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Abstract—This paper investigates the multi-agent cooperative
exploration problem, which requires multiple agents to explore
an unseen environment via sensory signals in a limited time.
A popular approach to exploration tasks is to combine active
mapping with planning. Metric maps capture the details of the
spatial representation, but are with high communication traffic
and may vary significantly between scenarios, resulting in inferior
generalization. Topological maps are a promising alternative as
they consist only of nodes and edges with abstract but essential
information and are less influenced by the scene structures.
However, most existing topology-based exploration tasks utilize
classical methods for planning, which are time-consuming and
sub-optimal due to their handcrafted design. Deep reinforcement
learning (DRL) has shown great potential for learning (near)
optimal policies through fast end-to-end inference. In this paper,
we propose Multi-Agent Neural Topological Mapping (MANTM)
to improve exploration efficiency and generalization for multi-
agent exploration tasks. MANTM mainly comprises a Topological
Mapper and a novel RL-based Hierarchical Topological Planner
(HTP). The Topological Mapper employs a visual encoder and
distance-based heuristics to construct a graph containing main
nodes and their corresponding ghost nodes. The HTP leverages
graph neural networks to capture correlations between agents
and graph nodes in a coarse-to-fine manner for effective global
goal selection. Extensive experiments conducted in a physically-
realistic simulator, Habitat, demonstrate that MANTM reduces
the steps by at least 26.40% over planning-based baselines and
by at least 7.63% over RL-based competitors in unseen scenarios.

Index Terms—Reinforcement Learning, Path Planning for
Multiple Mobile Robots or Agents

I. INTRODUCTION

Xploration [1] is one of the fundamental building blocks
for developing intelligent autonomous agents, and is
widely applied in autonomous driving [2], disaster rescue [3],
and planetary exploration [4]. In this paper, we focus on
multi-agent exploration, where agents simultaneously explore
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an unknown scene via sensory signals. To achieve efficient
exploration, we typically employ a workflow of autonomous
map construction and collaborative planning.

The spatial arrangement of metric maps [5], [6] can vary
significantly between scenes, which hinders the generalization
ability for exploration. Metric maps also perform poorly in
efficiency, as they are with high communication traffic and have
difficulty scaling to larger environments. In contrast, topological
maps, which contain abstract but essential information, require
less communication traffic and are less sensitive to changes in
scene structure. Therefore, applying topological maps [7], [8]
offers significant generalization potential and high efficiency.

Topology-based exploration tasks commonly utilize classical
methods [9], [10] for planning due to their minimal training
time and direct deployment for evaluation. However, they often
suffer from numerous handcrafted parameters and rule-based
coordination strategies, which limits their effectiveness. In con-
trast, DRL has shown potential for topological exploration [11],
[12] due to its ability to model arbitrarily complex strategies and
execute real-time actions. However, these methods are based on
pre-built graphs [11], [13] or tested on simple grid maps [12].
Applying active topological mapping in RL-based multi-agent
exploration is confronted with the following limitations: (a) the
number of nodes in the merged graph is large and constantly
changing during exploration, leading to unstable RL training
and suboptimal results in such a large and varying search
space; (b) capturing complex relationships between agents
and topological maps is difficult, resulting in an unbalanced
workload distribution among agents.

To address the above challenges, we propose Multi-Agent
Neural Topological Mapping (MANTM), an RL-based topolog-
ical solution for multi-agent exploration. We adopt a modular
exploration strategy that divides the planning process into two
phases. In the first phase, the global planner infers global
goals in each global decision-making step. Subsequently, the
local planner predicts the environmental actions to encourage
the agents to reach the global goals. MANTM comprises a
Topological Mapper to build topological maps, a Hierarchical
Topological Planner (HTP) to infer the global goals, and a
Local Planner and a Local Policy to generate environmental
actions. The Topological Mapper employs a visual encoder and
distance-based heuristics to construct graphs with main nodes
(i.e., explored areas) and ghost nodes (i.e., unexplored areas).
To build more accurate graphs, each agent also maintains a
predicted metric map to identify explored areas and prune
graphs. We remark that the metric maps are not shared among
agents and are not used for global planning, thus promising
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reduced communication traffic and enhanced generalization
capabilities. The RL-based global planner, the Hierarchical
Topological Planner (HTP), is the most crucial component that
selects a main node and then chooses a corresponding ghost
node as a global goal for each agent at each global step. This
hierarchical goal selection significantly reduces the search space
with much fewer candidate nodes, thus addressing challenge
(a). Furthermore, the HTP leverages graph neural networks to
capture the relationship between agents and topological maps,
solving challenge (b).

