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Abstract— Recent planning methods based on Large Lan-
guage Models typically employ the In-Context Learning
paradigm. Complex long-horizon planning tasks require more
context(including instructions and demonstrations) to guaran-
tee that the generated plan can be executed correctly. However,
in such conditions, LLMs may overlook(unfaithful) the rules
in the given context, resulting in the generated plans being
invalid or even leading to dangerous actions. In this paper, we
investigate the faithfulness of LLMs for complex long-horizon
tasks. Inspired by human intelligence, we introduce a novel
framework named FLTRNN. FLTRNN employs a language-
based RNN structure to integrate task decomposition and mem-
ory management into LLM planning inference, which could
effectively improve the faithfulness of LLMs and make the plan-
ner more reliable. We conducted experiments in VirtualHome
household tasks. Results show that our model significantly im-
proves faithfulness and success rates for complex long-horizon
tasks. Website at https://tannl.github.io/FLTRNN.github.io/

I. INTRODUCTION

Task planning is a crucial decision-making process ex-
tensively utilized in various robotics applications, includ-
ing navigation [1], [2], manipulation [3], [4], and every-
day household tasks [5]–[7]. In comparison to short-term
planning tasks like pick-and-place, tackling complex long-
horizon tasks such as food preparation and table cleaning is
considered a challenging problem. These tasks involve longer
action sequences and interactions with multiple objects or
diverse environments. Moreover, long-horizon planning is
more susceptible to error propagation, as a mistake in the
early stages can lead to deviations in subsequent plans.

Large Language Models(LLMs) [8], [9] have recently
been applied to various applications. Trained on vast volumes
of unsupervised text data and endowed with numerous pa-
rameters, LLMs demonstrate strong capabilities in common-
sense reasoning and logical inference. We therefore ask: Can
we apply LLMs to complex long-horizon planning tasks?

Several studies have utilized LLMs for task planning [5],
[10]–[13]. These methods typically employ an approach
known as In-Context Learning (ICL) [14]–[16]. In this
paradigm, LLM receives a contextual prompt(includes in-
structions, demonstrations, etc.) as input, and then outputs
the generated plan for the task without fine-tuning, which
allows the LLM to learn planning policy from the provided
context without the need for specific training data [9], [17].
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def task():
# find first pancake
walk('kitchen(id:50)')
open('cabinet(id:129)')
grab(pancake(id:334)')
# find second pancake
walk('kitchen(id:50)')
open('kitchencabinet(id:129)')
grab('pancake(id:335)')
# find third pancake
open('fridge(id:103)')
grab('pancake(id:336)')
# put three pancakes in microwave
putin('cupcake(id:334)', 'microwave(id:158)')
putin('cupcake(id:335)', 'microwave(id:158)')
putin('cupcake(id:336)', 'microwave(id:158)')
close('microwave(id:158)')
# switch on microwave
switchon('microwave(id:158)')
# done
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[pancake(id:334), inside, cabinet(id:129)],
[pancake(id:335), on, kitchentable(id:156)],
[pancake(id:336), inside, fridge(id:103)]…

#The task goal: put cupcake in microwave and put 
milk on table
def task():

# find cupcake
walk('kitchen(id:50)')
open('kitchencabinet(id:127)')
grab('cupcake(id:335)’)
# put the cupcake in microwave  
open('microwave(id:158)')
putin('cupcake(id:335)', 'microwave(id:158)')
# find milk
open('kitchencabinet(id:132)')
grab('milk(id:332)')
walk('kitchen(id:50)')
putback('milk(id:332)', 'table(id:123)')
# done

put three cupcake in microwave and switch 
on microwave

You have two hands, so you can only hold 
a maximum of two items at the same time.

Fig. 1. Illustration of Faithfulness problem of LLMs under In-Context
Learning(ICL). ICL requires a contextual prompt containing instruction
and demonstration written in natural language. Taking the prompt as input,
LLM is responsible for planning inference. However, LLMs may ignore the
provided context and make unfaithful planning

While the above methods achieve promising results, a key
challenge in applying LLMs to long-horizon tasks lies in
their unfaithfulness to the contextual prompt, which provides
LLMs with specific rules including task constraints and
output formats that the planning process should adhere to.
However, LLMs may overlook and ignore these rules [18],
[19]. For instance, in Figure 1, the generated plan requires
the robot to hold three pancakes at the same time, which
ignores the given constraint that the robot only has two
hands. Besides, in this example, the LLM also ignores the
correct location ID given by the prompt. This unfaithfulness
to the given rules can lead to invalid plans and poor exe-
cution, and in some cases, even result in dangerous actions,
compromising the reliability of the robot.

