
IQL-TD-MPC: Implicit Q-Learning for
Hierarchical Model Predictive Control

Rohan Chitnis∗, Yingchen Xu∗, Bobak Hashemi, Lucas Lehnert,
Urun Dogan, Zheqing Zhu, Olivier Delalleau†

Meta AI, FAIR

Abstract— Model-based reinforcement learning (RL) has
shown great promise due to its sample efficiency, but still
struggles with long-horizon sparse-reward tasks, especially in
offline settings where the agent learns from a fixed dataset.
We hypothesize that model-based RL agents struggle in these
environments due to a lack of long-term planning capabilities,
and that planning in a temporally abstract model of the
environment can alleviate this issue. In this paper, we make
two key contributions: 1) we introduce an offline model-
based RL algorithm, IQL-TD-MPC, that extends the state-
of-the-art Temporal Difference Learning for Model Predictive
Control (TD-MPC) with Implicit Q-Learning (IQL); and 2) we
propose to use IQL-TD-MPC as a Manager in a hierarchical
setting with any off-the-shelf offline RL algorithm as a Worker.
More specifically, we pre-train a temporally abstract IQL-TD-
MPC Manager to predict “intent embeddings”, which roughly
correspond to subgoals, via planning. We show that augmenting
state representations with intent embeddings generated by
an IQL-TD-MPC manager significantly improves off-the-shelf
offline RL agents’ performance on some of the most challenging
D4RL benchmark tasks. For instance, the offline RL algorithms
AWAC, TD3-BC, DT, and CQL all get zero or near-zero
normalized evaluation scores on the medium and large antmaze
tasks, while our modification gives an average score over 40.

I. INTRODUCTION

Model-based reinforcement learning (RL), in which the
agent learns a predictive model of the environment and uses
it to plan and/or train policies [1], [2], [3], has shown great
promise due to its sample efficiency compared to its model-
free counterpart [4], [5]. Most prior work focuses on learning
single-step models of the world, with which planning can
be computationally expensive and model prediction errors
may compound over long horizons [6], [7]. As a result,
model-based RL still struggles with long-horizon sparse-
reward tasks, whereas some evidence suggests that humans
are able to combine spatial and temporal abstractions to plan
efficiently over long horizons [8]. Modeling the world at a
higher level of abstraction can enable predicting long-term
future outcomes more accurately and efficiently.

Long-horizon sparse-reward tasks are particularly chal-
lenging for offline RL, since the agent cannot explore the
environment [9], [10], [11], [12]. The offline setting is key to
training RL agents safely, but poses unique challenges such
as value mis-estimation [9]. In this paper, we study offline
model-based RL, and hypothesize that planning in a learned

∗ Equal contribution
† Currently at NVIDIA, but work done while at Meta AI (FAIR team)

Fig. 1: Overview of our hierarchical framework. The Manager is a
model-based IQL-TD-MPC agent (inspired by [13] and [14]) that
operates on a coarse timescale. It generates intent embeddings gt by
performing Model Predictive Control over H planning steps (which
is kH environment steps), using a learned policy πM

θ , dynamics
model fM

θ , reward function RM
θ , and critic QM

θ . Each intent gt is
concatenated with the state st and given to the Worker to output
actions at. This Worker can be any offline RL algorithm.

temporally abstract model of the environment can produce
significant improvements over “flat” algorithms that do not
use temporal abstraction. Our two key contributions are:

• Section IV: IQL-TD-MPC, an offline model-based RL
algorithm that combines the state-of-the-art online RL
algorithm Temporal Difference Learning for Model Pre-
dictive Control (TD-MPC) [13] with the popular offline
RL algorithm Implicit Q-Learning (IQL) [14]. This com-
bination requires several non-trivial design decisions.
• Section V: We show how to use IQL-TD-MPC as a

Manager in a temporally abstracted hierarchical setting
with any off-the-shelf offline RL algorithm as a Worker.
To achieve this hierarchy, we pre-train an IQL-TD-
MPC Manager to output “intent embeddings” via MPC
planning, then during Worker training and evaluation,
simply concatenate these embeddings to the environ-
ment states. These intent embeddings roughly correspond
to subgoals1 set k steps ahead, thanks to the coarser
timescale used when training the Manager. A benefit of
this concatenation strategy is its simplicity: it does not
require modifying Worker training algorithms or losses.

See Fig. 1 for an overview of our framework. Exper-

1We generally do not call the intent embeddings “subgoals” in this paper
because the Worker is not explicitly optimized to achieve them; instead,
we are simply concatenating them to environment states.

2024 IEEE International Conference on Robotics and Automation (ICRA 2024)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 9154

imentally, we study the D4RL benchmark [15], showing
that IQL-TD-MPC is far superior to vanilla TD-MPC and
on par with several other popular offline RL algorithms
in most settings. Then, we show the significant benefits
of our proposed hierarchical framework. For instance, the
well-established offline RL algorithms AWAC [16], TD3-
BC [17], DT [18], and CQL [19] all get zero or near-
zero normalized evaluation score on the medium and large
antmaze variants of D4RL, whereas they obtain an average
score of over 40 when used as Workers in our hierarchical
framework. Despite the superior performance of our ap-
proach on the maze navigation tasks, our empirical analysis
shows that such hierarchical reasoning can be harmful in
fine-grained locomotion tasks like the D4RL half-cheetah.
Overall, our results suggest that model-based planning in a
temporal abstraction of the environment can be a general-
purpose solution to boost the performance of many differ-
ent offline RL algorithms, on complex tasks that benefit
from higher-level reasoning. Video results are available at
https://sites.google.com/view/iql-td-mpc.

