomous learning. We note that the purpose
of such an endeavor is not to propose novel algorithms or
tools, but rather to develop a software package that anyone
can use easily for robotic learning, without complex setup
procedures and painful integration across libraries.

A. Core RL Algorithm: RLPD

There are several desiderata for the reinforcement learning
algorithm to be deployed in a real-world setting: (1) it
must be sample-efficient, (2) it must be able to incorporate
prior data easily and then continue improving with further
experience, (3) it must be simple to debug and build on for
new users. To this end, we build on the recently proposed
RLPD [44] algorithm. RLPD is an off-policy actor-critic
reinforcement learning algorithm that develops upon Soft
Actor-Critic [52] with some modifications to satisfy the
desiderata above. RLPD makes three key changes: (i) high
update-to-data ratio training (UTD), (ii) symmetric sampling
between prior data and online data, such that half of each
batch comes from prior data and half from the online replay
buffer, and (iii) layer-norm regularization in critics. This
method can train from scratch, or use prior data (e.g., demon-
strations) to bootstrap learning. Each step of the algorithm
updates the parameters of a parametric Q-function Q�(s,a)
and actor ⇡✓(a|s) according to the gradient of their respective
loss functions:

LQ(�)=Es,a,s0

h�
Q�(s,a)�

�
r(s,a)+�Ea0⇠⇡✓ [Q�̄(s

0,a0)]
��2i

L⇡(✓)=�Es

⇥
Ea⇠⇡✓(a)[Q�(s,a)] + ↵H(⇡✓(·|s)

⇤
,

where Q�̄ is a target network [56], and the actor loss uses
entropy regularization with an adaptively adjusted weight
↵ [52]. For efficient learning, critics regularized with layer
normalization perform multiple update steps per environment
step, referred to as the update-to-date (UTD) ratio [44].

B. Reward Specification with Classifiers
Reward functions are difficult to specify by hand when

learning with image observations. Our framework thus sup-
ports these three types of rewards: For tasks such as the PCB
board assembly task in Fig. 1, hand-specified rewards based
on the location of the end effector (under the assumption
that the object is held rigidly in the gripper) are sufficient;
for tasks require rewards to be deduced from images, the
reward function can be provided by a binary classifier that
takes in the image observation and outputs a binary reward
corresponding to successful completion.

This classifier can be trained either with positive and
negative examples collected by users, or via an adversarial
method called VICE [29]. VICE circumvents the reward
exploitation problem that arises with classifier-based rewards
by assigning all states visited by the policy with negative
labels and updating the classifier accordingly. The RL pro-
cess is then analogous to a generative adversarial network
(GAN) [57], with the policy acting as the generator and the
reward classifier as the discriminator.

C. Reset-Free Training with Forward-Backward Controllers
When learning episodic tasks, the robot must reset the

environment between task attempts. For example, when
learning the object relocation task in Figure 1, each time
the robot successfully moves the object to the target bin,
it must then take it out and place it back into the initial
bin. To remove the need for human effort in “resets”, SERL
supports “reset-free” training by using forward and backward
controllers [58, 2]. In this setup, two policies are trained
simultaneously using two independent RL agents, each with
its own policy, Q-function, and reward function (specified
via the methods in the previous section). The forward agent
learns to perform the task, and the backward agent learns to
return to the initial state(s). While more complex reset-free
training procedures can also be possible [2], we find that this
simple recipe is sufficient for learning object manipulation
tasks like the repositioning skill in Figure 1.

D. Software Components
Environment adapters: SERL aims to be easily usable for
many robot environments. Although we provide a set of Gym
environment wrappers and robot environments for the Franka
arm as starter guides, users can also use their own existing
environments or develop new environments as they see fit.
Thus, the library does not impose additional constraints on
the robot environment as long as it is Gym-like [59] as shown
in Fig. 3. We welcome contributions from the community
to extend the support for readily deployable environment
wrappers for other robots and tasks.
Asynchronous Updates: SERL includes options to decouple
action inference and policy updates with a few lines of code

16963

Fig. 3: Software architecture and real-world robot training example code.
SERL runs three parallel processes, consisting of the actor, which chooses
actions, and the learner node, which actually runs the training code, and the
robot environment, which executes the actions from the actor and contributes
data back to the learner.

as illustrated in Fig. 3. We found this beneficial in sample-
efficient real-world learning problems with high UTD ratios.
By separating actor and learner on two different processes,
SERL not only preserves the control frequency at a fixed rate,
which is crucial for tasks that require immediate feedback
and reactions, such as deformable objects and contact-rich
manipulations, but also reduces the total wall-clock time
spend training in the real world.

