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Fig. 1: Depiction of various tasks solved using SERL in the real world. These include PCB board insertion (left), cable routing (middle), and object
relocation (right). SERL provides an out-of-the-box package for real-world reinforcement learning, with support for sample-efficient learning, learned
rewards, and automation of resets.

Abstract—In recent years, significant progress has been
made in the field of robotic reinforcement learning (RL),
enabling methods that handle complex image observations,
train in the real world, and incorporate auxiliary data, such
as demonstrations and prior experience. However, despite these
advances, robotic RL remains hard to use. It is acknowledged
among practitioners that the particular implementation details
of these algorithms are often just as important (if not more
so) for performance as the choice of algorithm. We posit
that a significant challenge to the widespread adoption of
robotic RL, as well as the further development of robotic RL
methods, is the comparative inaccessibility of such methods. To
address this challenge, we developed a carefully implemented
library containing a sample efficient off-policy deep RL method,
together with methods for computing rewards and resetting
the environment, a high-quality controller for a widely adopted
robot, and a number of challenging example tasks. We provide
this library as a resource for the community, describe its design
choices, and present experimental results. Perhaps surprisingly,
we find that our implementation can achieve very efficient
learning, acquiring policies for PCB board assembly, cable
routing, and object relocation between 25 to 50 minutes of
training per policy on average, improving over state-of-the-art
results reported for similar tasks in the literature. These policies
achieve perfect or near-perfect success rates, extreme robustness
even under perturbations, and exhibit emergent recovery and
correction behaviors. We hope these promising results and our
high-quality open-source implementation will provide a tool for
the robotics community to facilitate further developments in
robotic RL. Our code, documentation, and videos can be found
at https://serl-robot.github.io/

*Equal contribution

IDepartment of EECS, University of California, Berkeley
2Department of Computer Science, University of Washington
3Department of Computer Science, Stanford University
4Intrinsic Innovation LLC

979-8-3503-8457-4/24/$31.00 ©2024 IEEE

I. INTRODUCTION

Considerable progress on robotic reinforcement learning
(RL) over the recent years has produced impressive results,
with robots playing table tennis [1], manipulating objects
from raw images [2, 3, 4], grasping diverse objects [5, 0],
and performing a wide range of other skills. However, despite
the significant progress on the underlying algorithms, RL
remains challenging to use for real-world robotic learning
problems, and practical adoption has been more limited.
We argue that part of the reason for this is that the im-
plementation of RL algorithms, particularly for real-world
robotic systems, presents a very large design space, and
it is the challenge of navigating this design space, rather
than limitations of algorithms per se, that limit adoption.
It is often acknowledged by practitioners in the field that
details in the implementation of an RL algorithm might be
as important (if not more important) as the particular choice
of algorithm. Furthermore, real-world learning presents addi-
tional challenges with reward specification, implementation
of environment resets, sample efficiency, compliant and safe
control, and other difficulties that put even more stress on
this issue. Thus, adoption and further research progress
on real-world robotic RL may well be bottlenecked on
implementation rather than novel algorithmic innovations.

To address this challenge, our aim in this paper is to
provide an open-source software framework, which we call
Sample-Efficient Robotic reinforcement Learning (SERL),
that aims to facilitate wider adoption of RL in real-world
robotics. SERL consists of the following components: (1)
a high-quality RL implementation that is geared towards
real-world robotic learning and supports image observations
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and demonstrations; (2) implementations of several reward
specification methods that are compatible with image ob-
servations, including classifiers and adversarial training; (3)
support for learning “forward-backward” controllers that can
automatically reset the task between trials [7]; (4) a software
package that can in principle connect the aforementioned RL
component to any robotic manipulator; and (5) an impedance
controller design principle that is particularly effective for
dealing with contact-rich manipulation tasks. Our aim in this
paper is not to propose novel algorithms or methodology,
but rather to offer a resource for the community to provide
roboticists with a well-designed foundation both for future
research on robotic RL, and other methods that might employ
robotic RL as a subroutine. However, in the process of
evaluating our framework, we also make a scientifically in-
teresting empirical observation: when implemented properly
in a carefully engineered software package, current sample-
efficient robotic RL methods can attain very high success
rates with relatively modest training times. The tasks in our
evaluation are illustrated in Fig. 1: precise insertion tasks
involving dynamic contact, deformable object manipulation
with complex dynamics, and object relocation where the
robot must learn without manually designed resets. For each
of these tasks, SERL is able to learn effectively within 15
- 60 min of training per policy (in terms of total wall-clock
time), achieving near-perfect success rates, despite learning
policies that operate on image observations. This result is
significant because RL, particularly with deep networks and
image inputs, is often considered to be highly inefficient.
Our results challenge this assumption, suggesting careful
implementations of existing techniques, combined with well-
designed controllers and carefully selected components for
reward specification and resets, can provide an overall system
that is efficient enough for real-world use.