II. RELATED WORK

A. Offline Reinforcement Learning

In offline RL [9], [10], [11], [12], the agent learns from
a fixed offline dataset. [20] learns a generative model of
potential goals to pursue given the current state, along with a
goal-conditioned policy trained by Conservative Q-Learning
(CQL [19]), from a combination of the task reward with a
goal-reaching reward. Planning is performed by optimizing
goals (with CEM) to maximize those rewards as estimated
by the value function of the policy over the planning horizon.
In our work, by contrast, our intent embeddings are defined
in the Manager’s learned latent space, and we can use this
Manager with any offline RL Worker. The recently proposed
POR algorithm [21] learns separate “guide” and “execute”
policies, where the “guide” policy abstracts out the action
space. Our Manager can also be seen as such a guide that
would plan over longer time horizons.

A recent line of work uses Transformers [22] to model
trajectories from the offline dataset [23], [18]. [24] proposes
the Trajectory Autoencoding Planner (TAP), that models a
trajectory by a sequence of discrete tokens learned by a
Vector Quantised-Variational AutoEncoder (VQ-VAE [25]),
conditioned on the initial state. One can see the generation
of encoded trajectories as a Manager, and the decoding into
actual actions as a Worker. However, in contrast to our
approach, this Manager provides an intent embedding that
encodes an entire predicted trajectory rather than a single
state. In addition, TAP relies on a Monte-Carlo “return-to-
go” estimator to bootstrap search, while we explicitly learn
a temporally abstract Manager value function.

Play-LMP [26] encodes goal-conditioned sub-trajectories
in a latent space through a conditional VAE [27], which can
be used to sample latent plans that are decoded through
a goal-conditioned policy. However, there is no notion of
optimizing a task reward here: instead, the desired goal state
must be provided as input to the model to solve a task.

B. Hierarchical Reinforcement Learning

Though our work focuses on the offline setting, we high-
light a few related works in the online setting. Director [28]
trains Manager and Worker policies in imagination, where
the Manager actions are discrete representations of goals for
the Worker, learned from the latent representation of a world
model. Although we re-use a similar discrete representation
for Manager actions, this approach differs from our work
in several ways: it focuses on the online setting, there is
no planning during inference, and the world model is not
temporally abstract. Our work may be related to the literature
on option discovery [29], [30], [31], [32]. In our proposed
hierarchical framework, the intent embeddings output by our
Manager can be seen as latent skills [33], [34] that the
Worker conditions on to improve its learning efficiency. Fi-
nally, our work can be seen as an instantiation of one piece of
the H-JEPA framework laid out by [35]: we learn a Manager
world model at a higher level of temporal abstraction, which
works in tandem with a Worker to optimize rewards.

III. PRELIMINARIES

A. Markov Decision Processes and Offline RL

We consider the standard infinite-horizon Markov Deci-
sion Process (MDP) [36] setting with continuous states and
actions, defined by a tuple (S,A, P,R, γ, p0) where S ⊆ Rn

is the state space, A ⊆ Rm is the action space, P (s′ | s, a)
is the transition probability distribution function, R : S ×
A 7→ R is the reward function, γ ∈ (0, 1) is the discount
factor, and p0(s) is the initial state distribution function. The
reinforcement learning (RL) objective is to find a policy π(a |
s) that maximizes the expected infinite sum of discounted
rewards: Es0∼p0,at∼π(·|st),st+1∼P (·|st,at) [

∑∞
t=0 γ

tR(st, at)].
In offline RL [9], [10], the agent learns from a fixed dataset

rather than collecting its own data. One key challenge is
dealing with out-of-distribution actions: if the learned policy
samples actions for a given state that were not seen in
the training set, the model may mis-estimate the value of
these actions, leading to poor behavior. Imitation learning
methods like Behavioral Cloning (BC) sidestep this issue by
mimicking the behavior policy used to generate the dataset,
but may perform sub-optimally with non-expert data [37].

B. Temporal Difference Model Predictive Control (TD-MPC)

Our work builds on TD-MPC [13], an algorithm that
combines planning in a latent space using Model Predictive
Control (MPC) with actor-critic Temporal Difference (TD)
learning. The components of TD-MPC (with θ denoting the
set of all parameters) are the following:

• An encoder hθ : S → Rd mapping a state s to its latent
representation z = hθ(s).
• A forward dynamics model fθ : Rd × A → Rd,

predicting the next latent state ẑ′ = fθ(z, a).
• A reward predictor Rθ : Rd × A → R computing
expected rewards r̂ = Rθ(z, a).
• A policy πθ : Rd ×A → R+ to sample a ∼ πθ(· | z).
• A critic Qθ : Rd × A → R computing state-

action values Qθ(z, a) that estimate Q-values under πθ:

9155

Qθ(hθ(s), a) ≃ Qπθ (s, a) ≜ Eπθ
[
∑

t≥0 γ
tRθ(st, at) |

s0 = s, a0 = a)].
The parameters θ of these components are learned

by minimizing several losses over sub-trajectories
(s0, a0, r1, s1, a1, . . . , rT , sT) sampled from the replay
buffer, where T is the horizon:
• A critic loss based on the TD error, LQ = (Qθ(ẑt, at)−
[rt+1 + γQθ−(zt+1, πθ(zt+1))])

2, where we denote by
πθ(z) a sample from πθ(· | z) and ẑt = fθ(ẑt−1, at−1),
with ẑ0 = z0 = hθ(s0).
• A reward prediction loss, LR = (Rθ(ẑt, at)− rt+1)

2.
• A forward dynamics loss (also called “latent state con-
sistency loss”), Lf = ∥fθ(ẑt, at) − hθ−(st+1)∥2, where
θ− are “target” parameters obtained by an exponential
moving average of θ.
• A policy improvement loss, Lπ = −Qθ(ẑt, πθ(ẑt)),
only optimized over the parameters of the policy πθ.