E. Impedance Controller for Contact-Rich Tasks
Although our package should be compatible with any

OEM robot controller as described in Sec. IV, we found
the choice of controllers significantly impacts performance,
especially for contact-rich manipulation such as the PCB
insertion task in Fig. 1. An overly stiff controller could bend
the fragile pins, whereas an overly compliant controller might
struggle to move the object into position quickly.

Fig. 4: A typical controller hierarchy for robotics RL. The output from the
RL policy is tracked within a block of time by the downstream controller.

In robotic RL, the control system is often two-layered,
where a high-level RL policy generates set-point actions at
a lower frequency than the real-time controller it guides. For
instance, an RL controller might issue commands at 10Hz,
directing a lower-level impedance controller operating at
1kHz. This means a single RL decision influences 100 cycles
of the lower-level controller. The goal of the impedance
controller is to balance forces based on the equation F =
kp · e + kd · ė + Fff + Fcor, where e = p � pref , p is the
measured pose, and pref is the target pose computed by the
upstream controller, Fff is the feed-forward force, Fcor is
the Coriolis force. This setup functions similarly to a spring-
damper system, where the distance to the target position
(pref) can generate significant forces if not carefully man-
aged, risking damage upon contact. Instead of compromising
control precision by lowering gains, we bound e directly to a
maximum value �, effectively capping the force to prevent

hard collisions while maintaining accuracy. Then the force
generated from the spring-damper system will be bounded
to kp · |�|+2kd · |�| · f , where f is the control frequency.

Fig. 5: Visualization of controller logs on the z-axis of the end-effector
when commanded with different movements. The orange line is the com-
manded target (the output of RL), red is the smoothed target sent to the
real-time controller, blue is the clipped target, and green is the robot position
after executing this controller. Left: Command for the end-effector to engage
with a hard surface, where the reference limiting clips the target to prevent
a collision. Right: The command is a fast free-space movement, which our
mechanism does not block, allowing fast motion to the target.

One might wonder if we could directly clip the RL
policy’s action output to small increments, on the order of
micrometers for delicate tasks like PCB board manipulation.
This might seem straightforward but can lead to prolonged
or unstable learning processes compared to our approach
due to the need for significantly more time steps to move
the end-effector across the same distance. Instead, reference
limiting at the real-time control layer addresses this issue
without restricting the RL policy’s range of action, allowing
for unimpeded movement in free space as long as M · |�| �

|a|max, where M is the number of control time-steps inside a
block, usually large (e.g., M = 100), as in Fig. 4. One might
also ask whether it is possible to achieve the same result
by using an external force/torque sensor. However, practical
challenges such as sensor noise and calibration complexity
make this approach less viable. Moreover, designing robot
motions that both learn effectively and adhere to force
constraints adds further complexity.

Our approach, which involves clipping the reference at
the real-time control layer, is simple and effective, particu-
larly for enabling RL in tasks requiring precise contact-rich
manipulation. This technique was successfully implemented
and verified with a Franka Panda robot, demonstrating that
our controller can effectively limit forces during contact
while allowing swift movements in free space as shown
in Fig. 5. This strategy is not only applicable to Franka
Panda robots but can also be adapted to any torque-controlled
robot, showcasing its versatility in facilitating RL-based
manipulation tasks.

F. Relative Observation and Action Frame
Selecting a suitable action space is crucial for expediting

the training process and extending the policy’s generalization
ability to perturbations at test time. While SERL supports
multiple action representations through a common RL in-
terface, we found a convenient mechanism for representing
observations and actions in the relative coordinate system.

16964

Fig. 6: Illustration of the robot performing each task: PCB Insertion (top left), Cable Routing (top right), Object Relocation - Forward (bottom left), and
Object Relocation - Backward (bottom right). The green box indicates a state where the robot receives a high reward for completing the task.

To develop an agent capable of adapting to a dynamic
target, we propose a training procedure that simulates a
moving target without the need for physical movement. The
target, for instance, the PCB insertion socket holes, is fixed
relative to the robot base frame, and the reward can be
specified using any of the standard methods provided in Sec.
IV-B. At the beginning of each training episode, the pose of
the robot’s end-effector was randomized uniformly within a
pre-defined area in the workspace. The robot’s proprioceptive
information is expressed w.r.t the frame of the end-effector’s
initial pose; the action output from the policy (6D twist) is
relative to the current end-effector frame. This is equivalent
to physically moving the target when viewed relatively from
the frame attached to the end-effector. As a result, the policy
can succeed even if the object moves or, as in some of our
experiments, is perturbed in the middle of the episode.