II. RELATED WORK

Our framework carefully combines existing RL methods
into a complete, efficient, and ready-to-use robotic reinforce-
ment learning system directly in the real world. Here, we
summarize both related prior methods and systems.
Algorithms for real-world RL: Real-world robotic RL
demands algorithms that are sample-efficient, can utilize
onboard perception, and support easily specified rewards and
resets. A number of algorithms have shown the ability to
learn very efficiently directly in the real world [8, 9, 10, 11,

, 13, 14, 15, 16, 17, 18, 19], using variants of off-policy
RL [20, 17, 21, 22], model-based RL [23, 24, 25, 26, 27], and
on-policy RL [28]. These advances have been paired with
improvements in rewards inference from visual observation
through success classifiers [29, 30], foundation-model-based
rewards [31, 32, 33], and rewards from videos [34, 35].
Additionally, algorithmic advancements in reset-free learn-
ing [2, 36, 37, 38, 39] have enabled autonomous training
with minimal human interventions. While these advances
are important, the contribution of this work is to provide a
framework and software package to facilitate reinforcement
learning in the real world with a ready-made choice of

methods that can work well for a variety of tasks. We hope
to lower the entry barrier for new researchers to build better
algorithms and train robotic RL policies in the real world.
Software packages for RL: There are a number of pack-
ages [40, 41, 42, 43] for RL, though to our knowledge, none
aim to directly address real-world robotic RL specifically.
SERL builds on the recently proposed RLPD [44], which
is an off-policy RL algorithm with SOTA sample efficiency.
SERL is not a RL benchmark for different methods [45, 46,
], although it could be adapted to be so. Rather, SERL
offers a full stack pipeline for robot control, from low-
level controllers, the interface for asynchronous and efficient
training, to additional machinery for inferring rewards and
training without resets. Together, SERL provides an off-the-
shelf package to assist non-experts using RL and their physi-
cal robots to learn in the real world. Unlike prior libraries that
aim to provide implementations of many methods — SERL
offers a full “vertical” integration of components, whereas
prior libraries focus on the “horizontal.” SERL allows users
to define their own tasks and success metrics directly in the
real world, providing the software infrastructure for actually
controlling and training robotic manipulators in these tasks.
Software for real-world RL: Several previous packages
have proposed infrastructure for real-world RL: for dexterous
manipulation [48], tabletop furniture assembly [49], legged
locomotion [20], and peg insertion [50]. These packages are
effective in narrow situations, either using privileged infor-
mation, training setups such as explicit tracking [50, 48],
pure proprioception [20], or limited to imitation learning. In
SERL, we show a full stack system that can be used for a
wide variety of robotic manipulation tasks without requiring
complex privileged training setups as in prior work.

III. PRELIMINARIES AND PROBLEM STATEMENT

Robotic reinforcement learning tasks can be defined via
an MDP M = {S, A,p,P,r,v}, where s € S is the
state observation (e.g., an image in combination with the
current end-effector position), a € A is the action (e.g., the
desired end-effector pose), p(so) is a distribution over initial
states, P is the unknown and potentially stochastic transi-
tion probabilities that depend on the system dynamics, and
r:Sx A— R is the reward function, which encodes the
task. An optimal policy 7 is one that maximizes the cumula-
tive expected value of the reward, i.e., B[~ v'7(s¢, ar)],
where the expectation is taken with respect to the initial state
distribution, transition probabilities, and policy 7.

While the specification of the RL task is concise and
simple, turning real-world robotic learning problems into RL
problems requires care. First, the sample efficiency of the
algorithm for learning 7 is paramount: when the learning
must take place in the real world, every minute of training
comes at a cost. Sample efficiency can be improved by using
effective off-policy RL algorithms [51, 52, 53], as well as
incorporating prior data and demonstrations [54, 44, 55].