We conduct extensive experiments in the physically realistic
simulator, Habitat [14]. The experimental results demonstrate
that MANTM has at least 7.63% fewer steps than RL-based
baselines, and at least 26.40% fewer steps than planning-based
competitors in unseen scenarios.

II. RELATED WORK
A. Multi-Agent Exploration

In classical visual exploration, agents first perform
simultaneous localization and mapping (SLAM) [15] to locate
their position and reconstruct 2D maps from sensory signals.
They then utilize search-based planning algorithms to generate
valid exploration trajectories. Representative works mainly
include frontier-based methods [16], [17], sampling-based
methods [18], [19], and graph-based methods [9], [20].
However, these solutions suffer from expensive computational
costs and limited representation capabilities. Recently, deep
reinforcement learning [21], [22], [23] has attracted significant
attention due to its powerful expressiveness. NeuralCoMap-
ping [21] utilizes a multiplex graph neural network to choose
effective frontiers as global goals. MAANS [22] uses a
transformer-based architecture to infer spatial relationships
and intra-agent interactions. However, all these approaches are
based on metric maps, which are sensitive to different scene
structures and result in subpar generalization. In this paper,
we introduce an RL-based topological approach for efficient
exploration and superior generalization in unseen scenarios.

B. Spatial Representation

Spatial representation usually includes two main types of
maps: metric and topological maps. Metric maps are grid
maps where each grid predicts its traversability [5], [24].
However, metric maps struggle with generalization due to
significant structural variations across different scenes. In
contrast, topological maps [25] abstractly preserve essential
environmental features with nodes and edges, offering
a potential solution for improved generalization. Several
works [11], [13] are based on pre-built graphs, focusing on
graph refinement or finding optimal paths for coverage. Recent
literature [7], [8], [26] utilizes active topological mapping
for navigation tasks. For instance, [7] employs the cosine
similarity of visual embeddings to construct graphs. However,
it requires expert trajectories which are difficult to acquire in
the NP-hard multi-agent exploration problem. Furthermore,
[26] leverages depth images to predict explored/unexplored
nodes, while [8] utilizes semantics for approximate geometric
reasoning in topological representations. However, [26], [8]

requires a predefined goal to predict the geodesic distance from
unexplored nodes and select a node with the shortest predicted
distance. This is unsuitable for multi-agent exploration where
there are no pre-defined goals. In this work, we introduce
an RL-based Hierarchical Topological Planner to effectively
apply active topological mapping in multi-agent exploration.

C. Graph Neural Networks

Graph neural networks (GNNs) [27] are widely utilized in
multi-agent systems to model interactions between agents. [28]
proposes a hierarchical graph attention network that captures
the underlying relationships at the agent and the group level,
thereby improving generalization. [7] considers GNN as an
encoder for mapping tasks to extract node features from images.
Additionally, [21] formulates exploration tasks as bipartite
graph matching. In this paper, we propose a hierarchical goal
selector based on GNN to capture the correlations between
agents and topological maps in a coarse-to-fine manner.

III. TASK SETUP

Multi-agent cooperative exploration requires agents to
explore an unknown scene based on sensory signals. At each
time step, each agent receives a first-person RGB-D image
and the estimated pose from sensors. Agents then perform
environmental actions in the physically realistic simulator,
Habitat [14]. The horizon of the global decision-making step
is 15 steps, and the available environmental actions include
Turn Left, Turn Right, and Forward. Following the settings
in ANS [5] and NRNS [26], we introduce Gaussian noise in
the sensor readings and simulate real-world action noise. In
the multi-agent scenario, we further consider the following
settings. Firstly, we assume perfect communication, where
relative spawn locations are shared between agents. This
allows us to estimate the relative position of each agent at each
timestep by using sensory pose readings and shared spawn
locations. Besides, agents are randomly initialized within
a 2-meter geodesic distance constraint. This spatially close
initialization requires agents to expend more scanning effort
for exploration, further increasing the difficulty of cooperation.