V. EXPERIMENTS

Our experimental evaluation aims to study how effi-
ciently our system can learn a variety of robotic ma-
nipulation tasks, including contact-rich tasks, deformable
object manipulation, and free-floating object manipulation.
These experiments demonstrate the breadth of applica-
bility and efficiency of SERL. We use a Franka Panda
arm and two wrist cameras attached to the end-effector
to get close-in views. Further details can be found at
https://serl-robot.github.io/. We use an Im-
ageNet pre-trained ResNet-10 [63] as a vision backbone
for the policy network and connect it to a 2-layer MLP.
Observations include camera images and robot propriocep-
tive information such as end-effector pose, twist, force, and
torque. The policy outputs a 6D end-effector delta pose from
the current pose, which is tracked by the low-level controller.
The evaluation tasks are illustrated in Fig. 6 and below:
PCB insertion: Inserting connectors into a PCB board
demands fine-grained, contact-rich manipulation with sub-
millimeter precision. This task is ideal for real-world train-
ing, as simulating and transferring such contact-rich interac-
tions can be challenging. At the beginning of each episode,
the initial end effector pose is sampled uniformly from a
starting region, as described in Table II.
Cable routing: This task involves routing a deformable
cable into a clip’s tight-fitting slot. This task requires the
robot to perceive the cable and carefully manipulate it so
that it fits into the clip while holding it at another location.
This is particularly difficult for any method that relies on

model-based control, or makes rigid-object assumptions,
since both visual perception and handling of deformable
objects is essential for access. Tasks of this sort often arise
in manufacturing and maintenance scenarios. Similarly to the
PCB task, the initial end effector pose is sampled uniformly
within a starting region, as described in Table II.
Object relocation: This task requires moving a free-floating
object between bins, requiring grasping and relocation. The
intricacies of reward inference and reset-free training become
especially pronounced in the manipulation of such free-
floating objects. We define the forward task as picking up
the object from the bin on the right side and placing it on
the left, while the backward task moves the object back to
the starting bin, undoing the forward task.

For each task, we initialize RL training from 20 teleoper-
ated demonstrations using a Space Mouse. To confirm that
demonstrations alone are insufficient to solve the task, we
include a behavioral cloning (BC) baseline using 100 high-
quality expert teleoperated demonstrations, roughly match-
ing the total amount of data in the RL replay buffer when
RL converges. Note that this is 5 times more demonstrations
than the amount provided by our method. Both RL and BC
demonstrations are collected using the initial end effector
randomization scheme described in Table II. All training was
done on a single Nvidia RTX 4090 GPU.

a) Results: We report the results in Table II, and show
example executions in Fig. 6. We evaluated both BC and RL
policies under the same conditions and protocols as detailed
in Section V. Our RL policies achieve perfect success rates
on all three tasks over all 100 trials. For the PCB insertion
and cable routing task, our RL policies converge in under
30 minutes of real-world training, which includes all com-
putation, resets, and intended stops. The free-floating object
relocation task learns two policies (forward and backward),
and total time amounts to less than an hour per policy.
For the cable routing task and PCB insertion task, our
policies outperform BC baselines by a large margin, despite
training with 5x fewer demonstrations than BC, suggesting
that demos alone are insufficient. We report the results in
terms of success rate and cycle time in Fig. 7 and Fig. 8.
The learned RL policies not only outperformed their BC
counterparts by as much as 10x in terms of success rate
but also improved on the cycle time of the initial human
demonstrations by up to 3x.

b) Comparison to prior systems: While it’s difficult to
directly compare our results to those of prior systems due

16965

Package Task Training time Success rate Demos Shaping? Vision? Open-sourced?

Guided Policy Search[4] Peg insertion 3 hours 70% 0 Yes Yes Yes
DDPGfD [60] Peg/clip insertion 1.5-2.5 hours 97% / 77% 30 No Yes No

Visual Residual RL [19] Connector insertion Not mentioned 52% ⇠ 100% 0 Yes Yes No
SHIELD [61] Connector insertion 1.5 hours 99.8% 25 No Yes No

InsertionNet [62] Connector insertion 40 mins 78.5% - 100% 0 Yes Yes No
SERL (Ours) PCB Insertion 20 mins 100% 20 No Yes Yes

TABLE I: Comparison to results reported on similar tasks in prior work. The overall success rates for our method are generally higher, and the training
times are generally lower, as compared to prior results. Note also that the PCB board assembly task, shown in Figure 1, has very tight tolerances, likely
significantly tighter than the coarser peg and connector insertion tasks studied in the prior works.