Additionally, there are many challenges in real-world
robotic learning besides sample efficiency. For instance, the
reward function r might depend on image observations,
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which is difficult to specify manually. For episodic tasks
where the robot resets to an initial state sy ~ p(sg) between
trials, actually resetting the robot (and its environment) into
one of these initial states requires further engineering effort.
Furthermore, the controller layer, which interfaces the
MDP actions a (e.g., end-effector poses) to the actual low-
level robot controls, also requires great care, particularly for
contact-rich tasks where the robot physically interacts with
objects in the environment. Not only does this controller need
to be accurate, but it must also be safe enough that the RL
algorithm can explore random actions during training.
SERL aims to provide ready-made solutions to each of
these challenges, with a high-quality implementation of a
sample-efficient off-policy RL method that can incorporate
prior data, several choices for reward function specification,
a forward-backward algorithm for learning resets, and a
controller suitable for learning contact-rich tasks without
damaging either the robot or objects in the environment.

IV. SAMPLE EFFICIENT ROBOTIC REINFORCEMENT
LEARNING IN THE REAL-WORLD

Our software package, which we call Sample-Efficient
Robotic reinforcement Learning (SERL), aims to make
robotic RL in the real world accessible by providing ready-
made solutions to the problems detailed in the previous
section. This involves providing efficient vision-based rein-
forcement learning algorithms and the infrastructure needed
to support autonomous learning. We note that the purpose
of such an endeavor is not to propose novel algorithms or
tools, but rather to develop a software package that anyone
can use easily for robotic learning, without complex setup
procedures and painful integration across libraries.

A. Core RL Algorithm: RLPD

There are several desiderata for the reinforcement learning
algorithm to be deployed in a real-world setting: (1) it
must be sample-efficient, (2) it must be able to incorporate
prior data easily and then continue improving with further
experience, (3) it must be simple to debug and build on for
new users. To this end, we build on the recently proposed
RLPD [44] algorithm. RLPD is an off-policy actor-critic
reinforcement learning algorithm that develops upon Soft
Actor-Critic [52] with some modifications to satisfy the
desiderata above. RLPD makes three key changes: (i) high
update-to-data ratio training (UTD), (ii) symmetric sampling
between prior data and online data, such that half of each
batch comes from prior data and half from the online replay
buffer, and (iii) layer-norm regularization in critics. This
method can train from scratch, or use prior data (e.g., demon-
strations) to bootstrap learning. Each step of the algorithm
updates the parameters of a parametric Q-function Q4 (s, a)
and actor 7y (a|s) according to the gradient of their respective
loss functions:

‘CQ((b) = Es7a,s’ [(Q(b(sa a) - (T(S7 a) +’7Ea’~ﬂ'9 [Qd; (Slv a/)D)Z}
L (0)=—FEs [Eamry(a)|Qs(s,a)] + aH(mo(:[s)]

where Qg is a target network [56], and the actor loss uses
entropy regularization with an adaptively adjusted weight
o [52]. For efficient learning, critics regularized with layer
normalization perform multiple update steps per environment
step, referred to as the update-to-date (UTD) ratio [44].

B. Reward Specification with Classifiers

Reward functions are difficult to specify by hand when
learning with image observations. Our framework thus sup-
ports these three types of rewards: For tasks such as the PCB
board assembly task in Fig. 1, hand-specified rewards based
on the location of the end effector (under the assumption
that the object is held rigidly in the gripper) are sufficient;
for tasks require rewards to be deduced from images, the
reward function can be provided by a binary classifier that
takes in the image observation and outputs a binary reward
corresponding to successful completion.

This classifier can be trained either with positive and
negative examples collected by users, or via an adversarial
method called VICE [29]. VICE circumvents the reward
exploitation problem that arises with classifier-based rewards
by assigning all states visited by the policy with negative
labels and updating the classifier accordingly. The RL pro-
cess is then analogous to a generative adversarial network
(GAN) [57], with the policy acting as the generator and the
reward classifier as the discriminator.

C. Reset-Free Training with Forward-Backward Controllers

When learning episodic tasks, the robot must reset the
environment between task attempts. For example, when
learning the object relocation task in Figure 1, each time
the robot successfully moves the object to the target bin,
it must then take it out and place it back into the initial
bin. To remove the need for human effort in “resets”, SERL
supports “reset-free” training by using forward and backward
controllers [58, 2]. In this setup, two policies are trained
simultaneously using two independent RL agents, each with
its own policy, Q-function, and reward function (specified
via the methods in the previous section). The forward agent
learns to perform the task, and the backward agent learns to
return to the initial state(s). While more complex reset-free
training procedures can also be possible [2], we find that this
simple recipe is sufficient for learning object manipulation
tasks like the repositioning skill in Figure 1.

