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Abstract— Pre-training on Internet data has proven to be
a key ingredient for broad generalization in many modern
ML systems. What would it take to enable such capabilities
in robotic reinforcement learning (RL)? Offline RL methods,
which learn from datasets of robot experience, offer one way to
leverage prior data into the robotic learning pipeline. However,
these methods have a “type mismatch” with video data (such
as Ego4D), which are the largest prior datasets available for
robotics, since video offers observation-only experience without
the action or reward annotations needed for RL methods. In this
paper, we develop a system for leveraging large-scale human
video datasets in robotic offline RL, based entirely on learning
value functions via temporal-difference learning. We show that
value learning on video datasets learns representations that are
more conducive to downstream robotic offline RL than other
approaches for learning from video data. Our system, called
V-PTR, combines the benefits of pre-training on video data
with robotic offline RL approaches that train on diverse robot
data, resulting in value functions and policies for manipulation
tasks that perform better, act robustly, and generalize broadly.
On several manipulation tasks on a real WidowX robot and in
simulated settings, our framework produces policies that greatly
improve over other prior methods. Our video and additional
details can be found at https://dibyaghosh.com/vptr/.

I. INTRODUCTION

Developing methods capable of acquiring robotic skills
that generalize widely to new scenarios is an important
problem in robotic learning. In other areas of machine
learning, broad generalization has been fueled primarily by
pre-training on large datasets with a diversity of behavior.
It seems compelling that the same formula may be ap-
plied to robotic learning, but in practice, even our largest
robotic datasets contain data for relatively few tasks, and
from a limited number of scenarios. In principle, robotic
reinforcement learning (RL) should be able to learn from
more general sources of data like human video, which are far
more abundant and capture a broader set of skills, situations,
and interactions. However, these datasets are difficult to
incorporate into RL methods that exist today, since Internet-
scale video data does not come with action or reward
annotations present in typical robot data.

Existing works [23, 24, 38] include video data in the
robot learning pipeline by performing self-supervised visual
representation learning on video data [12], followed by
downstream policy learning via behavioral cloning using the
learned representations. While such an approach can extract
visual features from video, it is limited in its ability to extract
a deeper “functional” understanding of the world from video
data: in principle, despite differences in embodiment, human
videos can still be used to understand intents and affordances

that can be executed in the real world, the dynamics, and the
eventual outcomes that can be attained by acting.

Motivated by the above desiderata for video pre-training,
in this work, we aim to develop an approach that pre-trains
on Internet-scale human video to produce representations for
downstream offline RL. Our main contribution is a system,
which we call Video Pre-Training for Robots (V-PTR), that
fits value functions to model long-term outcomes achieved
when solving tasks on action-free video data.

Concretely, V-PTR pre-trains on human videos by learn-
ing an intent-conditioned value function [10] via temporal-
difference learning (TD-learning). This approach eschews
self-supervised representation learning objectives utilized in
prior works [19, 23, 24] in favor of a TD value learning
objective, just as how downstream offline RL agents will
fine-tune task-specific value functions. Next, we fine-tune
on a multi-task robotic dataset, which is annotated with ac-
tions, tasks, and rewards, using value-based offline RL [18].
Downstream, when a target task is specified, V-PTR fine-
tunes the multi-task policy on this task. Each phase of our
system gradually incorporates the knowledge of “what future
outcomes can be achieved” (video pre-training), “what robot
actions lead to these outcomes” (robot pre-training), and
“how can the desired task be solved” (fine-tuning).

Our experiments on several robotic manipulation tasks on
a real WidowX robot show that by pre-training on human
video data (Ego4D [11]) and multi-task robot data (Bridge
data [9]), V-PTR endows downstream offline RL methods
with significantly improved zero-shot generalization and
robustness to different target objects, distractors, and other
variations in the workspace compared to prior methods that
learn from videos, significantly outperforming prior methods
including VIP [19]. To our knowledge, our work presents the
first large-scale demonstration showing that TD-learning is
an effective approach to pre-train from video for robotic RL.

II. RELATED WORK
A number of prior approaches learn representations from

video by applying image-level representation objectives on
individual frames in the video or by modeling temporal
dependencies along the frames in a given trajectory. The
former includes objectives like reconstruction [14, 21, 27, 37]
or contrastive learning on images [30]. While these objectives
are widely used in computer vision, resulting representations
do not capture any information about environment dynamics.
The latter approaches model long-term dynamics from video
by predicting the next frame [28], learning value functions
[10, 19], or running time-contrastive learning [22, 29].