Task # of Demos Image Input Random Reset Reward Specification Bin Size Training Time

PCB Component Insertion 20 2 wrist camera True Ground Truth 10cm ⇥ 10cm 20 mins
Cable Routing 20 2 wrist camera True Binary Classifier 20cm ⇥ 20cm 31 mins

Object Relocation (Forward-Backward) 20 1 wrist, 1 side camera False Binary Classifier 20cm ⇥ 30cm 105 mins

TABLE II: Task parameters: During demo collection for both BC and RL, as well as online training, each episode’s initial end-effector pose resets
uniformly at random within a fixed region for the PCB and Cable task, while the free-floating object relocation task resets above the center of each bin.

Fig. 7: Success rate comparisons: When evaluated for 100 trials per task,
learned RL policies outperformed BC policies by a large margin, by 1.7x for
Object Relocation, by 5x for Cable Routing, and by 10x for PCB Insertion.

Fig. 8: Cycle time comparison: We recorded the average time taken for
the robot to succeed in each task. RL policies are at least 2x faster than BC
policies trained with 100 high-quality human teleoperated demonstrations.

to numerous differences in the setup, lack of consistently
open-sourced code, and other discrepancies, we provide a
summary of training times and success rates reported for
tasks that are most similar to our PCB board insertion task
in Table II. We chose this task because similar insertion or
assembly tasks have been studied in prior work, presenting
challenges to precision, compliant control, and sample effi-
ciency. Compared to prior works, our experiments do not use
shaped rewards, which might require extensive engineering,
though we do utilize a small amount of demonstration data
(which some prior works eschew). The results reported in
these prior works generally have lower success rates and/or
longer training times, suggesting SERL matches or exceeds
the performance of state-of-the-art methods in the literature
on this task. The closest performance to ours in the work of
Spector et al. [62] includes a number of design decisions
and inductive biases specific to insertion, whereas SERL
is generic and makes minimal task-specific assumptions.
Although the components of SERL are all based on (recent)
prior work, the state-of-the-art performance of this combina-
tion illustrates our main thesis: the details of how deep RL
methods are implemented can make a big difference.

VI. DISCUSSION

We introduced a software package aimed at making
real-world robotic reinforcement learning more accessible
for researchers and practitioners. SERL combines sample-
efficient RL, automated reward design, environment resets,
and a controller tailored for precise contact-rich manipulation
tasks. Our experimental evaluation demonstrates SERL’s
efficiency in diverse manipulation tasks. However, there are
several limitations: SERL doesn’t cover all RL methods
or non-manipulation tasks, and challenges such as reward
specification and reset-free learning remain open problems.
We hope that SERL provides a solid starting point for those
exploring real-world robotic reinforcement learning.

ACKNOWLEDGMENTS

This research was partially supported by Intrinsic Inno-
vation LLC, the National Science Foundation under IIS-
2150826, and ARO W911NF-21-1-0097. We would like to
thank Rehaan Ahmad and Siri Gadipudi for participating in
the discussion of this project.

16966

REFERENCES

[1] D. Büchler, S. Guist, R. Calandra, V. Berenz, B. Schölkopf,
and J. Peters. “Learning to Play Table Tennis From Scratch
Using Muscular Robots”. In: IEEE Trans. Robotics 38.6
(2022), pp. 3850–3860. URL: https://doi.org/10.
1109/TRO.2022.3176207.

[2] A. Gupta, J. Yu, T. Z. Zhao, V. Kumar, A. Rovinsky, K.
Xu, T. Devlin, and S. Levine. “Reset-Free Reinforcement
Learning via Multi-Task Learning: Learning Dexterous Ma-
nipulation Behaviors without Human Intervention”. In: IEEE
International Conference on Robotics and Automation, ICRA
2021, Xi’an, China, May 30 - June 5, 2021. IEEE, 2021,
pp. 6664–6671. URL: https://doi.org/10.1109/
ICRA48506.2021.9561384.

[3] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jon-
schkowski, C. Finn, S. Levine, and K. Hausman. “MT-Opt:
Continuous Multi-Task Robotic Reinforcement Learning at
Scale”. In: CoRR abs/2104.08212 (2021). arXiv: 2104 .
08212. URL: https : / / arxiv . org / abs / 2104 .
08212.

[4] S. Levine, C. Finn, T. Darrell, and P. Abbeel. “End-to-end
training of deep visuomotor policies”. In: The Journal of
Machine Learning Research 17.1 (2016), pp. 1334–1373.

[5] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen.
“Learning hand-eye coordination for robotic grasping with
deep learning and large-scale data collection”. In: Int. J.
Robotics Res. 37.4-5 (2018), pp. 421–436. URL: https:
//doi.org/10.1177/0278364917710318.