IV. METHODOLOGY

We follow the paradigm of centralized training and de-
centralized execution (CTDE) with partial observations of
N agents, where agent k receives local observation, of, at
timestep ¢. The overview of MANTM is depicted in Fig. 1.
Each agent shares the same Topological Mapper, Hierarchical
Topological Planner, Local Planner, and Local Policy while
making decisions independently. The Topological Mapper
of each agent utilizes a visual encoder and distance-based
heuristics to construct a topological map based on RGB-
D images and estimated poses from sensory signals. For
better cooperation, the Topological Mapper transforms all
individual maps into the same coordination and merges them.
The Hierarchical Topological Planner (HTP) receives graphs
that respectively contain current agent information, main node,
and ghost nodes, along with corresponding historical graphs
containing agent trajectories, selected main nodes, and selected
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Fig. 1: Overview of Multi-Agent Neural Topological Mapping (MANTM). Here, we take Agent k as an example.

ghost nodes from the merged topological map. HTP utilizes
GNN on these graphs to hierarchically capture spatio-temporal
and intra-agent information. It then selects a ghost node as
a global goal at each global step. Finally, the Local Planner
plans a reachable path to the predicted global goal via the Fast
Marching Method (FMM) [29], and the Local Policy generates
environmental actions based on the reachable path. We remark
that the Local Planner and the Local Policy do not involve multi-
agent interactions, so they are directly adopted from ANS [5].

A. Topological Mapper

We introduce a Topological Mapper to provide a merged
topological map, as shown in Fig. 1. Inspired by [8], [26],
we consider two types of nodes in the topological map:
main nodes and ghost nodes. Main nodes are located where
agents have already explored. Ghost nodes are located in the
unexplored area and adjacent to the corresponding main node.

In map construction, the Topological Mapper relies on a
visual encoder and distance-based heuristics. Firstly, we adopt
an encoder [7] to predict visual embeddings of panoramic
RGB-D images. The topological map constructs main nodes
based on the cosine similarity between visual embeddings.
Specifically, when the cosine similarity between the visual
embedding at the current location and that of existing main
nodes is below a threshold (i.e., 0.75 in our work), a new main
node is constructed at that location and connected to the main
node that the agent most recently localized. However, images
of some spatially irrelevant locations may be similar (e.g.,
images of corners and corridors both contain a large portion
of the wall), resulting in incorrect connections between main
nodes. To deal with this problem, we delete the connection of
main nodes with far-distant FMM distance at each global step.
Once a main node is constructed, m new ghost nodes are
uniformly adjacent to this main node at a distance A. Ghost
nodes can be removed if they are located in the explored areas
identified by the current agent’s predicted metric map via
SLAM. We remark that the metric map is just for identifying
explored regions and not for global planning. Besides, a ghost
node can be converted to a main node if the agent passes
through it. Therefore, the potential number of remaining
ghost nodes ranges from 0 to m X Ny, qin, Where Np,qin 1S the
number of main nodes. In our work, we choose A\ = 3 meters
and m = 12. Moreover, we delete spurious ghost nodes and

their connected edges based on the FMM distance between two
ghost nodes belonging to two different main nodes and between
a main node and a ghost node belonging to another main node.

For better cooperation, we transform all individual topolog-
ical maps into the same coordinate system and merge them
based on the estimated poses of the agents at each global
step. During merging, if the distance between two main nodes
from different maps is below a threshold (i.e., 3 meters in our
work), we randomly remove one of the nodes and redirect its
connected edges to the remaining node.

B. Hierarchical Topological Planner

The Hierarchical Topological Planner (HTP) selects a ghost
node as a global goal at each global step. However, it is difficult
for MARL to directly explore the (near) optimal strategy due
to the large and varying search space associated with the
number of ghost nodes. To address this issue, we propose a
hierarchical network that matches agents to main nodes and
then to the corresponding ghost nodes. Therefore, the HTP
can be easily optimized in the reduced search space with
much fewer candidate nodes and potentially provide a more
appropriate probability distribution of ghost nodes in a coarse-
to-fine manner. The workflow of the HTP is illustrated in Fig. 2.
Firstly, at each global step, we extract an agent-info graph, G,
a main node graph, G, a ghost node graph, G4, and three cor-
responding historical graphs, G, froma merged topological map.
Subsequently, we update each G with its historical graph in the
Memory Fusion to aggregate current and historical information.
The Main Node Selector computes matching scores between
the agent and the main nodes via the attention mechanism [30].
Afterward, the Ghost Node Selector calculates the probability
distribution of ghost nodes based on ghost node features and
the matching results from the Main Node Selector. Finally, the
Action Generator takes in the probability distribution of ghost
nodes and determines the most appropriate ghost node as the
global goal at each global decision-making step.