2024 IEEE International Conference on Robotics and Automation (ICRA 2024)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 16977



Visual
Encoder 

Value Learning
w/o Actions

Value

Pre-Training Phase 1

Ego4D: 1K Scenes, 70K Clips, 4M Transitions 20 Clips, ~500 Transitions

Pre-Training Phase 2

Fine-Tuning

Eg. Put Pot in Basket, Sweep Beans

Learned Policy ActionsVisual
Encoder 

Q-value Policy

Action

Bridge Data: 3K Clips, 150K Transitions

Fig. 1: Video pre-training for robots (V-PTR) involves pre-training representations on large-scale video datasets such as Ego4D, then
pre-training the representation on multi-task robot datasets such as Bridge data, and finally fine-tuning on the downstream robot task.

In the context of robot learning, recent works learn rep-
resentations from internet video datasets like Ego4D [11],
using masked auto-encoders [14, 23], language-video align-
ment [14], or time-contrastive learning [19, 23], and train
downstream policies on frozen features using behavioral
cloning. In our experiments, we compare to several of these
methods, and find that V-PTR attains a higher performance
on real-world tasks, especially when evaluated with high
initial state variability and in the presence of distractors.
Specifically for egocentric human video, Bahl et al. [3] pre-
dicts wrist trajectories, and uses them to guide intermediate
robot waypoints. This approach is orthogonal to our goal of
learning state representations; in principle, our approach may
be combined with this waypoint guidance.

The most closely related work is value-implicit pre-
training (VIP) [19], which pre-trains a value function using
time-contrastive prediction for downstream reward shaping.
Both learn value functions during pre-training, albeit with
entirely different algorithms (contrastive learning vs. TD
learning), for different policies (dataset policy vs. intent-
conditioned policy), exhibiting different generalization prop-
erties [4, 8]. Furthermore, the system desiderata differ for
VIP and V-PTR: VIP focuses on learning good visual reward
functions for weighted behavioral cloning, while we seek
good value function initializations for downstream offline
RL. In our experiments, we find that when both pre-training
approaches are evaluated on the quality of downstream
offline RL, those initialized with V-PTR improve over VIP in
terms of generalization and robustness. While obtaining re-
ward functions is not the focus of this paper, our experiments
show that V-PTR outperforms VIP with reward shaping.

Finally, a different class of methods attempt to modify
the downstream RL algorithm to train on video and robot
data together in lieu of a video pre-training stage. For
instance, [5, 7, 25, 33] train an inverse dynamics model
to label video transitions with action pseudo-labels to use
alongside the robotic experience; [31, 32, 34] use inverse
RL to imitate the state-distribution present in the video; [2]
translates human video frames to equivalent robot frames.
These methods succeed only when a small domain gap exists
between video data and robot data, so that observations from
video data can plausibly be interpreted as robot data. This
condition fails in our setup, as we utilize Ego4D [11] and
the Bridge [9] datasets, where observations in these datasets

differ significantly from each other, including a major differ-
ence in viewpoint (e.g., egocentric view in video data [11]
& shoulder view in robot data [9]). To our knowledge, no
method of this type has been performant in our setting.

III. PROBLEM STATEMENT AND BACKGROUND
We aim to use Internet-scale video data to boost the

robustness and generalization of robotic offline RL agents.
Formal problem statement. We assume access to two

pre-training datasets: an Internet-scale video dataset Dvideo
(e.g., the Ego4D dataset [11]) and a target dataset, Dtarget of
a limited number of demonstrations for a given target task
on the robot. Additionally we are also provided a dataset
of multi-task robot behaviors, Drobot, which may not contain
any data relevant to the target task. The video dataset Dvideo
consists of sequences of frames (i.e., observations in the
MDP), with no action or rewards. Denoting a frame as si,j ,
we define Dvideo := {(si,0, si,1, · · · )}nvideo

i=1 . The target dataset,
Dtarget, comprises of a few demonstrations of the target task
on the robot Dtarget := {(si,0,ai,0, ri,0, si,1, · · · )}ntarget

i=1 , where
the reward, ri,j is annotated to be +1 only on the final
three timesteps of the demonstration (following [18]). The
multi-task robot dataset Drobot is organized identically to the
target robot dataset, but with an additional task annotation
on each trajectory ti, which is specified either as a one-hot
identifier or by natural language. Our goal is train policy
π which maximizes the γ-discounted cumulative reward,
Es0∼ρ0,a0:∞,s1:∞∼π [

∑∞
t=0 γ

tr(st,at)], starting from a more
diverse set of initial states indicated by the distribution ρ0
than what was observed in the target dataset (e.g., more
variation in distractor objects).