D. Software Components

Environment adapters: SERL aims to be easily usable for
many robot environments. Although we provide a set of Gym
environment wrappers and robot environments for the Franka
arm as starter guides, users can also use their own existing
environments or develop new environments as they see fit.
Thus, the library does not impose additional constraints on
the robot environment as long as it is Gym-like [59] as shown
in Fig. 3. We welcome contributions from the community
to extend the support for readily deployable environment
wrappers for other robots and tasks.

Asynchronous Updates: SERL includes options to decouple
action inference and policy updates with a few lines of code
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Fig. 3: Software architecture and real-world robot training example code.
SERL runs three parallel processes, consisting of the actor, which chooses
actions, and the learner node, which actually runs the training code, and the
robot environment, which executes the actions from the actor and contributes
data back to the learner.

as illustrated in Fig. 3. We found this beneficial in sample-
efficient real-world learning problems with high UTD ratios.
By separating actor and learner on two different processes,
SERL not only preserves the control frequency at a fixed rate,
which is crucial for tasks that require immediate feedback
and reactions, such as deformable objects and contact-rich
manipulations, but also reduces the total wall-clock time
spend training in the real world.

E. Impedance Controller for Contact-Rich Tasks

Although our package should be compatible with any
OEM robot controller as described in Sec. IV, we found
the choice of controllers significantly impacts performance,
especially for contact-rich manipulation such as the PCB
insertion task in Fig. 1. An overly stiff controller could bend
the fragile pins, whereas an overly compliant controller might
struggle to move the object into position quickly.

- . (&) a a,|
0 L ! 1L EJ 1L 2 1
Control Block 1 Control Block 2 Control Block 3

Fig. 4: A typical controller hierarchy for robotics RL. The output from the
RL policy is tracked within a block of time by the downstream controller.

In robotic RL, the control system is often two-layered,
where a high-level RL policy generates set-point actions at
a lower frequency than the real-time controller it guides. For
instance, an RL controller might issue commands at 10Hz,
directing a lower-level impedance controller operating at
1kHz. This means a single RL decision influences 100 cycles
of the lower-level controller. The goal of the impedance
controller is to balance forces based on the equation F' =
kp-e+kqg-é+ Frp+ Feop, where € = p — prey, p is the
measured pose, and p,.. is the target pose computed by the
upstream controller, F; is the feed-forward force, F.,, is
the Coriolis force. This setup functions similarly to a spring-
damper system, where the distance to the target position
(pref) can generate significant forces if not carefully man-
aged, risking damage upon contact. Instead of compromising
control precision by lowering gains, we bound e directly to a
maximum value A, effectively capping the force to prevent

hard collisions while maintaining accuracy. Then the force
generated from the spring-damper system will be bounded
to kp - |A| 4 2kq - |Al - f, where f is the control frequency.
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Fig. 5: Visualization of controller logs on the z-axis of the end-effector
when commanded with different movements. The orange line is the com-
manded target (the output of RL), red is the smoothed target sent to the
real-time controller, blue is the clipped target, and green is the robot position
after executing this controller. Left: Command for the end-effector to engage
with a hard surface, where the reference limiting clips the target to prevent
a collision. Right: The command is a fast free-space movement, which our
mechanism does not block, allowing fast motion to the target.

One might wonder if we could directly clip the RL
policy’s action output to small increments, on the order of
micrometers for delicate tasks like PCB board manipulation.
This might seem straightforward but can lead to prolonged
or unstable learning processes compared to our approach
due to the need for significantly more time steps to move
the end-effector across the same distance. Instead, reference
limiting at the real-time control layer addresses this issue
without restricting the RL policy’s range of action, allowing
for unimpeded movement in free space as long as M - |A| >
|a|maz, where M is the number of control time-steps inside a
block, usually large (e.g., M = 100), as in Fig. 4. One might
also ask whether it is possible to achieve the same result
by using an external force/torque sensor. However, practical
challenges such as sensor noise and calibration complexity
make this approach less viable. Moreover, designing robot
motions that both learn effectively and adhere to force
constraints adds further complexity.

Our approach, which involves clipping the reference at
the real-time control layer, is simple and effective, particu-
larly for enabling RL in tasks requiring precise contact-rich
manipulation. This technique was successfully implemented
and verified with a Franka Panda robot, demonstrating that
our controller can effectively limit forces during contact
while allowing swift movements in free space as shown
in Fig. 5. This strategy is not only applicable to Franka
Panda robots but can also be adapted to any torque-controlled
robot, showcasing its versatility in facilitating RL-based
manipulation tasks.