Motivated by the above problem, we investigate the faith-
fulness problem of LLMs for complex long-horizon planning
tasks. Complex long-horizon tasks typically involve more
rules to ensure the generated plan can be executed correctly,
which demands that LLMs retain extensive information
and handle complex reasoning. However, due to its limited
memory and reasoning capacity, LLMs occasionally fail to
follow all the rules. This phenomenon is also observed in
humans when faced with complex tasks and too many rules.
A characteristic aspect of human intelligence is the ability
to decompose a complex task into several simpler short
tasks and maintain a limited working memory [20]. These
processes direct attention and reasoning towards each subtask
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individually, only a subset of the rules and constraints need
to be considered at a time, effectively alleviating cognitive
pressure and improving the faithfulness to the rules.

Inspired by the aforementioned process, we present
FLTRNN, a general framework that integrates task de-
composition and memory management into LLMs planning
inference to improve the faithfulness of LLMs for long-
horizon tasks. We first utilize a LLM to break down the long-
horizon task into several sub-tasks, forming an initial abstract
plan. Then, we propose language-based RNNs to solve each
sub-task following the initial plan, which employs a long-
short term memory mechanism to maintain the necessary
information for sub-task solving, ensuring the LLM can
focus on the rules and constraints relevant to the current
problem. To further refine the process, we incorporate a rule
chain-of-thought(Rule-CoT) and memory graph to enhance
the reasoning capabilities of LLMs.

To evaluate the performance of our framework, we con-
ducted experiments in VirtualHome and utilized three distinct
datasets. The results indicate that our framework achieved the
best performance on all tasks and improved 29% faithfulness
and 28% success rate in the NovelScenes dataset. The
contributions of our work are summarized as follows:

1) To the best of our knowledge, we are the first to define
and investigate the faithfulness problem of LLMs for
complex long-horizon task planning.

2) We propose a framework named FLTRNN. Our frame-
work employs language-based RNNs to integrate task
decomposition and long-short term memory into LLM
planning inference and uses Rule-CoT and memory
graph to enhance the reasoning capability of LLMs.

3) We conducted experiments on the virtual household
environment VirtualHome. The results indicate our
frameworks could effectively improve the faithfulness
and success rate in complex long-horizon tasks.

II. RELATED WORKS

A. Large Language Models for Task Planning

The advancement of Large Language Models (LLM) [8]
has spurred numerous studies exploring their use in task
planning in open-ended environments. For instance, Zero-
shot Planner [17] employs two LLMs for plan generation:
the first LLM decomposes high-level tasks into sensible ac-
tions, while the second translates these steps into admissible
actions, ensuring the plans’ executability. LID [21] employs
GPT-2 as a backbone to encode task information, including
observations, goals, and history. This encoded information
is subsequently input into a policy network, which, after
being fine-tuned with specific training data, predicts actions
step by step. ProgPrompt [11] introduces a programmatic
LLM prompt structure that facilitates plan generation across
diverse environments, robot capabilities, and tasks. SayCan
[5] grounds LLMs through the value functions of a pre-
trained model, empowering them to execute real-world, ab-
stract, long-horizon commands on robots. Inner Monologue
[13] leverages environmental feedback to form an inner

monologue, fostering reasoning and replanning to achieve
complex long-horizon tasks.

B. In-Context Learning Paradigm

Most of the methods mentioned above rely on In-Context
Learning (ICL) to prompt LLMs for planning tasks. ICL is
a favored paradigm for the utilization of LLMs, especially
when compared to the re-training or fine-tuning approaches
[21], [22]. It allows LLMs to make inferences only based on
contexts augmented with a few examples [14]. ICL offers
several significant advantages. First, since instructions and
demonstrations are provided in natural language, it facilitates
a user-friendly interface for communicating with LLMs [23],
[24]. Second, ICL is similar to the analogy processes of
human intelligence [25], making the inference procedure
more comprehensible. Lastly, ICL doesn’t require training
or fine-tuning, which reduces the computational costs when
adapting LLMs to new tasks and unseen environments [26].