We remark that G, contains the current agent information,
while G, contains current main node features, and G, includes
current ghost node features. Besides, in historical graphs, G,
contains agent trajectories, GAm contains selected main node
features, and G ¢ includes selected ghost node features from past
global steps. Each node consists of its grid position, (x,y) €
R? 2,y € [0,map size|, and a semantic label, (s1,s2) €
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Fig. 2: Workflow of Hierarchical Topological Planner (HTP), including a Memory Fusion, a Main Node Selector, a Ghost
Node Selector and an Action Generator. HTP is under decentralized decision-making setting. We take Agent k as an example.

N2,N = {0,1}. This semantic label represents the type of
node, including agent nodes, historical agent nodes, map nodes,
and historical map nodes.

1) Memory Fusion: Exploration is a memory-based task [31]
which heavily relies on historical information. Therefore, this
module incorporates each graph with its historical counterpart
to mitigate the risk of memory loss. Concretely, we first
use a weight-shared multi-layer perception (MLP) layer to
encode node features due to their consistent information types
across different graphs. Then, the Memory Fusion merges
each graph with its corresponding historical graph and yields
an updated graph, G, via the self-attention and the cross-
attention mechanisms [30]. The output dimensions of the last
cross-attention layer match those of the original node features,
ensuring that the shape of G remains consistent with that of G.

2) Main Node Selector: The Main Node Selector is
introduced for the high-level goal selection and yields the
matching scores between the agent and the main nodes. It
predicts the next preferred region to explore since a main
node with a higher matching score implies a higher probability
of selecting its corresponding ghost nodes as the global goal.
More concretely, this module receives G and Gm and then
leverages an Individual Encoder and a Relation Encoder to
infer the matching scores, Sy, r.. The Individual Encoder
perceives the states of the agents and the spatial information
of the main nodes, while the Relation Encoder captures the
correlation between the agents and the main nodes.

Individual Encoder: The Individual Encoder captures
relationships between any two nodes in the same graph and
updates these nodes. As shown in Fig. 3(a), this module first
calculates the normalized matching scores of any two nodes:

Smin = Softmar(WoX x WrX). )

Here X denotes the node features, while W and W represent
the linear projections of X. The S, ;, is a matrix where each

element, anﬂzl, refers to the matching score between node 4
and node j.
After that, each node is updated by an MLP layer, f;,, with

a residual connection. The input to f;, is the concatenation

of each node feature and the weighted sum of its neighboring
features. The update of each node is formulated as:

XY = X fin (X' Wy X' x ST

mzn)

@

where X represents the node features at time step ¢, and Wy is
the linear projection of X*. The matching scores between nodes
in a graph, S, in, serve as the weights for neighboring nodes.

Relation Encoder: The Relation Encoder captures corre-
lations between any two nodes from different graphs. The
architecture of the Relation Encoder is shown in Fig. 3(b).
Considering the node features in two different graphs as Y and
Z, we calculate the normalized matching scores for each node
pair (y, z) by taking a softmax operator over the outputs of
an MLP layer, fg;5. The input to fy;s is the concatenation of
WqoY, Wik Z, and dfpm, where d g, is the FMM distance
between the given node pair. The calculation of the scores is
formulated as:

Smme - SOftma.’L‘(fdis(WQY, WKZa dfmm)) (3)

Afterward, we update all nodes via an MLP layer, f,., with a
residual connection:

YD =Y 4 [ (Y Wy 28 < ST ). @)
Here W represents linear projections, while Y'* and Z! denote
different node features at time step ¢. Note that S,(,If,)re denotes
the matching score between agent k and the main nodes and
is then sent to the Ghost Node Selector for agent k.