The first three losses are combined through a weighted
sum, L = cfLf+cRLR+cQLQ, which trains hθ, fθ, Rθ, and
Qθ. The policy πθ is trained independently by minimizing
Lπ without propagating gradients through either hθ or Qθ.

TD-MPC is online: it alternates training the model by
minimizing the losses above, and collecting new data in
the environment. At inference time, TD-MPC plans in the
latent space with Model Predictive Control, which proceeds
in three steps: (1) From current state s0, set the first latent
z0 = hθ(s0), then generate nπ action sequences by unrolling
the policy πθ through the forward model fθ over T steps:
at ∼ πθ(· | zt) and zt+1 = fθ(zt, at). (2) Find optimal action
sequences using Model Predictive Path Integral (MPPI) [38],
which iteratively refines the mean and standard deviation of a
Gaussian with diagonal covariance, starting from the above
nπ action sequences combined with nr additional random
sequences sampled from the current Gaussian. The quality
of an action sequence is obtained by

∑T−1
t=0 γtRθ(zt, at) +

γTQθ(zT , aT), i.e., unrolling the forward dynamics model
for T steps, using the reward predictor to estimate the sum
of rewards, and then bootstrapping with the critic’s value
estimate at the last state. (3) One of the best ne action
sequences sampled in the last iteration of the previous step
is randomly selected, and its first action is executed.

IV. IQL-TD-MPC FOR OFFLINE MODEL-BASED RL

In this section, we present IQL-TD-MPC, a framework
that extends TD-MPC to the offline RL setting via Implicit
Q-Learning (IQL) [14]. As shown in Section VI, naively
training a TD-MPC agent on offline data performs poorly, as
the model may suffer from out-of-distribution generalization
errors when the training set has limited coverage. Indeed, the
state-action value function Qθ may “hallucinate” very good
actions never seen in the training set, and then the policy πθ

would learn to predict these actions. This could steer MPC
planning into areas of the latent representation very far from
the training distribution, compounding the error further.

In the original IQL work [14], the authors address the
challenge of out-of-distribution actions using two ideas:

• Approximating the optimal value functions Q∗ and V ∗

with TD-learning using only actions from the training set
D. This is achieved using the following loss on Vθ:2

LV,IQL = E(s,a)∼D[L
τ
2(Qθ−(s, a)− Vθ(s))], (1)

where Lτ
2 is the asymmetric squared loss, Lτ

2(u) = τu2

for u ≥ 0 and (1 − τ)u2 for u < 0, with τ ∈ (0.5, 1)
a hyper-parameter controlling the “optimality” of the
learned value functions. The state-action value function
Qθ is optimized through the standard one-step TD loss:

LQ,IQL = E(s,a,r,s′)∼D[(Qθ(s, a)− (r + γVθ(s
′)))2].

(2)
• Learning a policy using Advantage Weighted Regres-

sion [39], using a weighted behavioral cloning loss whose
weights scale exponentially with the advantage:

Lπ,IQL = −E(s,a)∼D[sg(exp(βAθ(s, a))) log πθ(a | s)],
(3)

with advantage Aθ(s, a) = Qθ−(s, a)−Vθ(s), sg the stop
gradient operator, and β > 0 the inverse temperature.

To integrate IQL into TD-MPC (Section III-B), we first
replace the TD-MPC policy loss Lπ with the IQL policy
loss Lπ,IQL (Eq. 3). This necessitates training an additional
component not present in TD-MPC: a state value function Vθ

to optimize LV,IQL (Eq. 1) and LQ,IQL (Eq. 2). As in TD-
MPC (and contrary to IQL), all models are applied on learned
latent states z. The state-action value function Qθ may be
trained with either the TD-MPC critic loss LQ or the IQL
critic loss LQ,IQL; the difference is whether bootstrapping is
done using Qθ itself or using Vθ. Our experiments typically
use LQ as we found it to give better results in practice.

This is not enough, however, to fully solve the out-of-
distribution actions problem. Indeed, MPC planning may
still prefer actions that lead to high-return states under Rθ

and Qθ, while actually exploiting these models’ blind spots
and performing poorly. We propose the following fix: skip
the iterative MPPI refinement of actions during planning,
instead keeping only the best ne sequences of actions among
the nπ policy samples. This is a special case of the TD-
MPC planning algorithm discussed in Section III-B where
the number of random action sequences nr is set to zero.

But this fix brings in another issue: in the original imple-
mentation of TD-MPC, actions are sampled from the policy
πθ by a ∼ N (µθ(z), σ

2), where µθ is a learned mean and σ
decays linearly towards a fixed hyper-parameter value. If σ
is too low, then the policy is effectively deterministic and all
nπ samples will be nearly identical, which is problematic in
our case because we are using nr = 0. If σ is too high, then
we again run into the problem of out-of-distribution actions.
To avoid having to carefully tune σ, we learn a stochastic
policy that outputs both µθ(z) and a state-dependent σθ(z).3

With the above changes (using IQL losses, using only sam-
ples from the policy for planning, and learning a stochastic

2For convenience, when describing IQL, we re-use notations Vθ , Qθ , and
πθ even though they take raw states s as input rather than latent states z.