However, for complex long-horizon tasks, the contexts,
which include instructions and demonstrations in the prompt,
are frequently overlooked, making the plan inexecutable.
The faithfulness problem of LLMs for complex long-horizon
tasks remains a non-trivial issue to resolve.

III. PRELIMINARIES

A. Problem Definition

A task can be structured as <S, I,G, T,A>, where S, I
and G represent all possible states, the initial state and the
goal state respectively. A is the set of possible actions. T
is the transition model, formally defined as T : S × A →
S, which portrays the environmental changes that occur in
response to the implementation of an action. The objective
of is to find a plan π, a sequence of actions, that transitions
the initial state I to the goal state G. There is currently no
strict definition to distinguish complex long-horizon tasks.
Generally, compared to short-term planning, complex long-
horizon tasks involve longer action sequences, ranging from
10 to 40 steps or even longer [21], and interactions with a
greater variety of items and environments.

Moreover, there are two distinct settings for long-horizon
planning. The first is open-loop planning which does not
involve any environmental observation except for the initial
state. The second setting introduces environmental feedback
into the generation process, also known as interactive plan-
ning. Our framework can accommodate both settings.

B. Faithfulness Problem of In-Context Learning

Faithfulness refers to the LLM’s adherence to the context
information provided to it. The concept was first introduced
in question answering [27]. It denotes the factual consistency
between the response and the source documents.

Regarding the faithfulness issue in task planning, LLMs
might overlook the rules or constraints mentioned in the
instructions or misinterpret the planning format presented
in the demonstration. Formally, given a contextual prompt
that includes a set of rules R = {r1, r2, . . . , rn}, a plan π
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Fig. 2. The framework of FLTRNN. Our framework takes the task goal as input and produces the task plan as output. The framework comprises three
stages: 1. Decompose a long-horizon task into several simpler sub-tasks and formulate an initial plan. 2. Use Language-Based RNNs to solve each sub-task
in the initial plan, in which the task goal, initial plan, and instructions are represented as long-term memory, while the selected sub-goal in the plan,
demonstration, and specific details of the sub-task are designated as short-term memory. 3. Aggregate the plans generated by the RNNs to form the overall
task plan. Besides, the rule Chain-of-Thought(Rule-CoT) and memory graph are used to enhance the reasoning ability of LLMs.

generated by an LLM is said to be ‘faithful’ if and only if
every action a in π satisfies all rules ri in R:

Faithfulness(π,R) =

{
1, if ∀a ∈ π,∀ri ∈ R, a |= ri

0, otherwise
(1)

Here, |= denotes that the action a satisfies the rule ri.
The lack of faithfulness can have detrimental effects on

the executability of a plan and may even lead to dangerous
actions. When a plan deviates from the specified guidelines,
it can result in catastrophic outcomes, such as equipment
malfunctions or direct threats to human safety.

IV. METHODOLOGY

In this section, we present the details of our proposed
framework, FLTRNN. As illustrated in Figure 2, our frame-
work takes the task goal as input and produces the task plan
as output. The framework comprises three stages: 1. Decom-
pose a complex, long-horizon task into several simpler sub-
tasks and formulate an initial plan. 2. Use Language-Based
RNNs to solve each sub-task in the initial plan, in which
the task goal, initial plan, and instructions are represented
as long-term memory, while the selected sub-goal in the
plan, demonstration, and specific details of the sub-task are
designated as short-term memory. 3. Aggregate the plans
generated by the RNNs to form the overall task plan. Besides,
the rule Chain-of-Thought(Rule-CoT) and memory graph are
used to enhance the reasoning ability of LLMs.

A. Task Decomposition

Human intelligence enhances adherence and faithfulness
to rules and constraints by breaking down complex tasks
and effectively managing working memory. Inspired by this,
we employ LLM to decompose long-horizon tasks. This
decomposition can be represented as Pinit = fdec(G), where
fdec is an LLM equipped with a decomposition prompt.
It’s worth noting that although decomposing complex tasks
and managing memory are not new concepts in task plan-
ning(such as hierarchical planning [28]), we are the first to
use these approaches to enhance the faithfulness of LLMs
and make the planner more reliable.