3) Ghost Node Selector: For the low-level goal selection,
the Ghost Node Selector provides a probability distribution of
ghost nodes and predicts the next location to explore based on
the preferred region. Similar to the Main Node Selector, the
Ghost Node Selector first receives G, and Gy and provides
ghost node scores, Sy ., via an Individual Encoder and a
Relation Encoder. The Individual Encoder captures intra-agent
interactions and spatial information of ghost nodes, while the
Relation Encoder infers the correlations between agents and
ghost nodes. Additionally, we update Sg by multiplying
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it with Sm 7@ to aggregate information from main and ghost
nodes for more appropriate goal selection:

k, k,h
S( TJ) w G(kh)

mre

Sk.j) —

g,re

&)

Here, k is a specific agent, j is the main node, and h denotes
the corresponding ghost node of the main node j. 5*5(7’7“726 is the
final matching score of agent k and ghost nodes.

4) Action Generator: The Action Generator selects a global
goal from all ghost nodes at each global step. We regard S’g,re
as the probability distribution over the ghost nodes. The action
space for the HTP is A = {ala € ghost nodes}, where a
is a discrete variable sampled from a categorical distribution,
indicating the index of the selected ghost node.

C. Reinforcement Learning Design

We train the HTP by using multi-agent proximal policy
optimization (MAPPO) [32], which is a multi-agent variant of
proximal policy optimization (PPO) [33].

Reward Function: To promote efficient and cooperative
exploration, we introduce four types of rewards. The coverage
reward, R.,,, represents the increase of the explored area to
encourage thorough exploration. Besides, the success reward,
Rgsye, offers a bonus for reaching the target coverage ratio.
The overlap penalty, R,, denotes the overlapped area passed
by agents to encourage cooperation. Finally, for efficient
exploration, agents receive a constant time penalty, R;, at
each timestep until they attain the target coverage ratio. As a
result, the reward function, R4, 1S @ linear combination of
these kinds of rewards.

V. EXPERIMENTS
A. Experimental Details

We conduct all experiments in the Habitat simulator [14],
using the Gibson Challenge dataset [34] and the Habitat-
Matterport 3D dataset (HM3D) [35]. The scenes in these
datasets are collected from real building-scale residential,
commercial, and civic spaces using 3D scanning and
reconstruction. We filter out some scenes that are inappropriate
for our task, following [22], which is one of the best RL-based
approaches for cooperative exploration. This filtering process
involved removing scenes with large disconnected regions or

multiple floors where agents couldn’t attain 90% coverage of
the entire house. Furthermore, we exclude scenes smaller than
70 m?2, as their topological maps would contain too few nodes
to fully show the advantages of graphs. To better demonstrate
the robustness of MANTM on training scenes and its effective
generalization to novel scenes, we follow [22], [21] by dividing
the remaining scenes into 10 training scenes from the Gibson
Challenge dataset and 28 testing scenes from both datasets.
We perform RL training with 10° timesteps over 3 random
seeds. Each evaluation score has the format of “mean (standard
deviation)”, and is averaged over 300 testing episodes.

B. Evaluation Metrics

We consider 3 statistical metrics to capture different char-
acteristics of a particular exploration strategy. These metrics
are only for analysis, and we primarily focus on Steps as our
performance criterion.

o Steps: This metric considers the timesteps required to
achieve 90% coverage within an episode. Fewer Steps
imply faster exploration.

o Coverage: This metric denotes the final ratio of the
explored area to total explorable area at the end of the
episode. A higher Coverage ratio reflects a more effective
exploration.

o Mutual Overlap: This metric shows the ratio of the
overlapped area to the currently explored area when the
Coverage ratio achieves 90%. Lower Mutual Overlap ratio
indicates better collaboration.

C. Baselines

We challenge MANTM against three representative planning-
based approaches (CoScan, Topological Frontier, Voronoi)
and three prominent RL-based solutions (ANS-Merge, Neu-
ralCoMapping, MAANS). Note that Topological Frontier and
Voronoi are also graph-based approaches.

e CoScan [17]: This frontier-based method applies k-means
clustering to all frontiers and assigns a frontier cluster
to each agent. Afterward, each agent plans an optimal
traverse path over the assigned frontiers.

o Topological Frontier (TF) [9]: This graph-based
approach calculates a normalized traveling cost for
each ghost node built from the Topological Mapper and
considers the node with the lowest cost as the global goal.

o Voronoi [20]: This graph-based solution divides the map
into several parts and transforms it into a Voronoi graph.
Each agent then only searches the unexplored region in
its partition, reducing the overlapped area.