[6] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu,
J. A. Ojea, and K. Goldberg. “Dex-Net 2.0: Deep Learning
to Plan Robust Grasps with Synthetic Point Clouds and
Analytic Grasp Metrics”. In: Robotics: Science and Sys-
tems XIII, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA, July 12-16, 2017. Ed. by N. M. Amato,
S. S. Srinivasa, N. Ayanian, and S. Kuindersma. 2017.
URL: http://www.roboticsproceedings.org/
rss13/p58.html.

[7] B. Eysenbach, S. Gu, J. Ibarz, and S. Levine. “Leave
no Trace: Learning to Reset for Safe and Autonomous
Reinforcement Learning”. In: 6th International Confer-
ence on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018. URL: https : / /

openreview.net/forum?id=S1vuO-bCW.
[8] M. Riedmiller, T. Gabel, R. Hafner, and S. Lange. “Rein-

forcement learning for robot soccer”. In: Autonomous Robots
27 (2009), pp. 55–73.

[9] T. Westenbroek, F. Castaneda, A. Agrawal, S. Sastry,
and K. Sreenath. “Lyapunov design for robust and effi-
cient robotic reinforcement learning”. In: arXiv preprint
arXiv:2208.06721 (2022).

[10] Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan, and V.
Sindhwani. “Data efficient reinforcement learning for legged
robots”. In: Conference on Robot Learning. PMLR. 2020,
pp. 1–10.

[11] A. Zhan, R. Zhao, L. Pinto, P. Abbeel, and M. Laskin. “A
framework for efficient robotic manipulation”. In: Deep RL
Workshop NeurIPS 2021. 2021.

[12] Z. Hou, J. Fei, Y. Deng, and J. Xu. “Data-efficient hierar-
chical reinforcement learning for robotic assembly control
applications”. In: IEEE Transactions on Industrial Electron-
ics 68.11 (2020), pp. 11565–11575.

[13] J. Tebbe, L. Krauch, Y. Gao, and A. Zell. “Sample-efficient
reinforcement learning in robotic table tennis”. In: 2021
IEEE international conference on robotics and automation
(ICRA). IEEE. 2021, pp. 4171–4178.

[14] I. Popov, N. Heess, T. Lillicrap, R. Hafner, G. Barth-Maron,
M. Vecerik, T. Lampe, Y. Tassa, T. Erez, and M. Riedmiller.
“Data-efficient deep reinforcement learning for dexterous
manipulation”. In: arXiv preprint arXiv:1704.03073 (2017).

[15] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, A. M. Agogino, A.
Tamar, and P. Abbeel. “Reinforcement learning on variable
impedance controller for high-precision robotic assembly”.
In: 2019 International Conference on Robotics and Automa-
tion (ICRA). IEEE. 2019, pp. 3080–3087.

[16] T. Z. Zhao, J. Luo, O. Sushkov, R. Pevceviciute, N.
Heess, J. Scholz, S. Schaal, and S. Levine. “Offline
Meta-Reinforcement Learning for Industrial Insertion”. In:
2022 International Conference on Robotics and Automation
(ICRA). 2022, pp. 6386–6393.

[17] Z. Hu, A. Rovinsky, J. Luo, V. Kumar, A. Gupta, and S.
Levine. “REBOOT: Reuse Data for Bootstrapping Efficient
Real-World Dexterous Manipulation”. In: arXiv preprint
arXiv:2309.03322 (2024).

[18] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll,
J. A. Ojea, E. Solowjow, and S. Levine. “Residual Reinforce-
ment Learning for Robot Control”. In: CoRR abs/1812.03201
(2018). arXiv: 1812.03201. URL: http://arxiv.
org/abs/1812.03201.

[19] G. Schoettler, A. Nair, J. Luo, S. Bahl, J. Aparicio Ojea,
E. Solowjow, and S. Levine. “Deep Reinforcement Learning
for Industrial Insertion Tasks with Visual Inputs and Natural
Rewards”. In: 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2020, pp. 5548–5555.

[20] I. Kostrikov, L. M. Smith, and S. Levine. “Demonstrating
A Walk in the Park: Learning to Walk in 20 Minutes With
Model-Free Reinforcement Learning”. In: Robotics: Science
and Systems XIX, Daegu, Republic of Korea, July 10-14,
2023. Ed. by K. E. Bekris, K. Hauser, S. L. Herbert, and
J. Yu. 2023. URL: https://doi.org/10.15607/
RSS.2023.XIX.056.

[21] J. Luo, P. Dong, Y. Zhai, Y. Ma, and S. Levine. “RLIF:
Interactive Imitation Learning as Reinforcement Learning”.
In: arXiv preprint arXiv:2311.12996 (2023).