B. Language-based RNN Blocks

To integrate the task decomposition and memory man-
agement into LLM planning inference, we employ an RNN
framework. The classical RNN can be represented as:

ot, ht, ct = RNN(ot−1, xt, ht−1, ct−1), (2)

where x is the input, o is the output, h is the hidden state,
and c is the cell state. To adapt this to LLM, following [29],
we implemented the framework based on natural language,
simulating the process with prompts. This process can be
described as:

ot, ht, ct = NLRNN(xt, ht−1, ct−1, θ). (3)

Here θ is the parameter of LLM, x represents the envi-
ronment observation which could be obtained by vision
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𝑪𝒕−𝟏
Long-Term Memory

Observation

𝒙𝒕

Generated Plan

𝑶𝒕 𝑪𝒕
Long-Term Memory

Short-Term Memory𝒉𝒕
Short-Term Memory

[pancake(id:336), INSIDE, fridge(id:103)], 
[fridge(id:335), INSIDE, kitchen(id:50)],
[pancake(id:335), INSIDE, mircrowave(id158)]

…
Fridge(id:103)’s state is closed
microwave(id:158)’s state is opened & turnoff

def task():
#sub-goal thought: find third pancake
#rule thought: I should open fridge first…
walk(‘kitchen(id:50)’)
open(‘fridge(id:103)’)
find(‘pancake(id:336)’)
grab(‘pancake(id:336)’)
#sub-goal thought: put third pancakes
#rule thought: the microwave has been opened… 
walk(‘microwave(id:158)’)
putin('cupcake(id:336)', 'microwave(id:158)’)
close('microwave(id:158)’)
#done

Global Task Goal:

  Put three cupcake in microwave and switch on microwave.

Global Instruction:

1. From actions import walk <obj>, grab <obj>, 

switchon <obj>, switchoff <obj>, open <obj>…

2. You have two hands, so you can only hold a maximum 

of two items at the same time…

Initial Plan:

1. find two pancake and put it in microwave

2. find another pancake and put it in microwave

3. close and switch on the microwave.

Current Summary:

1. you have put two pancake in the microwave.

2. you have put the third pancake in the microwave

Local Instruction:

1. if objects INSIDE a container, open the container first.

2. you can not open a cabinet that has been opened

Demonstrations:

Sub-Goal:

find third pancake and put it in microwave

Short-Term Memory𝒉𝒕−𝟏
Short-Term Memory

# task goal: put cupcake in microwave and put milk on table
def task():

# sub-goal thought: find cupcake; rule thought: …
walk('kitchen(id:50)')
open('kitchencabinet(id:127)')
grab('cupcake(id:335)')
# put the cupcake in microwave  
open('microwave(id:158)')
putin('cupcake(id:335)', 'microwave(id:158)')
# sub-goal thought: find milk; rule thought: …
open('kitchencabinet(id:132)')
grab('milk(id:332)')
walk('kitchen(id:50)')
putback('milk(id:332)', 'table(id:123)')
# done

Local Instruction:

1. you can not open a cabinet that has been opened

Demonstrations:

Sub-Goal:

Close and switch on the microwave

# task goal: put cupcake in microwave and switch on microwave
def task():

# sub-goal thought: find cupcake; rule thought: …
walk('kitchen(id:50)')
open('kitchencabinet(id:127)')
grab('cupcake(id:335)')
# sub-goal thought: put cupcake in microwave; rule thought: …
open('microwave(id:158)')
putin('cupcake(id:335)', 'microwave(id:158)')
# sub-goal thought: close and switch on microwave…
close(‘microwave(id:158)')
switchon(‘microwave(id:158)')
# done

Language-based RNN

Environment State Reasoning

Global Task Goal:

  Put three cupcake in microwave and switch on microwave.

Global Instruction:

1. From actions import walk <obj>, grab <obj>, 

switchon <obj>, switchoff <obj>, open <obj>…

2. You have two hands, so you can only hold a maximum 

of two items at the same time…

Initial Plan:

1. find two pancake and put it in microwave

2. find another pancake and put it in microwave

3. close and switch on the microwave.

Current Summary:

1. you have put two pancake in the microwave.