F. Relative Observation and Action Frame

Selecting a suitable action space is crucial for expediting
the training process and extending the policy’s generalization
ability to perturbations at test time. While SERL supports
multiple action representations through a common RL in-
terface, we found a convenient mechanism for representing
observations and actions in the relative coordinate system.
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Fig. 6: Illustration of the robot performing each task: PCB Insertion (top left), Cable Routing (top right), Object Relocation - Forward (bottom left), and
Object Relocation - Backward (bottom right). The green box indicates a state where the robot receives a high reward for completing the task.

To develop an agent capable of adapting to a dynamic
target, we propose a training procedure that simulates a
moving target without the need for physical movement. The
target, for instance, the PCB insertion socket holes, is fixed
relative to the robot base frame, and the reward can be
specified using any of the standard methods provided in Sec.
IV-B. At the beginning of each training episode, the pose of
the robot’s end-effector was randomized uniformly within a
pre-defined area in the workspace. The robot’s proprioceptive
information is expressed w.r.t the frame of the end-effector’s
initial pose; the action output from the policy (6D twist) is
relative to the current end-effector frame. This is equivalent
to physically moving the target when viewed relatively from
the frame attached to the end-effector. As a result, the policy
can succeed even if the object moves or, as in some of our
experiments, is perturbed in the middle of the episode.

V. EXPERIMENTS

Our experimental evaluation aims to study how effi-
ciently our system can learn a variety of robotic ma-
nipulation tasks, including contact-rich tasks, deformable
object manipulation, and free-floating object manipulation.
These experiments demonstrate the breadth of applica-
bility and efficiency of SERL. We use a Franka Panda
arm and two wrist cameras attached to the end-effector
to get close-in views. Further details can be found at
https://serl-robot.github.io/. We use an Im-
ageNet pre-trained ResNet-10 [63] as a vision backbone
for the policy network and connect it to a 2-layer MLP.
Observations include camera images and robot propriocep-
tive information such as end-effector pose, twist, force, and
torque. The policy outputs a 6D end-effector delta pose from
the current pose, which is tracked by the low-level controller.
The evaluation tasks are illustrated in Fig. 6 and below:
PCB insertion: Inserting connectors into a PCB board
demands fine-grained, contact-rich manipulation with sub-
millimeter precision. This task is ideal for real-world train-
ing, as simulating and transferring such contact-rich interac-
tions can be challenging. At the beginning of each episode,
the initial end effector pose is sampled uniformly from a
starting region, as described in Table II.

Cable routing: This task involves routing a deformable
cable into a clip’s tight-fitting slot. This task requires the
robot to perceive the cable and carefully manipulate it so
that it fits into the clip while holding it at another location.
This is particularly difficult for any method that relies on

model-based control, or makes rigid-object assumptions,
since both visual perception and handling of deformable
objects is essential for access. Tasks of this sort often arise
in manufacturing and maintenance scenarios. Similarly to the
PCB task, the initial end effector pose is sampled uniformly
within a starting region, as described in Table II.

Object relocation: This task requires moving a free-floating
object between bins, requiring grasping and relocation. The
intricacies of reward inference and reset-free training become
especially pronounced in the manipulation of such free-
floating objects. We define the forward task as picking up
the object from the bin on the right side and placing it on
the left, while the backward task moves the object back to
the starting bin, undoing the forward task.

For each task, we initialize RL training from 20 teleoper-
ated demonstrations using a Space Mouse. To confirm that
demonstrations alone are insufficient to solve the task, we
include a behavioral cloning (BC) baseline using 100 high-
quality expert teleoperated demonstrations, roughly match-
ing the total amount of data in the RL replay buffer when
RL converges. Note that this is 5 times more demonstrations
than the amount provided by our method. Both RL and BC
demonstrations are collected using the initial end effector
randomization scheme described in Table II. All training was
done on a single Nvidia RTX 4090 GPU.

a) Results: We report the results in Table II, and show
example executions in Fig. 6. We evaluated both BC and RL
policies under the same conditions and protocols as detailed
in Section V. Our RL policies achieve perfect success rates
on all three tasks over all 100 trials. For the PCB insertion
and cable routing task, our RL policies converge in under
30 minutes of real-world training, which includes all com-
putation, resets, and intended stops. The free-floating object
relocation task learns two policies (forward and backward),
and total time amounts to less than an hour per policy.
For the cable routing task and PCB insertion task, our
policies outperform BC baselines by a large margin, despite
training with 5x fewer demonstrations than BC, suggesting
that demos alone are insufficient. We report the results in
terms of success rate and cycle time in Fig. 7 and Fig. 8.
The learned RL policies not only outperformed their BC
counterparts by as much as 10x in terms of success rate
but also improved on the cycle time of the initial human
demonstrations by up to 3x.