3Our policy implementation is based on the Soft Actor-Critic codebase [40].

9156

policy), IQL-TD-MPC preserves TD-MPC’s ability to plan
efficiently in a learned latent space, while benefiting from
IQL’s robustness to distribution shift in the offline setting.

V. IQL-TD-MPC AS A HIERARCHICAL PLANNER

We now turn to our second contribution, which is a
hierarchical framework (Fig. 1) that uses IQL-TD-MPC as
a Manager with any off-the-shelf offline RL algorithm as a
Worker. This hierarchy aims to endow the agent with the
ability to reason at longer time horizons. Indeed, although
TD-MPC uses MPC planning to select actions, its planning
horizon is typically short: the original TD-MPC paper [13]
uses a horizon of 5, and found no benefit from increasing it
further due to compounding model errors. For sparse-reward
tasks, this makes the planner highly dependent on the quality
of the bootstrap estimates predicted by the critic Qθ, which
may be challenging to get right under complex dynamics.

We address this challenge by making IQL-TD-MPC oper-
ate as a Manager at a coarser timescale. To indicate this, we
add the superscript M . The Manager processes trajectories
(s0, a

M
0 , rMk , sk, a

M
k , . . . , rMkH , skH) where:

• k is a hyper-parameter controlling the coarseness of the
latent timescale, such that each latent transition skips over
k low-level environment steps.
• H is the planning horizon; therefore, the effective

environment-level horizon is kH .
• rMtk =

∑tk
i=(t−1)k+1 ri, that is, Manager rewards sum

up over the previous k environment steps.
• aMtk is an abstract action “summarizing” the transition
from stk to s(t+1)k.

How should these abstract actions be defined [33], [34]?
Prior work learned an autoencoder that can reconstruct
the next latent state [41], [20], and one could define the
abstract action as its latent representation. We adopt a
similar approach in spirit, but tailored to our TD-MPC setup.
Specifically, we train an “inverse dynamics” model bMθ in the
latent space (instead of the raw environment state space):

aMtk = bMθ (zMtk , z
M
(t+1)k), (4)

where zMi = hM
θ (si) is the Manager encoding of state

si. This model bMθ is trained implicitly by backpropagating
through at the gradient of the total loss. Similar to Direc-
tor [28], we found using discrete actions to stabilize training,
and thus modify the policy πM

θ to output discrete actions.
Once trained, the IQL-TD-MPC Manager can generate

“intent embeddings” to augment the state representation of
any Worker that acts in the environment. We define the intent
embedding gt ∈ Rd at time t as the difference between the
predicted next latent state and the current latent state:

gt = fM
θ (zMt , aMt)− zMt , (5)

where when training the Worker, aMt comes from the inverse
dynamics model: aMt = bMθ (zMt , zMt+k). Eq. 5 is not indexed
by k because intent embeddings are applied at each step.

The Worker can be any policy π, whose states are concate-
nated with intent embeddings: at ∼ π(· | CONCAT(st, gt)).
Since intent embeddings are in the Manager’s latent space,

the Manager may be trained independently from the Worker.
In practice, we pre-train a single Manager for a task and
use it with a range of different Workers (see Section VI-B
for experiments). A benefit of this concatenation strategy is
its simplicity: it does not require modifying Worker training
algorithms or losses, only appending intent embeddings to
states during (i) offline dataset loading and (ii) evaluation.

Why are intent embeddings beneficial for offline RL?
Before turning to experiments, we provide an intuitive ex-
planation for why augmenting states with intent embeddings
may be beneficial. For simplicity, we focus on the well-
understood Behavioral Cloning (BC) algorithm, but we note
that many other offline RL algorithms such as Advantage
Weighted Actor-Critic (AWAC) [16], Implicit Q-Learning
(IQL) [14], and Twin Delayed DDPG Behavioral Cloning
(TD3-BC) [17] use the BC objective in some way, and thus
the intuition may carry over to these algorithms as well.

We first provide an information-theoretic argument to
explain why intent embedding should make the imitation
learning loss easier to optimize. One key challenge in long-
horizon sparse-reward offline RL is the ambiguity surround-
ing the relationship between a state-action pair in a dataset
and its corresponding long-term objective. By incorporating
intent embeddings derived from MPC planning at a coarser
timescale into state-action pairs, our framework provides
offline RL algorithms with a more well-defined association
between each state-action pair and the objective being tar-
geted. For a BC policy π : S 7→ A, we typically train
π to match the state-action pairs in the offline dataset.
With intent embeddings, the agent can instead learn π′ :
S×Rd 7→ A, which maps a pair of random variables (St, Gt)
to a Worker action random variable At, with Gt the intent
embedding derived from the Manager action. Since At is not
independent of Gt given the state St, the mutual information
I((St, Gt);At) ≥ I(St;At), so (St, Gt) contains at least as
much information about At as St does on its own when
learning a BC policy via imitation learning.

The above argument explains why intent embeddings may
improve BC. This can be particularly beneficial on offline
datasets built from a mixture of varied policies [15]. In ad-
dition to simplifying the task of the BC Worker, the Manager
is trained to provide “good” intent embeddings at inference
time. This is achieved through the MPC-based planning
procedure of IQL-TD-MPC, by identifying a sequence of
abstract actions (aMt , aMt+k, . . . , a

M
t+kH) that leads to high

expected return (under RM
θ and QM

θ when unrolling fM
θ).