Fig. 3. The detailed illustration of FLTRNN. The language-based RNN takes long-short term memory and observation as input and then outputs the
generated plan and updated memory.

models [30], [31], ot = fplan(ct−1, ht−1, xt) is the output
plan for the sub-task. fplan is implied by an LLM with a
planning prompt(the full planning prompt can be seen in the
Figure 3). The cell state c embodies long-horizon memory,
encapsulating task goals, abstract plans, and summaries of
previous actions, while h, the hidden state, symbolizes short-
term memory, comprising sub-goals, demonstrations, and
task-specific instructions. Language-based RNNs naturally
integrate the update and management of memory with LLM’s
planning inference which effectively alleviates the burden
of reasoning and memory on LLMs, thereby enhancing
adherence to task instructions.

C. Long-Short Term Memory

Previous work such as [11] involved all the necessary
information for planning directly into the prompt. For com-
plex long-horizon tasks, these prompts typically tend to
be extremely lengthy. This puts escalating pressure on the
LLMs’ memory capacities.

To tackle this challenge, we employ a long-short
term memory mechanism. The long-term memory, de-
noted as ct, primarily manages the information vital for
addressing the overarching task. It is defined as ct =
(Rglobal, Gglobal, Pinitial, St), where:

• Rglobal denotes global rules.
• Gglobal represents the overall task goals.
• Pinitial refers to the initial abstract plan.
• St is a summary of previous actions.

Here St = CONCAT(St−1, Gt). The short-term memory ht

mainly manages memory information required for addressing
the current sub-task, given by ht = (Rt, Dt, Gt), where:

• Rt represents instructions and rules specific to the
current task.

• Dt denotes demonstrations for the current sub-goal.
• Gt = Sample(Pinitial ∩ St) is the sub-goal.

The Rt and Dt are samples from an external demonstration
set using the sentence similarity of the task goal.

The introduction of short-term memory significantly im-
proves the planning process. By focusing exclusively on the
current sub-goal, the LLM can plan more efficiently.

D. Enhanced Reasoning

A primary factor contributing to unfaithfulness is the
limited reasoning ability of the LLM. To address this and
bolster faithfulness, we adopt two strategies to enhance the
LLM’s reasoning capabilities: the rule Chain-of-Thought and
memory graph.

Research suggests that a Chain of Thought (CoT) can
effectively guide LLMs in reasoning, thereby enhancing
stability [19]. In light of this, we introduce the Rule-CoT.
As illustrated in Figure 5, the LLM does not simply rely
on rules from the instruction segment of the prompt during
the planning phase. Instead, throughout the planning of each
step, it continuously revisits, contemplates, and reasons based
on these rules. Such an approach considerably augments the
model’s adherence to the given instructions.

Furthermore, in the open-loop planning setting, there is no
direct feedback or observation from the environment. This
requires the LLM to constantly reason about the state of the
environment to ensure coherent planning. Such continuous
reasoning imposes a latent burden on the LLM. To alleviate
this reasoning burden, we introduce an external world-state
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Task: Put a pancake in microwave and switch on microwave, put a cupcake in stove and switch on stove, put one chicken and a poundcake on kitchentable

Success

Fig. 4. Example of our frameworks for long-horizon task planning.

TABLE I
OVERALL PERFORMANCE FLTRNN AND BASELINES ACROSS VARIOUS DATASETS. OUR FRAMEWORK OUTPERFORMS ALL BASELINES.

In-Distribution NovelScenes NovelTasks

Faithfulness Coherence Faithfulness Coherence Faithfulness Coherence

Planning-Only 95.33 ± 0.67 98.33 ± 0.33 56.67 ± 3.18 74.33 ± 2.03 62.33 ± 2.73 79.67 ± 2.03
Planning-Reasoning 90.67 ± 2.85 97.33 ± 0.33 84.33 ± 1.86 90.33 ± 1.45 80.67 ± 1.86 86.33 ± 0.88
Our 98.00 ± 0.00 99.33 ± 0.33 86.00 ± 1.15 94.33 ± 1.20 88.33 ± 1.20 92.33 ± 2.03
Our + obs 98.00 ± 0.58 99.33 ± 0.33 91.00 ± 1.15 93.33 ± 1.45 92.00 ± 1.53 96.67 ± 1.20