[22] Y. Zhang, L. Ke, A. Deshpande, A. Gupta, and S. Srini-
vasa. Cherry-Picking with Reinforcement Learning : Robust
Dynamic Grasping in Unstable Conditions. 2023. arXiv:
2303.05508 [cs.RO].

[23] T. Hester and P. Stone. “Texplore: real-time sample-efficient
reinforcement learning for robots”. In: Machine learning 90
(2013), pp. 385–429.

[24] P. Wu, A. Escontrela, D. Hafner, P. Abbeel, and K. Goldberg.
“DayDreamer: World Models for Physical Robot Learn-
ing”. In: Conference on Robot Learning, CoRL 2022, 14-
18 December 2022, Auckland, New Zealand. Ed. by K.
Liu, D. Kulic, and J. Ichnowski. Vol. 205. Proceedings of
Machine Learning Research. PMLR, 2022, pp. 2226–2240.
URL: https://proceedings.mlr.press/v205/
wu23c.html.

[25] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar. “Deep
Dynamics Models for Learning Dexterous Manipulation”.
In: 3rd Annual Conference on Robot Learning, CoRL 2019,
Osaka, Japan, October 30 - November 1, 2019, Proceedings.
Ed. by L. P. Kaelbling, D. Kragic, and K. Sugiura. Vol. 100.
Proceedings of Machine Learning Research. PMLR, 2019,
pp. 1101–1112. URL: http://proceedings.mlr.
press/v100/nagabandi20a.html.

[26] R. Rafailov, T. Yu, A. Rajeswaran, and C. Finn. “Offline
Reinforcement Learning from Images with Latent Space
Models”. In: Proceedings of the 3rd Annual Conference
on Learning for Dynamics and Control, L4DC 2021, 7-8
June 2021, Virtual Event, Switzerland. Ed. by A. Jadbabaie,
J. Lygeros, G. J. Pappas, P. A. Parrilo, B. Recht, C. J.
Tomlin, and M. N. Zeilinger. Vol. 144. Proceedings of

16967

Machine Learning Research. PMLR, 2021, pp. 1154–1168.
URL: http://proceedings.mlr.press/v144/
rafailov21a.html.

[27] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, and A. M.
Agogino. “Deep reinforcement learning for robotic assembly
of mixed deformable and rigid objects”. In: 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2018, pp. 2062–2069.

[28] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Ku-
mar. “Dexterous Manipulation with Deep Reinforcement
Learning: Efficient, General, and Low-Cost”. In: Interna-
tional Conference on Robotics and Automation, ICRA 2019,
Montreal, QC, Canada, May 20-24, 2019. IEEE, 2019,
pp. 3651–3657. URL: https://doi.org/10.1109/
ICRA.2019.8794102.

[29] J. Fu, A. Singh, D. Ghosh, L. Yang, and S. Levine. “Vari-
ational inverse control with events: A general framework
for data-driven reward definition”. In: Advances in neural
information processing systems 31 (2018).

[30] K. Li, A. Gupta, A. Reddy, V. H. Pong, A. Zhou, J. Yu,
and S. Levine. “MURAL: Meta-Learning Uncertainty-Aware
Rewards for Outcome-Driven Reinforcement Learning”. In:
Proceedings of the 38th International Conference on Ma-
chine Learning, ICML 2021, 18-24 July 2021, Virtual Event.
Ed. by M. Meila and T. Zhang. Vol. 139. Proceedings of
Machine Learning Research. PMLR, 2021, pp. 6346–6356.
URL: http://proceedings.mlr.press/v139/
li21g.html.

[31] Y. Du, K. Konyushkova, M. Denil, A. Raju, J. Landon, F.
Hill, N. de Freitas, and S. Cabi. “Vision-language models
as success detectors”. In: arXiv preprint arXiv:2303.07280
(2023).

[32] P. Mahmoudieh, D. Pathak, and T. Darrell. “Zero-Shot
Reward Specification via Grounded Natural Language”.
In: International Conference on Machine Learning, ICML
2022, 17-23 July 2022, Baltimore, Maryland, USA. Ed.
by K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári, G.
Niu, and S. Sabato. Vol. 162. Proceedings of Machine
Learning Research. PMLR, 2022, pp. 14743–14752. URL:
https : / / proceedings . mlr . press / v162 /

mahmoudieh22a.html.
[33] L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang,

H. Zhu, A. Tang, D. Huang, Y. Zhu, and A. Anandkumar.
“MineDojo: Building Open-Ended Embodied Agents
with Internet-Scale Knowledge”. In: NeurIPS.
2022. URL: http : / / papers . nips . cc /

paper % 5C _ files / paper / 2022 / hash /

74a67268c5cc5910f64938cac4526a90 -

Abstract-Datasets%5C_and%5C_Benchmarks.

html.
[34] Y. J. Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar,

and A. Zhang. “VIP: Towards Universal Visual Reward
and Representation via Value-Implicit Pre-Training”. In:
The Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023. URL: https://openreview.
net/pdf?id=YJ7o2wetJ2.