VI. EXPERIMENTS

Our experiments aim to answer three questions: (Q1) How
does IQL-TD-MPC perform as an offline RL algorithm,
compared to both the original TD-MPC algorithm and other
offline RL algorithms? (Q2) How much benefit do we obtain
by using IQL-TD-MPC as a Manager in a hierarchical set-
ting? (Q3) To what extent are the observed benefits actually
coming from our IQL-TD-MPC algorithm?

Experimental Setup. We focus on continuous control
tasks of the D4RL benchmark [15], following the experi-

9157

mental protocol from CORL [42]: training with a batch size
of 256 and reporting the normalized score (0 is random, 100
is expert) at the end of training, averaged over 100 evaluation
episodes. Averages and standard deviations are reported over
5 random seeds. Each experiment was run on an A100 GPU.
Training for a single seed (both pre-training the Manager
and training the Worker) took ∼ 5 hours on average. We use
H = 4 and k = 8 in the hierarchical settings, with little
effort to tune these hyper-parameters as early experiments
showed clear benefits of hierarchy with these values.

A. (Q1) IQL-TD-MPC performance in offline RL

We begin with a preliminary experiment to verify that
IQL-TD-MPC is a viable offline RL algorithm, by comparing
IQL-TD-MPC, TD-MPC, and several offline RL algorithms
from the literature on various tasks. See Table I for results.
There are several key trends we can observe. First, vanilla
TD-MPC does not perform well in general, and completely
fails in the more difficult variants of the antmaze task. This
is expected because TD-MPC is not designed to train from
offline data. The one exception is maze2d umaze, where TD-
MPC outperforms IQL-TD-MPC. We hypothesize that this is
because the data provides adequate coverage for TD-MPC,
while the conservative expectile updates of IQL-TD-MPC
slow down learning. The other trend is that IQL-TD-MPC
is generally on par with other offline RL algorithms, except
on antmaze diverse datasets. One hypothesis for the poor
performance on antmaze diverse is that the goal locations
are random, leading to more diverse actions and thus higher-
variance policies. This, in turn, may be “breaking” the plan-
ning stage due to overfitting on out-of-distribution actions.

B. (Q2) Benefits of using IQL-TD-MPC as a Manager

Now, we turn to the main results of our work, that
demonstrate the benefits of using IQL-TD-MPC as a Man-
ager with varied non-hierarchical offline RL algorithms as
Workers (for this experiment, we used offline RL algorithms
from the CORL repository [42]). We concatenated intent
embeddings output by the Manager to the environment states
seen by these Workers during both training and evaluation.
The changes to the CORL algorithms were straightforward:
(i) augment states in the offline dataset and (ii) wrap the
evaluation environment to include intent embeddings.

Table II shows the results for the following CORL Work-
ers: Advantage Weighted Actor-Critic (AWAC) [16], Behav-
ioral Cloning (BC), Decision Transformer (DT) [18], Im-
plicit Q-Learning (IQL) [14], Twin Delayed DDPG Behav-
ioral Cloning (TD3-BC) [17], and Conservative Q-Learning
(CQL) [19]. Overall, we observe a dramatic improvement in
performance for all these agents compared to their baseline
versions, whose only difference is the lack of intent em-
beddings concatenated to state vectors. Interestingly, vanilla
AWAC / BC / DT / TD3-BC all get a zero score on the
large and ultra variants of the antmaze task, while with our
modification, they are able to learn to solve the task. This
shows that the intent embeddings produced by the Manager

Fig. 2: Visualizing an episode of the Behavioral Cloning agent on
antmaze-large-play-v2. On the left, without intent embeddings, the
ant gets stuck close to the start of the maze, never reaching the
goal. On the right, the ant reaches the goal, guided by the intent
embeddings whose decoding is visualized in green. We see that the
intent embeddings act as latent-space subgoals. Video available at
https://sites.google.com/view/iql-td-mpc.

are highly useful, and can be used to compensate for the lack
of long-term planning abilities in off-the-shelf RL agents.

Notably, our approach slightly worsens performance on
half-cheetah locomotion tasks. A likely explanation is that
these tasks are more about fine-grained control and thus
have less natural hierarchical structure for our framework to
exploit. Intent embeddings are trained by having the Manager
look at states k steps ahead, but this may not help on these
tasks. We hypothesize that this may even hurt, by restricting
the pool of candidate actions the Worker is considering.

In Fig. 2, we visualize an episode of the Behavioral
Cloning (BC) agent on antmaze-large-play-v2, to qualita-
tively understand the benefits of our framework. On the
left, without intent embeddings, the ant gets stuck close
to the start of the maze. On the right, the ant reaches the
goal, guided by the intent embeddings visualized in green.
To generate these visualizations, we trained a decoder that
converts intent embeddings (in the Manager’s latent space)
back into the raw environment state space, which contains
the ant’s position and velocity. The green dot shows the
position, and the green line attached to it shows the velocity
(speed proportional to length). This decoder was trained on a
reconstruction loss and did not affect the training of the other
models. The visualization shows that the intent embeddings
act as latent-space subgoals exploited by the Worker.

C. (Q3) Impact of IQL-TD-MPC’s intent embeddings

Could the strong results in Table II simply be due to
the intent embeddings “tie-breaking” the stochasticity of the
behavior policy? To address this question, in Table III we
run our framework but replace the intent embeddings with
random vectors of the same dimensionality, with entries
drawn uniformly from (0, 1). Across nearly all tasks and
algorithms, we found no significant difference compared to
the baseline, showing that the Workers learned to ignore the
random vectors. Comparing against the clear benefits of our
proposed method in Table II, we can conclude that IQL-TD-
MPC was critical; it guides the Workers impactfully.