Background. Our system utilizes a generalized formula-
tion of goal-conditioned RL and temporal-difference learning
for pre-training value functions. In a nutshell, the goal-
conditioned RL problem trains the agent to achieve arbitrary
goal frames g, where rewards are specified by the sparse
signal of I (s = g) when the frame is identical to the goal
frame. Although the reward signal is sparse, goals and
rewards can be defined by hindsight relabeling [1]. To learn
a policy for the downstream task, we use value-based offline
RL methods, which optimize π against a learned Q-function
Qπ(s,a). The Q-value function measures the expected long-
term reward attained when executing action a at state s,
then following policy π thereafter, and satisfies the Bellman
equation Qπ(s,a) = r(s,a) + γEs′,a′ [Qπ(s′,a′)].
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Fig. 2: Network architecture. V-PTR first pre-trains image representations
by training a general value function from video and then refines this
representation via multi-task pre-training on robot data.

IV. VIDEO PRE-TRAINING FOR ROBOTIC OFFLINE RL

Even though video data contains rich functional and
dynamic information useful for downstream skill learning,
this data cannot directly be integrated into robotic offline
RL pipelines. In this section, we develop V-PTR, our sys-
tem that pre-trains general value functions on Internet-scale
video data, and fine-tunes value functions for the desired
downstream robotic task using value-based offline RL.

System overview. Our system, V-PTR, pre-trains in two
phases: first on video data, and then on multi-task robot
data. In the first phase, we train an intent-conditioned value
function [10] on action-less video data using a value-learning
objective to model the outcomes associated with solving the
parametric family of goal-achieving tasks. Next, we refine
this representation with multi-task robot data with actions
and rewards, by training a state-action Q-function on this
representation using offline RL. We expect the video and
multi-task robot data to capture dynamic features in the
environment, with the robot data bridging the domain gap
between human video and the robot, and aligning the learned
representation with the agent’s action space. Downstream, to
adapt the system to a new target task, our system fine-tunes
the Q-function and the policy on the target dataset.

A. Phase 1: Video Pre-Training via TD-Learning

Since the goal of video pre-training is to improve the
performance of downstream value-based offline RL, we turn
to learning value functions on the video data as a natural
pre-training procedure. We choose to pre-train by learning
an intent-conditioned value function (ICVF), a recently-
proposed general value function that can be efficiently trained
on passive data without action labels [10]. An ICVF, anno-
tated V (svideo,gvideo, z) computes the value obtained towards
reaching a goal gvideo, assuming the policy intended to reach
a different intended goal z, and is formally defined as

V (svideo,gvideo, z) = Eat∼π∗
z (·|st)

[∑
t

γtI (svideo = gvideo)
]
.

As with a standard value function, the ICVF can be learned
by temporal-difference (TD) learning on its corresponding
Bellman equation, using a target network to bootstrap the
predictions of the learned value function. We follow the goal-
sampling strategy from ICVF: after sampling a start frame
s from the video dataset, we choose the goal g to be either

the next observation, a future observation in the video, or a
random observation from a different video. The intent z is
also an observation appearing in the video, and is chosen in
a similar fashion as the goal state. Additionally, following
Ghosh et al. [10], with some probability we set z = g.

We follow Ghosh et al. [10] and parameterize our esti-
mated value function as

V (svideo,gvideo, z) := ϕ(svideo)
⊤T (z)ψ(gvideo),

where ϕθ and ψα denote models that transform the ob-
servation and the goal observation respectively into low-
dimensional representations, and Tβ , a learned mapping
aligning the two representations. At convergence, the ICVF
provides a measure of temporal spatiality, and the learned
representation ϕθ(s) offers a useful feature basis for down-
stream value functions.