b) Comparison to prior systems: While it’s difficult to
directly compare our results to those of prior systems due
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Package Task Training time Success rate  Demos Shaping? Vision? Open-sourced?
Guided Policy Search[4] Peg insertion 3 hours 70% 0 Yes Yes Yes
DDPGID [60] Peg/clip insertion 1.5-2.5 hours 97% | 77% 30 No Yes No
Visual Residual RL [19]  Connector insertion  Not mentioned  52% ~ 100% 0 Yes Yes No
SHIELD [61] Connector insertion 1.5 hours 99.8% 25 No Yes No
InsertionNet [62] Connector insertion 40 mins 78.5% - 100% 0 Yes Yes No
SERL (Ours) PCB Insertion 20 mins 100 % 20 No Yes Yes

TABLE I: Comparison to results reported on similar tasks in prior work. The overall success rates for our method are generally higher, and the training
times are generally lower, as compared to prior results. Note also that the PCB board assembly task, shown in Figure 1, has very tight tolerances, likely
significantly tighter than the coarser peg and connector insertion tasks studied in the prior works.

Task # of Demos Image Input Random Reset  Reward Specification Bin Size Training Time
PCB Component Insertion 20 2 wrist camera True Ground Truth 10cm x 10cm 20 mins
Cable Routing 20 2 wrist camera True Binary Classifier 20cm X 20cm 31 mins
Object Relocation (Forward-Backward) 20 1 wrist, 1 side camera False Binary Classifier 20cm x 30cm 105 mins

TABLE II: Task parameters: During demo collection for both BC and RL, as well as online training, each episode’s initial end-effector pose resets
uniformly at random within a fixed region for the PCB and Cable task, while the free-floating object relocation task resets above the center of each bin.

BC

B RL (Ours)
100

100

Number of Successes Out of 100 Trials

PCB Component
Insertion

Cable Routing Object Relocation

Fig. 7: Success rate comparisons: When evaluated for 100 trials per task,
learned RL policies outperformed BC policies by a large margin, by 1.7x for
Object Relocation, by 5x for Cable Routing, and by 10x for PCB Insertion.

to numerous differences in the setup, lack of consistently
open-sourced code, and other discrepancies, we provide a
summary of training times and success rates reported for
tasks that are most similar to our PCB board insertion task
in Table II. We chose this task because similar insertion or
assembly tasks have been studied in prior work, presenting
challenges to precision, compliant control, and sample effi-
ciency. Compared to prior works, our experiments do not use
shaped rewards, which might require extensive engineering,
though we do utilize a small amount of demonstration data
(which some prior works eschew). The results reported in
these prior works generally have lower success rates and/or
longer training times, suggesting SERL matches or exceeds
the performance of state-of-the-art methods in the literature
on this task. The closest performance to ours in the work of
Spector et al. [62] includes a number of design decisions
and inductive biases specific to insertion, whereas SERL
is generic and makes minimal task-specific assumptions.
Although the components of SERL are all based on (recent)
prior work, the state-of-the-art performance of this combina-
tion illustrates our main thesis: the details of how deep RL
methods are implemented can make a big difference.

18.94
Object Relocation
753

13.58
Cable Routing

PCB Component 10.14
Insertion NN RL (Ours)

N BC

75 100

Cycle Time (s)

125 15.0 175

Fig. 8: Cycle time comparison: We recorded the average time taken for
the robot to succeed in each task. RL policies are at least 2x faster than BC
policies trained with 100 high-quality human teleoperated demonstrations.

VI. DISCUSSION

We introduced a software package aimed at making
real-world robotic reinforcement learning more accessible
for researchers and practitioners. SERL combines sample-
efficient RL, automated reward design, environment resets,
and a controller tailored for precise contact-rich manipulation
tasks. Our experimental evaluation demonstrates SERL’S
efficiency in diverse manipulation tasks. However, there are
several limitations: SERL doesn’t cover all RL methods
or non-manipulation tasks, and challenges such as reward
specification and reset-free learning remain open problems.
We hope that SERL provides a solid starting point for those
exploring real-world robotic reinforcement learning.
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