e ANS-Merge [5]: ANS is exemplary in RL-based
single-agent exploration. It takes in egocentric local and
global metric maps and infers global goals for the agents.
We extend ANS to multi-agent exploration by sending
merged maps to the global planner and use the same
reward function as ours.

o NeuralCoMapping (NCM) [21]: NeuralCoMapping
introduces a multiplex graph neural network to predict
the neural distance between frontier nodes and agents.
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Agents Sce. Metrics ~ CoScan NF Voronoi | ANS-Merge NCM MAANS | MANTM
Middle  Mut. Over. 1 0.390.01) 0.56(0.01) 0.290.01) | 0.44(0.01) 0.38(0.01) 0.390.01) | 0.36(0.02)
(>70m?) Steps | 244.86(7.25) 231.72(5.43) 226.35(3.51) \ 211.884.23) 202.20(5.42) 185.31(5.81) \ 166.59(4.19)
N=3 Coverage 1 0.89(0.02) 0.92(0.01) 0.9200.01) | 0.94(0.01) 0.97¢0.01)  0.96(0.01) | 0.97(0.01)
Large Mut. Over|  0.42(0.01)  0.65(0.03) 0.330.01) | 0.52(0.02) 0.450.01)  0.43(0.01) | 0.38(0.01)
(>100m?2) Steps | 485.74(6.89) 454.34(6.89) 439.81(8.47) \ 386.54(11.96) 381.84(8.63) 379.45(5.69) \ 323.72(10.64)
Coverage T 0.90(0.03)  0.92001)  0.880.01) | 0.940.01)  0.930.01)  0.950.01) | 0.96(0.01)
Middle  Mut. Over | 0360.01) 053003 021001 | 042003 03500 025001 | 022001
(>70m?2) Steps | 236.81(4.39) 219.35(3.68) 218.80(2.46) \ 173.304.14)  174.63(4.57) 162.09(3.94)\ 149.72(1.94)
N=4 Coverage 1 0.97(0.03)  0.97(0.01) 0.950.01) | 0.98(0.01) 0.97(0.01) 0.98(0.01) | 0.98(0.01)
Large Mut. Over  0.36(0.01)  0.60(0.01) 0.250.01) | 0.45(0.03) 0.3800.01)  0.38(00.01) | 0.28(0.01)
(>100m2) Steps | 479.47(1.35) 425.88(6.15) 418.49(5.23) | 325.29(548) 322.27(8.67) 315.80(3.55) | 284.50(3.66)
Coverage © 0.91(0.03)  0.96(0.01)  0.96(0.01) | 0.95(0.01) 0.950.01)  0.950.01) | 0.96(0.01)

TABLE I: Performance of MANTM, planning-based baselines, and RL-based baselines with N = 3,4 agents on the Gibson

dataset. Note that the horizon of middle and large maps is 300 steps and 600 steps, respectively.