Interestingly, in Table III, Workers learned to ignore the
random vectors in half-cheetah, while in Table II, our mod-
ification harmed performance. This confirms that the intent

9158

Dataset ↓ Algorithm → IQL TT TAP TD-MPC IQL-TD-MPC
antmaze-umaze-v2 87.5± 2.6 100.0 ± 0.0 81.5± 2.8 44.6± 28.2 52.0± 46.0

antmaze-umaze-diverse-v2 66.2 ± 13.8 21.5± 2.9 68.5 ± 3.3 0.0± 0.0 72.6 ± 26.6
antmaze-medium-play-v2 71.5± 12.6 93.3 ± 6.4 78.0± 4.4 1.8± 3.91 88.8 ± 5.9

antmaze-medium-diverse-v2 70.0± 10.9 100.0 ± 0.0 85.0± 3.6 0.0± 0.0 40.3± 34.2
antmaze-large-play-v2 40.8± 12.7 66.7± 12.2 74.0 ± 4.4 0.0± 0.0 66.6± 13.7

antmaze-large-diverse-v2 47.5± 9.5 60.0± 12.7 82.0 ± 5.0 0.0± 0.0 4.0± 4.1
antmaze-ultra-play-v0 9.2± 6.7 20.0 ± 10.0 22.0 ± 4.1 0.0± 0.0 20.6 ± 16.0

antmaze-ultra-diverse-v0 22.5 ± 8.3 33.3 ± 12.2 26.0 ± 4.4 0.0± 0.0 3.6± 10.1
maze2d-umaze-v1 37.7± 2.0 36.7± 2.1 58.6 ± 1.4 76.4 ± 20.8 40.9± 45.3

maze2d-medium-v1 35.5± 1.0 32.7± 1.1 −3.9± 0.3 85.3± 15.8 161.0 ± 11.3
maze2d-large-v1 49.6± 22.0 33.2± 1.0 −2.1± 0.1 121.6 ± 27.0 158.9 ± 77.1

halfcheetah-medium-v2 48.3± 0.11 46.9± 0.4 45.0± 0.1 45.7± 14.6 57.4 ± 0.1
halfcheetah-medium-replay-v2 44.2± 1.2 41.9± 2.5 40.8± 0.6 45.7± 5.0 49.2 ± 1.3
halfcheetah-medium-expert-v2 94.6± 0.2 95.0 ± 0.2 91.8± 0.8 −1.0± 0.9 44.8± 8.5

TABLE I: Preliminary experiment. Normalized scores of IQL-TD-MPC, other offline RL algorithms (IQL [14], TT [23], TAP [24]) and
TD-MPC on D4RL after 1M training steps. IQL results are from [42]. TT and TAP results are from their papers, except for antmaze-
umaze-diverse and maze2d, which we reproduced with the default hyper-parameters since they were not reported. Each entry shows the
mean over 100 episodes and 5 seeds, and the standard deviation over seeds. Bolded numbers are within one standard deviation of best.

Dataset ↓ Algorithm → AWAC BC DT IQL TD3-BC CQL
antmaze-umaze-v2 51 → 86 52 → 78 64 → 89 44 → 80 90 → 82 67 → 69

antmaze-umaze-diverse-v2 53 → 60 49 → 48 55 → 38 60 → 51 45 → 53 37 → 36
antmaze-medium-play-v2 0 → 36 0 → 52 0 → 43 70 → 64 0.2 → 60 0.8 → 33

antmaze-medium-diverse-v2 0.8 → 16 0.2 → 20 0.2 → 33 63 → 30 0.4 → 21 0.2 → 14
antmaze-large-play-v2 0 → 67 0 → 50 0 → 53 54 → 70 0 → 46 0 → 19

antmaze-large-diverse-v2 0 → 40 0 → 38 0 → 31 31 → 46 0 → 29 0 → 16
antmaze-ultra-play-v0 0 → 18 0 → 18 0 → 10 9 → 16 0 → 20 0 → 5

antmaze-ultra-diverse-v0 0 → 37 0 → 35 0 → 10 22 → 27 0 → 29 0.6 → 5
maze2d-umaze-v1 77 → 78 3 → 64 26 → 63 41 → 77 39 → 77 −14 → 7

maze2d-medium-v1 43 → 67 3 → 70 13 → 71 32 → 78 101 → 47 104 → 16
maze2d-large-v1 193 → 132 −1 → 94 3 → 96 42 → 135 69 → 126 53 → 64

halfcheetah-medium-v2 49 → 45 42 → 45 42 → 47 47 → 43 47 → 44 46 → 44
halfcheetah-medium-replay-v2 45 → 41 34 → 40 39 → 37 44 → 40 44 → 39 45 → 32
halfcheetah-medium-expert-v2 95 → 80 57 → 84 63 → 52 92 → 79 86 → 76 90 → 45

TABLE II: Main experiment. Results of our hierarchical framework, where we append IQL-TD-MPC Manager intents to states in various
offline RL algorithms taken from the CORL repository [42]. We do not consider TAP because it includes goals in the observations, making
the comparison unfair. Each table entry is of the form “baseline evaluation score → our evaluation score”. We report scores after 500K
steps of training; in general, agents plateaued after this point. For our hierarchical framework, these 500K steps correspond to 300K steps
of pre-training the Manager, then 200K steps of training the CORL Worker. All entries report a mean over 5 independent random seeds;
Green entries indicate statistically significant (p < 0.05) improvement, while red entries indicate statistically significant degradation.