B. Phase 2: Multi-Task Robot Pre-Training via Offline RL

In the next phase, we refine the learned representation on
a multi-task robot dataset, Drobot, to narrow the domain gap
between robot image observations and human video, and
to provide information about the target robot embodiment
(i.e., the actions affordable by the robot). To avoid evaluation
contamination, the tasks and workspaces in this robot dataset
are explicitly disjoint from the target tasks used downstream.

V-PTR uses multi-task robot data to pre-train a Q-
function and a policy using multi-task conservative Q-
learning (CQL) [18], initializing the parameters of both the
Q-function and the policy using the backbone learned during
video pre-training in Phase 1. Concretely, the Q-function and
the policy are conditioned on the pre-trained representation
of the robot observation ϕθ(srobot) alongside a task vector
t (either a one-hot task identifier or a language embedding
from a sentence transformer). At the onset of this phase, we
initialize the representation encoder ϕθ to the encoder ϕθ∗

video

obtained at the end of phase 1. The value function is trained
to satisfy the Bellman equation,

min
θ

α · LCQL(θ) + E
[(
Qθ(s,a; t)− r − γQ̄(s′,a′, t)

)2]
,

with target Q-network Q̄, and CQL regularizer LCQL(θ) [16],
and the policy trained to maximize value,

max
λ

EDrobot

[
Ea∼πλ(·|s;t)[Q(s,a; t)]

]
+ βH(πλ).

After pre-training, we have a multi-task Q-function and
policy that can be fine-tuned to the desired downstream task
using a small target dataset.

C. Phase 3: Fine-Tuning to a Target Task

Finally, we fine-tune the value function and policy from
the pre-training stage to the target task by running CQL [16]
on the target dataset Dtarget. We follow Kumar et al. [18] and
treat the target data simply as a new task; fine-tuning involves
assigning a new task identifier to the target data (either a new
one-hot vector or a new language command), and continuing
to run multi-task offline CQL on the robot pre-training and
target tasks jointly. To address any overfitting induced by the
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Fig. 3: Examples of setup and successful rollouts for complex tasks.
We utilize the robot setup from the Bridge dataset [9] for our tasks. Top:
Two-phase open microwave; Bottom: Sweep beans into pile with tool.

small size of Dtarget, we perform stratified sampling between
the multi-task robot data Drobot and the target data Dtarget:
1−τ proportion of the training batch comes from Drobot and
τ from Dtarget, where τ is small (we use τ = 0.1).

D. Implementation Details

Video pre-training: We use video frames at a 224×224
resolution. The three components parameterizing the ICVF
are implemented as separate 3-layer MLP heads on a shared
visual backbone encoder. We use a Resnetv2-50 [13] as
our backbone since smaller convolutional networks led to
worse pre-training performance. We replace all batch nor-
malization layers with group normalization [36], since prior
works [6, 18] often found batch normalization to be unstable.
To avoid overfitting to spurious correlations between consec-
utive frames in a video clip, we use image augmentation
(random crops and color jitter) [15], weight decay, and
dropout. We train the model for 2×106 gradient steps with a
batch size of 64, using Adam, and learning rate 10−4 cosine
annealed through training. All remaining designs we take
from the open-source code [10].
Multi-task robot pre-training: We fine-tune on the multi-
task robot dataset primarily following design decisions from
Kumar et al. [18]. The CQL policy takes the RGB image,
proprioceptive state, and task identifier as input. The RGB
image is passed through a visual encoder, then concatenated
with the remaining information, and passed through a 2-
layer MLP. We additionally concatenate task and action
information into each hidden layer of the MLP. The CQL
value function is parameterized similarly, but it also takes the
action vector as input. Encoder parameters for both the value
and policy are initialized from the video pre-trained ICVF,
but there is no further weight tying between the networks.
We train CQL for 2× 105 gradient steps with batch size of
64, and Adam with a constant learning rate of 10−4.

V. EXPERIMENTAL RESULTS

The goal of our experiments is to validate the effectiveness
of V-PTR in boosting the generalization and robustness of
robotic offline RL. We evaluate V-PTR in several scenarios
requiring generalization to new scenes, compare to other
approaches for incorporating video data, and perform addi-
tional diagnostic experiments to understand how value pre-
training can provide useful representations for downstream
robotic RL. Our settings include several challenging robotic
manipulation tasks that require zero-shot generalization to
new objects and distractors. A video of our evaluations and
diagnostic experiments can be found on our project website.