Agents Sce. Metrics CoScan NF Voronoi | ANS-Merge NCM MAANS | MANTM
Middle ~ Mut. Over | 0.40(0.01) 0.63(0.04) 0.32(0.03) | 0.48(0.03) 0.41(0.03) 0.46(0.07) | 0.36(0.01)
(>70m?) Steps | 354.02(540)  333.09(4.26)  256.78(2.58) | 279.72(538)  268.03(343)  267.23(4.82) | 238.10(3.39)
Coverage t 0.91(0.01) 0.95(0.01) 0.96(0.01) |  0.96(0.01) 0.96(0.01) 0.970.01) | 0.97(0.01)
N= Large Mut. Overl  0.40(0.01) 0.63(0.01) 0.28(0.03) | 0.52(0.05) 0.42(0.03) 0.550.07) | 0.39(0.04)
(>100m?) Steps | 698.228.16)  649.60(11.23)  509.24(5.54) | 497.41(11.60)  463.75(12.10)  458.69(14.04) | 419.88(7.91)
Coverage T 0.82(0.01) 0.92(0.01) 0.940.01) | 0.93(0.01) 0.95(0.01) 0.950.01) | 0.96(0.01)
Super Large _ M- Overd 033001 0.63(0.01) 0.28(0.01) | 0.450.04) 0.41(0.01) 0.40(0.04) | 0.350.01)
(>200m?) Steps | 1710.88(41.11)  1456.80(48.94)  1321.62(44.73) | 1343.17(50.68) 1147.25(57.26) 1135.24(53.06) | 982.54(43.51)
Coverage T 0.82(0.02) 0.87(0.01) 0.87(0.01) |  0.92(0.01) 0.92(0.01) 0.9400.02) | 0.97(0.01)
Middle ~ Mut. Over | 0.350.01) 0.57(0.02) 0.300.02) | 0.340.01) 0.35(0.03) 0.340.01) | 0.350.01)
(>70m?) Steps | 280.38(4.86)  314.12430) 23351279 | 227.42(581)  227.38(2.10)  219.68(5.64) | 191.31(1.66)
Coverage T 0.95(0.01) 0.96(0.01) 0.970.01) | 0.97(0.01) 0.96(0.02) 0.970.01) | 0.97(0.01)
N=4 Large Mut. Over]  0.37(0.01) 0.58(0.02) 0.29(0.01) | 0.44(0.02) 0.42(0.02) 0.410.01) | 0.38(0.01)
(>100m?2) Steps | 608.14(724)  601.158.60)  407.31(8.34) | 384.27(9.63)  389.12(8.53)  363.75(7.87) | 345.52(7.85)
Coverage T 0.92(0.01) 0.90(0.02) 0.96(0.01) |  0.950.01) 0.97(0.01) 0.97(0.02) | 0.97(0.02)
Super Large _ Mut- Overd 029001 0.59(0.01) 0.2200.01) |  0.35(0.01) 0.34(0.01) 0.3100.02) | 0.33(0.01)
(>200m?) Steps | 1538.13(22.13)  1338.95(47.36) 1264.12(39.34) | 1156.49(43.60) 1064.16(42.85) 1012.52(38.62) | 900.71(29.24)
Coverage T 0.89(0.01) 0.90(0.01) 0.910.02) | 0.9100.01) 0.94(0.02) 0.930.01) | 0.97(0.01)

TABLE II: Performance of MANTM, planning-based baselines and RL-based baselines with NV = 3,4 agents on the HM3D
dataset. Note that the horizon of middle, large, and super large maps is 450 steps, 720 steps, and 1800 steps, respectively.

It then assigns each agent a frontier node based on the

neural distance in each global step.

e MAANS [22]: MAANS is a variant of ANS for multi-
agent exploration. This method leverages a transformer-
based Spatial-TeamFormer to enhance cooperation. For a
fair comparison, we conduct training on 10 maps without

the policy distillation mentioned in [22].

We remark that MANTM and the baselines are under the
same assumptions in our task. All the baselines only replace
the Topological Mapper and the HTP with alternatives and
keep the rest the same as MANTM, except for TF, which only

substitutes the HTP.

D. Main Results
1) Evaluation Results: The

ratio. More concretely, MAANS

results in Tab. I show that

MANTM outperforms all baselines with N = 3,4 agents on
unseen scenes on Gibson. In both middle and large maps,
MANTM attains the fewest Steps and the highest Coverage

is the best RL baseline since

its transformer-based Spatial-TeamFormer captures the spatial

relationship and team representation, while MANTM has
10.10% and 7.63% fewer Steps than MAANS with N = 3,4

agents, respectively. This indicates that ghost nodes, which are
always located in unexplored areas, motivate agents to explore
unseen regions. MANTM also excels in the Mutual Overlap
ratio among the RL solutions, suggesting that it better assigns

global goals to agents in different unexplored directions.
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Fig. 4: Case studies of Map Construction and Planning Strategy. (a) shows that the graph structures of different scenes seem
congruous in general, marked in grey. (b) displays agents’ trajectories in Voronoi and MANTM, respectively.
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Fig. 5: Comparison between MANTM (red) and its variants.
MANTM has the lowest Steps and Mutual Overlap

Among the planning-based baselines, the best competitor,
Voronoi, achieves the lowest Mutual Overlap ratio in the 3-
agent setting, demonstrating that the Voronoi separates agents
to reduce the overlapped area. However, MANTM is superior
to Voronoi in the Steps and the Coverage ratio, reducing Steps
by 26.40% and 31.57% for N = 3,4 agents, respectively. This
implies that although the Voronoi partition separates agents, it
may hinder exploration efficiency by confining agents to stay
in their respective areas.