Correctness Success Rate Correctness Success Rate Correctness Success Rate

Planning-Only 87.33 ± 2.02 82.33 ± 1.76 38.67 ± 1.45 32.33 ± 1.45 49.67 ± 3.18 49.00 ± 3.21
Planning-Reasoning 79.67 ± 3.38 79.33 ± 3.18 54.33 ± 1.76 53.33 ± 1.76 47.33 ± 1.67 46.00 ± 1.15
Ours 92.33 ± 2.19 86.00 ± 2.65 70.67 ± 2.67 60.67 ± 0.33 70.67 ± 3.06 70.00 ± 3.21
Our+obs 92.00 ± 1.15 86.00 ± 1.00 74.00 ± 1.15 64.33 ± 1.76 76.00 ± 2.00 75.33 ± 2.40

def task():
...
# Rule Thought: Put the pancake (id:334) in the microwave (id:158). 
The microwave is closed, so we should open the microwave first.
# Rule Thought: You have grabbed two pancakes. Remember, you should 
grab only one item at a time, so put one pancake down first.
find('microwave(id:158)')
open('microwave(id:158)')
putin('pancake(id:334)', 'microwave(id:158)')
close('microwave(id:158)')
...

Fig. 5. Example of Rule CoT.

reasoning, termed the memory graph. This module aids in
inferring environmental changes during the planning process.
The graph is defined by {V,R}, where V denotes the set
of nodes, representing observed objects, and R designates
the relationships between these objects(e.g., on and in). The
update process of the graph operates under the assumption
that the previous action has been successfully executed.

V. EXPERIMENTS

In this section, we evaluate our framework by conducting
experiments in a virtual household environment.

A. Experimental Setup

Environment. We conducted our evaluation on Virtual-
Home [32], which is a realistic 3D environment that encom-
passes a collection of realistic 3D homes and objects. These
objects can be manipulated to carry out household tasks.

Datasets. We conduct experimental testing on three
datasets provided by [21]: In-Distribution, NovelTasks, and
NovelScenes. The three datasets vary in task complexity.
We use action steps to measure the task complexity of each
individual task. The average action steps for In-Distribution,
NovelTasks, and NovelScenes are 13.4, 25.61, and 27.11,
respectively. For each dataset, we conducted experiments on
100 tasks three times to obtain the results.

Compared Methods. We compare our method with three
categories of methods: 1. Planning-Only: ProgPrompt [11],
where the LLM directly outputs the planning result using
the ICL. 2. Planning-Reasoning: Inner Monologue [13],
wherein a reasoner is incorporated into the planning pro-
cess to bolster reasoning capabilities. 3.Variant Models
of FLTRNN: Ours+obs obtains the environmental state
through observation, while Ours utilizes a memory graph for
state reasoning. For all the methods compared, we employ
GPT-3.5-Turbo as the backbone LLM.

Metrics. We evaluated the performance from two perspec-
tives: Following [33], we use Faithfulness and Coherence
as metrics to evaluate faithful reasoning ability, where Faith-
fulness evaluates whether the plan is entirely faithful to the
instruction and Coherence examines if the action conflicts
with previous actions. Besides, drawing from [17], [21], we
employ Success Rate and Correctness to measure whether
the generated plan can be executed and if it accomplishes the
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Fig. 6. Result of faithfulness and success rate with different action steps.
FLTRNN effectively improves the performance of long-horizon tasks

task’s goal, where Success Rate evaluates if the output plan
achieves the given task’s goal and Correctness examines if
the output plan possesses semantic correctness.

B. Results

The primary results are presented in Table I. We can ob-
serve that: 1. Across all metrics and datasets, our framework
consistently outperforms other methods. This underscores
our method’s ability to effectively boost faithfulness, which
in turn enhances the success rate. An illustrative example
of FLTRNN applied to a long-horizon task can be seen in
Figure 4. 2. In the majority of datasets, our model exhibits the
lowest standard deviation. This suggests that our framework
not only elevates faithfulness and success rate but also
augments stability and robustness. 3. There is a noticeable
trend wherein results with subpar success rates correspond
with low faithfulness. This accentuates the prevailing issue
of faithfulness: deviations from the provided context can
significantly compromise the successful execution of a plan.
4. Among the evaluated methods, the Planning-Only method
excels in In-Distribution. Conversely, in the NovelScenes, the
Planning-Reasoning method registers superior performance.
This could imply that while reasoners are beneficial for
intricate tasks, they might introduce superfluous, potentially
misleading information in simpler tasks, thus diminishing
performance. Moreover, the variation in faithfulness and
success rates across different datasets suggests that LLM’s
faithfulness could be influenced by task complexity.