[35] Y. J. Ma, V. Kumar, A. Zhang, O. Bastani, and D. Jayaraman.
“LIV: Language-Image Representations and Rewards for
Robotic Control”. In: International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA. Ed. by A. Krause, E. Brunskill, K. Cho, B. Engelhardt,
S. Sabato, and J. Scarlett. Vol. 202. Proceedings of Machine
Learning Research. PMLR, 2023, pp. 23301–23320. URL:
https : / / proceedings . mlr . press / v202 /

ma23b.html.
[36] A. Sharma, K. Xu, N. Sardana, A. Gupta, K. Hausman,

S. Levine, and C. Finn. “Autonomous Reinforcement Learn-

ing: Benchmarking and Formalism”. In: arXiv preprint
arXiv:2112.09605 (2021).

[37] H. Zhu, J. Yu, A. Gupta, D. Shah, K. Hartikainen, A.
Singh, V. Kumar, and S. Levine. “The Ingredients of Real
World Robotic Reinforcement Learning”. In: 8th Interna-
tional Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020. URL: https://openreview.net/forum?id=
rJe2syrtvS.

[38] A. Xie, F. Tajwar, A. Sharma, and C. Finn. “When to Ask for
Help: Proactive Interventions in Autonomous Reinforcement
Learning”. In: NeurIPS. 2022. URL: http://papers.
nips . cc / paper % 5C _ files / paper / 2022 /

hash / 6bf82cc56a5fa0287c438baa8be65a70 -

Abstract-Conference.html.
[39] A. Sharma, A. M. Ahmed, R. Ahmad, and C. Finn. “Self-

Improving Robots: End-to-End Autonomous Visuomotor Re-
inforcement Learning”. In: CoRR abs/2303.01488 (2023).
arXiv: 2303.01488. URL: https://doi.org/10.
48550/arXiv.2303.01488.

[40] T. Seno and M. Imai. “d3rlpy: An Offline Deep Reinforce-
ment Learning Library”. In: Journal of Machine Learning
Research 23.315 (2022), pp. 1–20. URL: http://jmlr.
org/papers/v23/22-0017.html.

[41] A. Nair and V. Pong. “rlkit”. In: Github (). URL: https:
//github.com/rail-berkeley/rlkit.

[42] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto,
R. Traore, P. Dhariwal, C. Hesse, O. Klimov, A. Nichol,
M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu.
Stable Baselines. https://github.com/hill-a/
stable-baselines. 2018.

[43] S. Guadarrama, A. Korattikara, O. Ramirez, P. Castro,
E. Holly, S. Fishman, K. Wang, E. Gonina, N. Wu, E.
Kokiopoulou, L. Sbaiz, J. Smith, G. Bartók, J. Berent, C.
Harris, V. Vanhoucke, and E. Brevdo. TF-Agents: A library
for Reinforcement Learning in TensorFlow. https : / /
github.com/tensorflow/agents. [Online; accessed
25-June-2019]. 2018. URL: https://github.com/
tensorflow/agents.

[44] P. J. Ball, L. Smith, I. Kostrikov, and S. Levine. “Efficient
online reinforcement learning with offline data”. In: arXiv
preprint arXiv:2302.02948 (2023).

[45] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn,
and S. Levine. “Meta-World: A Benchmark and Evaluation
for Multi-Task and Meta Reinforcement Learning”. In: 3rd
Annual Conference on Robot Learning, CoRL 2019, Osaka,
Japan, October 30 - November 1, 2019, Proceedings. Ed.
by L. P. Kaelbling, D. Kragic, and K. Sugiura. Vol. 100.
Proceedings of Machine Learning Research. PMLR, 2019,
pp. 1094–1100. URL: http://proceedings.mlr.
press/v100/yu20a.html.

[46] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. “RLBench:
The Robot Learning Benchmark & Learning Environment”.
In: IEEE Robotics Autom. Lett. 5.2 (2020), pp. 3019–3026.
URL: https://doi.org/10.1109/LRA.2020.
2974707.

[47] M. Mittal, C. Yu, Q. Yu, J. Liu, N. Rudin, D. Hoeller,
J. L. Yuan, P. P. Tehrani, R. Singh, Y. Guo, H. Mazhar,
A. Mandlekar, B. Babich, G. State, M. Hutter, and A. Garg.
ORBIT: A Unified Simulation Framework for Interactive
Robot Learning Environments. 2023. eprint: arXiv:2301.
04195.