2) Domain Generalization: We also report the domain
generalization performance in Tab. II, where all models trained
on the Gibson dataset are evaluated in the HM3D domain.
The results indicate that MANTM performs best. Compared to
MAANS, the best competitor, MANTM achieves 13.45% and
11.04% fewer Steps with N = 3,4 in super large scenes. This
implies that the trained MAANS may overfit to the spatial
arrangements in the training maps, resulting in suboptimal
performance on unseen scenes in other domains due to
variations in different metric maps. In contrast, MANTM
exploits the graph structure with abstract but essential
information to better adapt to scenarios in an unseen domain.

The planning-based methods fail to achieve an average
Coverage ratio of 90% on super large maps. This indicates
that the factors affecting exploration success are more complex
on unseen super large maps. It is difficult for planning-based
agents to take all factors into account in manual parameter
tuning. As a result, agents may get stuck in the corner and fail
to reach 90% Coverage.

3) Case Study: We present case studies of map construction
in two different scenes to showcase the generalization of

MANTM. Besides, to further demonstrate the cooperative
exploration strategy of MANTM, we visualize the planning
strategies of MANTM and the most competitive planning-based
method, Voronoi.

In Fig. 4(a), the graph structures in two different scenes
appear to be generally congruent (i.e., the area in grey). This
suggests that topological maps, which contain abstract but
essential information, are less influenced by scene structures,
endowing them with significant generalization capabilities.
Conversely, the shape of metric maps depends on the layout
of the scene. As a result, finding a (near) optimal exploration
strategy for various metric maps is challenging. In Fig. 4(b),
the agent trajectories show that MANTM successfully allocates
agents to different unexplored areas via the selected ghost nodes.
Moreover, MANTM agents can temporarily revisit previously
explored areas to reach unexplored areas in different directions,
thereby increasing the final coverage. On the contrary, when
the only path to the unexplored area belongs to the partition
of a particular Voronoi agent (i.e., the area in blue), the other
agent can only be constrained to its own partition (i.e., the
area in green), resulting in inefficient exploration.

E. Ablation Study

We report the training performance of several RL variants
to investigate the importance of the Mapper and the HTP.

o Mapper w.o. Distance: Without the help of the FMM
distance, the Topological Mapper constructs the graph
based solely on the similarity of the visual embeddings.

o« HTP w.o. History: We abandon the historical graphs,
G, and the Graph Fusion. The Main Node Selector only
takes G as input.

o HTP-Single: We abandon the Main Node Selector and
only adopt the Ghost Node Selector to infer global goals.

o HTP-Concat: Before calculating Sy ;.. in the Ghost Node
Selector, we update ghost node features by concatenating
them and the corresponding main node features. We then
discard the multiplication in Equation 5 and directly
consider S . as the final matching score.

As shown in Fig. 5, MANTM has the lowest Steps and
Mutual Overlap ratio in N= 2 agents on Gibson. MANTM
is superior to Mapper w.o. Distance with over 10% lower
Steps, suggesting that distance-based heuristics reduce incorrect
connections between nodes and provide a more accurate graph
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for effective global planning. Among all HTP variants, HTP-
Single has the highest Mutual Overlap ratio and Steps. This
indicates that directly selecting ghost nodes as global goals
may lead to a sub-optimal solution due to the large number
of node candidates. The performance of HTP w.o. History
is worse in Mutual Overlap ratio, suggesting that the lack
of historical memory affects cooperation. HTP-Concat shows
the lowest training convergence. The result expresses that the
concatenation of the main and ghost node features prevents
the HTP from better perceiving the relationship between these
two types of nodes.

VI. CONCLUSION AND LIMITATIONS

We propose Multi-Agent Topological Neural Mapping
(MANTM), a multi-agent topological exploration framework, to
improve exploration efficiency and generalization. In MANTM,
the Topological Mapper constructs graphs via a visual encoder
and distance-based heuristics. The RL-based Hierarchical
Topological Planner (HTP) captures the relationships between
agents and graph nodes to infer global goals. Experiments
in Habitat demonstrate that MANTM outperforms planning-
based baselines and RL variants in unseen scenes. However,
there is a huge room for improvement in MANTM. For
example, our method leverages metric maps to prune graphs,
thus the precision of the metric map may influence the
quality of the topological maps. Besides, we assume fully
synchronized decision-making, which may fail in environments
with communication latency.
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