VI. ANALYSIS AND DISCUSSION

A. Faithfulness with Task Complexity

To further investigate the relationship between task com-
plexity and the faithfulness problem of LLMs, we conducted
correlation analysis on the tasks of above three datasets. The
results are illustrated in Figure 6. Our observations are as
follows: 1. Across all action step intervals, our framework
consistently surpasses the baselines, particularly for tasks
with a high number of steps. This implies that our model
is particularly adept at enhancing both faithfulness and the
success rate for complex long-horizon tasks. 2. While the
baseline model shows impressive faithfulness and success
rates in the 15-step interval, its performance wanes for tasks
with larger step counts. Notably, we identified that for tasks
with fewer action steps, the Planning-Only approach fares
better than the Planning-Reasoning method. Yet, as the action
steps increase, the Planning-Reasoning method excels over

Planning-Only. This reinforces our prior assertion that the
reasoner is particularly well-suited for long-horizon tasks.
These findings emphasize the robust relationship between
an LLM’s faithfulness and the complexity of the task.
As tasks grow more complex and their action sequences
lengthen, it becomes increasingly formidable for the LLM to
maintain strict adherence to the instructions. Through adept
task decomposition, memory management and reasoning
enhancement, our framework effectively improves LLM’s
faithfulness and success rate.

B. Ablation Study

TABLE II
ABLATION OF VARIOUS MODULES OF FLTRNN IN NOVELTASKS. ALL

DESIGN MODULES CONTRIBUTE TO THE PERFORMANCE.

Faithfulness Success Rate

Ours full 88.33 ± 1.20 70.00 ± 3.21
w/o Decomposition 77.67 ± 4.10 54.67 ± 2.19
w/o LSTM 85.67 ± 0.67 63.67 ± 0.67
w/o Rule-CoT 80.33 ± 1.76 58.33 ± 1.20

To comprehensively demonstrate the effectiveness of each
module in our framework, we conducted an ablation study on
the NovelTasks. The results are detailed in Table II. In the
w/o Decomposition model, planning is generated without
decomposing the task. Results suggest that subdividing a
complex task into several simpler tasks considerably im-
proves faithfulness and success rate. For the w/o LSTM
model, the LSTM module is removed from the RNN. In
this setup, every RNN is given the same prompt containing
all task information. Compared to our complete model, the
w/o LSTM variant shows a 2.66% decrease in faithfulness,
resulting in a 6.33% decline in success rate. This indicates
that utilizing LSTM for memory management significantly
enhances instruction adherence. The w/o Rule-CoT model
omits the Rule-CoT from the demonstration. Against our full
model, this variant displays an 8% drop in faithfulness and
an 11.67% reduction in success rate. Such results highlight
the pivotal role of Rule-CoT in enhancing compliance with
the rules and constraints specified in the instructions.

VII. CONCLUSION

To the best of our knowledge, we are the first to define
and investigate the faithfulness problem of LLMs for com-
plex long-horizon tasks. Drawing inspiration from human
intelligence, we propose a novel framework named FLTRNN
which integrates task decomposition and memory manage-
ment into LLM planning inference. Additionally, we design
Rule-CoT and a memory graph to enhance the reasoning
ability of LLM. Experiments in a virtual household envi-
ronment suggest that our framework can effectively improve
both faithfulness and the success rate in long-horizon tasks,
making robots more reliable and trustworthy.

VIII. ACKNOWLEDGEMENT

This research was supported by National Natural Science
Foundation of China(Grant No. U21A20488) and Key Re-
search Project of Zhejiang Lab(Grant No. G2021NB0AL03).

6685



REFERENCES

[1] C. Huang, O. Mees, A. Zeng, and W. Burgard, “Visual language maps
for robot navigation,” arXiv preprint arXiv:2210.05714, 2022.

[2] S. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor, “Chatgpt for
robotics: Design principles and model abilities,” Microsoft Auton. Syst.
Robot. Res, vol. 2, p. 20, 2023.

[3] P.-L. Guhur, S. Chen, R. G. Pinel, M. Tapaswi, I. Laptev, and
C. Schmid, “Instruction-driven history-aware policies for robotic ma-
nipulations,” in Conference on Robot Learning. PMLR, 2023, pp.
175–187.

[4] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov,
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