Real-world setup. We conduct our experiments on a
WidowX robot platform. We perform video pre-training

VIP making an imprecise grasp

V-PTR re-orienting the knife to pick it up

V-PTR retrying after dropping the croissant

V
-P

TR
V

-P
TR

V
IP

Fig. 4: Visualizing qualitative performance of V-PTR and VIP. Here
we show rollouts for V-PTR (top) and VIP (bottom) on the real robot
manipulation tasks. V-PTR carefully executes the task by orienting the
gripper to match the object and retrying on failure whereas VIP grasp objects
without this re-orientation, leading to failure.

on Ego4D [11], an egocentric video dataset consisting of
4M transitions of humans attempting diverse tasks in the
real world, using the same pre-processed subset from prior
works [19, 23]. Then, for multi-task robot pre-training, we
utilize the subset of the Bridge dataset [9, 35] used by
prior work [18], a dataset with 150K transitions of various
manipulation task demonstrations on a WidowX robot in
toy kitchens. Downstream, we fine-tune on several tasks
on a WidowX robot, in a previously unseen toy-kitchen
workspace. For each target task, we collect 10 demonstra-
tions using teleoperation, with a range of distractor objects
and object variability. Solving these tasks requires skills
such as picking and placing a variety of objects, using tools
to accomplish tasks (e.g., sweeping), and two-phase door
opening (Figures 3 and 4).

Comparisons to prior methods. We compare V-PTR
to approaches that do not utilize video data (PTR [18],
BC [9]), as well as other methods for video pre-training
(R3M [23], MVP [24, 38], and VIP [19]). Following the
protocols in these prior works, we fine-tune the R3M and
MVP representations with imitation learning on multi-task
and target robot data (phases 2 and 3), and evaluate the VIP
representation both with reward-weighted imitation learning
and with downstream offline RL via CQL, to provide an
apples-to-apples comparison with V-PTR. We evaluate three
versions of VIP: (i) “VIPfrozen”, which freezes the pre-
trained representation learned from video data during fine-
tuning, (ii) “VIP”, which continues to fine-tune on robot
data, and (iii) “VIPreward”, which not only utilizes the pre-
trained representation for initializing the policy but also
uses distances between representations of current and fu-
ture frames as a reward shaping for downstream offline
RL via reward-weighted imitation, following [19]. When
using language task specification, we compare to language
conditioned variants of BC and PTR.

A. Real-World Results

We evaluate V-PTR and comparisons in three testing
scenarios. In Scenario 1, we evaluate the performance of
the policy, varying the robot’s initial pose and the position of
objects in scene. In Scenario 2, we evaluate the policy in the
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Video pre-training No videos No robot data

Task V-PTR (Ours) R3M+BC MVP+BC VIP+CQL VIPfrozen+CQL PTR V-PTR w/o phase 2

Sc
en

ar
io

1 Croissant from bowl 7 / 12 0 / 12 4 / 12 2 / 12 0 / 12 3 / 12 5 / 12
Sweet potato on plate 6 / 12 0 / 12 1 / 12 0 / 12 0 / 12 1 / 12 1 / 12

Knife in pot 6 / 12 0 / 12 0 / 12 0 / 12 0 / 12 0 / 12 0 / 12
Cucumber in pot 5 / 12 0 / 12 1 / 12 0 / 12 0 / 12 1 / 12 1 / 12

Total 24 / 48 0 / 48 6 / 48 2 / 48 0 / 48 5 / 48 7 / 48

Sc
en

ar
io

2
w

ith
di

st
ra

ct
or

ob
je

ct
s Croissant from bowl 8 / 12 0 / 12 3 / 12 2 / 12 0 / 12 0 / 12 3 / 12

Sweet potato on plate 4 / 12 0 / 12 2 / 12 0 / 12 0 / 12 1 / 12 2 / 12
Knife in pot 4 / 12 0 / 12 0 / 12 1 / 12 0 / 12 0 / 12 0 / 12

Cucumber in pot 4 / 12 0 / 12 0 / 12 1 / 12 0 / 12 0 / 12 1 / 12
Total 20 / 48 0 / 48 5 / 48 4 / 48 0 / 48 1 / 48 6 / 48