Dataset ↓ Algorithm → AWAC BC IQL TD3-BC
antmaze-medium-play-v2 0 → 0 0 → 0 70 → 66 0.2 → 0

antmaze-medium-diverse-v2 0.8 → 0.2 0.2 → 0 63 → 71 0.4 → 0.2
antmaze-large-play-v2 0 → 0 0 → 0 54 → 25 0 → 0

antmaze-large-diverse-v2 0 → 0 0 → 0 31 → 37 0 → 0
halfcheetah-medium-v2 49 → 49 42 → 42 47 → 47 47 → 47

halfcheetah-medium-replay-v2 45 → 43 34 → 34 44 → 43 44 → 44
halfcheetah-medium-expert-v2 95 → 93 57 → 61 92 → 90 86 → 87

TABLE III: Ablation results, where we replace Manager intent
embeddings with random vectors. Each table entry is of the form
“baseline evaluation score → ablation evaluation score”. We report
scores after 500K steps of training. All entries report a mean
over 5 independent random seeds; Red entries indicate statistically
significant (p < 0.05) degradation.

embeddings are correlated with environment states in a way
that RL algorithms do not ignore, which may help or hurt
depending on how much hierarchical structure the task has.

VII. LIMITATIONS AND FUTURE WORK

In this paper, we proposed a non-trivial extension of TD-
MPC to the offline setting based on IQL, and leveraged it as
a temporally extended Manager in a hierarchical architecture.

Our algorithm still suffers from a number of limitations
that we intend to tackle in future work: (1) Our method hurts
performance on some locomotion tasks (Table II), which
require fine-grained control. It is unsurprising that hierarchy
does not help in such contexts; however, further investigation
is required to confirm our intuition for why the Worker
algorithms are “distracted” by the intent embeddings. (2)
The Worker agent may also be improved by actively plan-
ning toward the intent embedding set by the Manager. For
instance, the Worker itself could be an IQL-TD-MPC agent
modeling the world at the original environment timescale.
(3) Our Manager’s timescale is defined by a fixed hyper-
parameter k. This k could instead be set dynamically by the
Manager, and included in the intent embeddings. (4) Similar
to TD-MPC, our approach is computationally intensive as it
involves unrolling the Manager’s world model. Representing
the world model as a Transformer [22], [5] may allow for
more efficient rollouts. (5) Our approach implicitly assumes
a deterministic environment, and would likely need further
adjustments to work efficiently in a stochastic setting [43].

9159

REFERENCES

[1] D. Ha and J. Schmidhuber, “Recurrent world models facilitate policy
evolution,” in Proceedings of the 32Nd International Conference on
Neural Information Processing Systems, ser. NeurIPS’18, 2018, pp.
2455–2467.

[2] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson, “Learning latent dynamics for planning from pixels,”
in Proceedings of the 36th International Conference on Machine
Learning, K. Chaudhuri and R. Salakhutdinov, Eds., 2019, pp. 2555–
2565.

[3] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, T. Lillicrap,
and D. Silver, “Mastering Atari, Go, Chess and Shogi by planning with
a learned model,” Nature, vol. 588, no. 7839, pp. 604–609, Dec 2020.
[Online]. Available: https://doi.org/10.1038/s41586-020-03051-4

[4] W. Ye, S. Liu, T. Kurutach, P. Abbeel, and Y. Gao, “Mastering atari
games with limited data,” in Advances in Neural Information Process-
ing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and
J. W. Vaughan, Eds., vol. 34. Curran Associates, Inc., 2021, pp.
25 476–25 488.

[5] V. Micheli, E. Alonso, and F. Fleuret, “Transformers are
sample efficient world models,” 2022. [Online]. Available:
https://arxiv.org/abs/2209.00588

[6] A. Argenson and G. Dulac-Arnold, “Model-based offline planning,”
2021.

[7] I. Clavera, V. Fu, and P. Abbeel, “Model-augmented actor-critic:
Backpropagating through paths,” 2020.

[8] M. Botvinick and A. Weinstein, “Model-based hierarchical reinforce-
ment learning and human action control,” Philos Trans R Soc Lond B
Biol Sci, vol. 369, no. 1655, Nov. 2014.

[9] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” arXiv
preprint arXiv:2005.01643, 2020.

[10] R. F. Prudencio, M. R. Maximo, and E. L. Colombini, “A survey on
offline reinforcement learning: Taxonomy, review, and open problems,”
IEEE Transactions on Neural Networks and Learning Systems, 2023.

[11] S. Lange, T. Gabel, and M. A. Riedmiller, “Batch reinforcement
learning,” in Reinforcement Learning, 2012.

[12] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode rein-
forcement learning,” Journal of Machine Learning Research, vol. 6,
2005.

[13] N. Hansen, X. Wang, and H. Su, “Temporal difference learning for
model predictive control,” arXiv preprint arXiv:2203.04955, 2022.

[14] I. Kostrikov, A. Nair, and S. Levine, “Offline reinforcement
learning with Implicit Q-Learning,” in International Conference
on Learning Representations, 2022. [Online]. Available:
https://openreview.net/forum?id=68n2s9ZJWF8

[15] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4rl: Datasets
for deep data-driven reinforcement learning,” 2020.

[16] A. Nair, A. Gupta, M. Dalal, and S. Levine, “Awac: Accelerating
online reinforcement learning with offline datasets,” 2020. [Online].
Available: https://arxiv.org/abs/2006.09359

[17] S. Fujimoto and S. S. Gu, “A minimalist approach to offline rein-
forcement learning,” in Advances in Neural Information Processing
Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, Eds., vol. 34. Curran Associates, Inc., 2021, pp. 20 132–
20 145.