[48] M. Ahn, H. Zhu, K. Hartikainen, H. Ponte, A. Gupta, S.
Levine, and V. Kumar. “ROBEL: Robotics Benchmarks for
Learning with Low-Cost Robots”. In: 3rd Annual Conference
on Robot Learning, CoRL 2019, Osaka, Japan, October
30 - November 1, 2019, Proceedings. Ed. by L. P. Kael-
bling, D. Kragic, and K. Sugiura. Vol. 100. Proceedings of

16968

Machine Learning Research. PMLR, 2019, pp. 1300–1313.
URL: http://proceedings.mlr.press/v100/
ahn20a.html.

[49] M. Heo, Y. Lee, D. Lee, and J. J. Lim. “FurnitureBench: Re-
producible Real-World Benchmark for Long-Horizon Com-
plex Manipulation”. In: Robotics: Science and Systems XIX,
Daegu, Republic of Korea, July 10-14, 2023. Ed. by K. E.
Bekris, K. Hauser, S. L. Herbert, and J. Yu. 2023. URL:
https://doi.org/10.15607/RSS.2023.XIX.

041.
[50] S. Levine, C. Finn, T. Darrell, and P. Abbeel. “End-to-End

Training of Deep Visuomotor Policies”. In: J. Mach. Learn.
Res. 17 (2016), 39:1–39:40. URL: http://jmlr.org/
papers/v17/15-522.html.

[51] V. R. Konda and J. N. Tsitsiklis. “Actor-Critic Algorithms”.
In: Advances in Neural Information Processing Systems 12,
[NIPS Conference, Denver, Colorado, USA, November 29
- December 4, 1999]. Ed. by S. A. Solla, T. K. Leen,
and K. Müller. The MIT Press, 1999, pp. 1008–1014. URL:
http://papers.nips.cc/paper/1786-actor-

critic-algorithms.
[52] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. “Soft actor-

critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor”. In: International conference
on machine learning. PMLR. 2018, pp. 1861–1870.

[53] S. Fujimoto, H. van Hoof, and D. Meger. “Addressing
Function Approximation Error in Actor-Critic Methods”. In:
Proceedings of the 35th International Conference on Ma-
chine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018. Ed. by J. G. Dy and A. Krause.
Vol. 80. Proceedings of Machine Learning Research. PMLR,
2018, pp. 1582–1591. URL: http://proceedings.
mlr.press/v80/fujimoto18a.html.

[54] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schul-
man, E. Todorov, and S. Levine. “Learning Complex Dex-
terous Manipulation with Deep Reinforcement Learning and
Demonstrations”. In: Proceedings of Robotics: Science and
Systems. Pittsburgh, Pennsylvania, June 2018.

[55] A. Nair, M. Dalal, A. Gupta, and S. Levine. Accelerating
Online Reinforcement Learning with Offline Datasets. 2020.
arXiv: 2006.09359 [cs.LG].

[56] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I.
Antonoglou, D. Wierstra, and M. Riedmiller. “Playing
atari with deep reinforcement learning”. In: arXiv preprint
arXiv:1312.5602 (2013).

[57] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.
Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. “Gen-
erative adversarial nets”. In: Advances in neural information
processing systems 27 (2014).

[58] W. Han, S. Levine, and P. Abbeel. “Learning compound
multi-step controllers under unknown dynamics”. In: 2015
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2015, pp. 6435–6442.

[59] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J.
Schulman, J. Tang, and W. Zaremba. “Openai gym”. In:
arXiv preprint arXiv:1606.01540 (2016).

[60] M. Vecerik, O. Sushkov, D. Barker, T. Rothörl, T. Hester, and
J. Scholz. A Practical Approach to Insertion with Variable
Socket Position Using Deep Reinforcement Learning. 2018.
arXiv: 1810.01531 [cs.RO].

[61] J. Luo, O. Sushkov, R. Pevceviciute, W. Lian, C. Su, M.
Vecerik, N. Ye, S. Schaal, and J. Scholz. “Robust Multi-
Modal Policies for Industrial Assembly via Reinforcement
Learning and Demonstrations: A Large-Scale Study”. In:
Proceedings of Robotics: Science and Systems. Virtual, July
2021.

[62] O. Spector and D. D. Castro. InsertionNet – A Scalable So-
lution for Insertion. 2021. arXiv: 2104.14223 [cs.RO].

[63] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learn-
ing for Image Recognition. 2015. arXiv: 1512 . 03385

[cs.CV].

16969