Sc
en

ar
io

3

no
v e

l
ta

rg
et

ob
je

ct
s Carrot 2 / 3 0 / 3 0 / 3 1 / 3 0 / 3 0 / 3 2 / 3

Cucumber 1 / 3 0 / 3 0 / 3 1 / 3 0 / 3 0 / 3 1 / 3
Ice-cream 0 / 3 0 / 3 0 / 3 1 / 3 1 / 3 1 / 3 0 / 3

Total 3 / 9 0 / 9 0 / 9 3 / 9 1 / 9 1 / 9 3 / 9

TABLE I: Task success rates of V-PTR and prior methods on several manipulation tasks over 12 trials (best-performing method indicated in red).
Note that V-PTR outperforms all prior methods, including those approaches that do not fine-tune the learned representation, use imitation learning for
downstream control, or do not incorporate video data.

No CQL

Task V-PTR VIP [19]+CQL PTR [18] VIPreward [19]
Open Microwave 5 / 12 2 / 12 0 / 12 0 / 12

Sweep Beans 6 / 12 5 / 12 2 / 12 2 / 12

TABLE II: Performance of V-PTR, VIP, and PTR on more complex
tasks. V-PTR outperforms PTR as well as VIP variants that use downstream
CQL or BC weighted by the reward shaping from Ma et al. [19].

presence of novel distractor objects in the scene. We note that
some of the target data does contain distractor objects, but
we use a different set of distractor objects during evaluation
than those seen in training. Finally, in Scenario 3, we test
the ability of the learned policy to manipulate novel target
objects that were never seen during training.

We evaluate different methods on four tasks in Table I.
Observe that V-PTR outperforms all other prior approaches,
and in some tasks (e.g., “place knife in pot”) is the only
method that produces any successful trials. We observed that
all of these methods do learn behavior that attempt to solve
the task, for example by moving toward relevant objects
in the scene, but do not eventually succeed due to either
imprecise localization of target objects or a prematurely
executed grasp attempt. On the other hand, we found that
in several scenarios V-PTR is able to re-orient the gripper
before executing a grasp (e.g., Fig. 4).

Next, we evaluate V-PTR with distractor objects in Table I
(Scenario 2). Adding distractors reduces performance for
every method (as one may expect), but V-PTR still exhibits
the smallest degradation compared to the next best approach.
To study generalization to novel target objects (Scenario
3), we also consider a “take [object] from bowl” task,
and replace the target object with unseen target objects at
evaluation. Performance is low for all comparisons in Table I,
but V-PTR succeeds 50% of the time with new objects.

Comparisons to VIP on more complex tasks. We com-
pare V-PTR in more detail to VIP (which also uses similar
video data) on manipulation tasks that require learning more
complex skills: “open microwave” and “sweep beans” in

Fig. 5: Examples of areas swept by VIP [19] (top) and V-PTR (bottom)
methods. V-PTR sweeps a much larger area (blue), and consistently begins
a second sweep, whereas VIP [19] is too slow to sweep a second time.

Table II. Specifically, we compare to different variants of
VIP discussed above (VIP+CQL; VIPreward) and find that V-
PTR outperforms these variants. Qualitatively in Figure 5,
we observe that on the “sweep beans” task, V-PTR sweeps
a larger area than the VIP policy, which is too slow to
execute the sweep motion a second time. This corroborates
our analysis (Figure 6 and 7) that value functions trained on
the V-PTR representation tend to have lower error than those
utilizing VIP representations.

Language-based task specification. We next study how
V-PTR works when the robot pre-training data is labeled with
natural language descriptions (a more general format) instead
of task identifiers. To handle language, we first encode the
task description into an embedding vector using the pre-
trained language encoder from GRIF [20], which has been
shown to be effective at learning BC policies. The Q-function
and the policy then utilize these embedding vectors in lieu
of the one-hot task identifiers, processing them identically
as before. In Table III, we compare V-PTR to imitation
learning and PTR with language embeddings, and find that
V-PTR improves over both of these methods by around 50%,
indicating that V-PTR can leverage downstream language.

B. Visualizations and Diagnostic Experiments

We now analyze V-PTR more carefully by visualizing
the learned features from video-pretraining, probing the
generalization of the system, and assessing the quality of
value estimation in downstream offline RL.
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