[18] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin,
P. Abbeel, A. Srinivas, and I. Mordatch, “Decision transformer:
Reinforcement learning via sequence modeling,” in Advances in
Neural Information Processing Systems, A. Beygelzimer, Y. Dauphin,
P. Liang, and J. W. Vaughan, Eds., 2021.

[19] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-
learning for offline reinforcement learning,” in Advances in Neural
Information Processing Systems, H. Larochelle, M. Ranzato, R. Had-
sell, M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc.,
2020, pp. 1179–1191.

[20] J. Li, C. Tang, M. Tomizuka, and W. Zhan, “Hierarchical plan-
ning through goal-conditioned offline reinforcement learning,” IEEE
Robotics and Automation Letters, vol. 7, no. 4, pp. 10 216–10 223,
2022.

[21] H. Xu, L. Jiang, J. Li, and X. Zhan, “A policy-guided imitation
approach for offline reinforcement learning,” 2022. [Online].
Available: https://arxiv.org/abs/2210.08323

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[23] M. Janner, Q. Li, and S. Levine, “Offline reinforcement learning as one
big sequence modeling problem,” in Advances in Neural Information
Processing Systems, 2021.

[24] Z. Jiang, T. Zhang, M. Janner, Y. Li, T. Rocktäschel, E. Grefenstette,
and Y. Tian, “Efficient planning in a compact latent action space,”
2022. [Online]. Available: https://arxiv.org/abs/2208.10291

[25] A. van den Oord, O. Vinyals, and k. kavukcuoglu, “Neural discrete rep-
resentation learning,” in Advances in Neural Information Processing
Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,
Inc., 2017.

[26] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine,
and P. Sermanet, “Learning latent plans from play,” in Proceedings
of the Conference on Robot Learning, ser. Proceedings of Machine
Learning Research, L. P. Kaelbling, D. Kragic, and K. Sugiura, Eds.,
vol. 100. PMLR, 30 Oct–01 Nov 2020, pp. 1113–1132.

[27] K. Sohn, H. Lee, and X. Yan, “Learning structured output representa-
tion using deep conditional generative models,” in Advances in Neural
Information Processing Systems, C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett, Eds., vol. 28. Curran Associates,
Inc., 2015.

[28] D. Hafner, K.-H. Lee, I. Fischer, and P. Abbeel, “Deep
hierarchical planning from pixels,” 2022. [Online]. Available:
https://arxiv.org/abs/2206.04114

[29] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning,”
Artificial intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[30] A. Bagaria and G. Konidaris, “Option discovery using deep skill
chaining,” in International Conference on Learning Representations,
2020.

[31] C. Daniel, H. Van Hoof, J. Peters, and G. Neumann, “Probabilistic
inference for determining options in reinforcement learning,” Machine
Learning, vol. 104, pp. 337–357, 2016.

[32] E. Brunskill and L. Li, “Pac-inspired option discovery in lifelong rein-
forcement learning,” in International conference on machine learning.
PMLR, 2014, pp. 316–324.

[33] K. Pertsch, Y. Lee, and J. Lim, “Accelerating reinforcement learning
with learned skill priors,” in Conference on robot learning. PMLR,
2021, pp. 188–204.

[34] E. Rosete-Beas, O. Mees, G. Kalweit, J. Boedecker, and W. Burgard,
“Latent plans for task-agnostic offline reinforcement learning,” in
Conference on Robot Learning. PMLR, 2023, pp. 1838–1849.

[35] Y. LeCun, “A path towards autonomous machine intelligence version
0.9. 2, 2022-06-27,” Open Review, vol. 62, 2022.

[36] M. L. Puterman, “Markov decision processes,” Handbooks in opera-
tions research and management science, vol. 2, pp. 331–434, 1990.

[37] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning:
A survey of learning methods,” ACM Computing Surveys (CSUR),
vol. 50, no. 2, pp. 1–35, 2017.

[38] G. Williams, A. Aldrich, and E. A. Theodorou, “Model
predictive path integral control using covariance variable importance
sampling,” CoRR, vol. abs/1509.01149, 2015. [Online]. Available:
http://arxiv.org/abs/1509.01149

[39] X. B. Peng, A. Kumar, G. Zhang, and S. Levine, “Advantage-weighted
regression: Simple and scalable off-policy reinforcement learning,”
2019. [Online]. Available: https://arxiv.org/abs/1910.00177

[40] D. Yarats and I. Kostrikov, “Soft actor-critic (sac) implementation in
pytorch,” 2020.

[41] A. Mandlekar, F. Ramos, B. Boots, S. Savarese, L. Fei-Fei, A. Garg,
and D. Fox, “IRIS: Implicit reinforcement without interaction at scale
for learning control from offline robot manipulation data,” 2020.
[Online]. Available: https://arxiv.org/abs/1911.05321

[42] D. Tarasov, A. Nikulin, D. Akimov, V. Kurenkov,
and S. Kolesnikov, “CORL: Research-oriented deep offline
reinforcement learning library,” in 3rd Offline RL Workshop:
Offline RL as a ”Launchpad”, 2022. [Online]. Available:
https://openreview.net/forum?id=SyAS49bBcv

[43] I. Antonoglou, J. Schrittwieser, S. Ozair, T. K. Hubert, and D. Sil-
ver, “Planning in stochastic environments with a learned model,” in
International Conference on Learning Representations, 2022.

9160

