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Abstract— Generalizable articulated object manipulation is
essential for home-assistant robots. Recent efforts focus on
imitation learning from demonstrations or reinforcement learn-
ing in simulation, however, due to the prohibitive costs of
real-world data collection and precise object simulation, it
still remains challenging for these works to achieve broad
adaptability across diverse articulated objects. Recently, many
works have tried to utilize the strong in-context learning ability
of Large Language Models (LLMs) to achieve generalizable
robotic manipulation, but most of these researches focus on
high-level task planning, sidelining low-level robotic control. In
this work, building on the idea that the kinematic structure
of the object determines how we can manipulate it, we pro-
pose a kinematic-aware prompting framework that prompts
LLMs with kinematic knowledge of objects to generate low-
level motion trajectory waypoints, supporting various object
manipulation. To effectively prompt LLMs with the kinematic
structure of different objects, we design a unified kinematic
knowledge parser, which represents various articulated objects
as a unified textual description containing kinematic joints
and contact location. Building upon this unified description, a
kinematic-aware planner model is proposed to generate precise
3D manipulation waypoints via a designed kinematic-aware
chain-of-thoughts prompting method. Our evaluation spanned
48 instances across 16 distinct categories, revealing that our
framework not only outperforms traditional methods on 8 seen
categories but also shows a powerful zero-shot capability for
8 unseen articulated object categories with only 17 demon-
strations. Moreover, the real-world experiments on 7 different
object categories prove our framework’s adaptability in prac-
tical scenarios. Code is released at https://github.com/GeWu-
Lab/LLM_articulated_object_manipulation.

I. INTRODUCTION
Generalizable articulated object manipulation is imperative

for building intelligent and multi-functional robots. How-
ever, due to the considerable heterogeneity in the kinematic
structures of objects, the manipulation policy might vary
drastically across different object instances and categories.
To ensure consistent performance in automated tasks within
intricate real-world scenarios, prior works on generaliz-
able object manipulation have been devoted to imitation
learning from demonstrations [1], [2] and reinforcement
learning in simulation [3], [4]. As shown in Figure 1(a),
these approaches consistently require substantial amounts
of robotic data. To bolster the manipulation generalization,
recent works [5], [6] have made notable advancements in
curating extensive robotic datasets. However, the diversity of
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Fig. 1: As depicted in (a), traditional learning-based methods
rely on vast datasets for broad manipulation tasks. Re-
cent studies in (b) harness LLMs to reduce data reliance,
but primarily apply to elementary challenges like obstacle
avoidance, and pick-and-place. In contrast, our framework,
highlighted in (c), achieves zero-shot articulated object ma-
nipulation with the kinematic-aware prompting method.

scenarios covered in these datasets is still limited. To achieve
generalization across various scenarios, there would be a pro-
hibitive cost of accumulating more data. Thus, contemporary
studies strived to mitigate this excessive data dependency
through strategies such as efficient architectures [2], [7],
redefined training objectives [1], [8], and data augmentation
techniques [9], [10]. Nevertheless, the generalizability of
these solutions remains limited, especially in novel scenarios
that contain unseen object states.

In pursuit of developing a generalizable object manipula-
tion policy with reduced data reliance, recent works incorpo-
rated rich world knowledge within LLMs to promote policy
learning [11], [12]. Drawing insights from the reasoning ca-
pabilities of LLMs [13], [14], as shown in Figure 1(b), some
contemporary studies [15], [16] successfully used LLMs to
predict reasonable action sequences for object manipula-
tion with a parsed textual representation of environments.
However, such a coarse representation limits these works
to simple tasks like pick-place and rearrangement planning.
Although Huang et al. [17] introduced a 3D voxel map to
capture intricate environment details and tackle challenges
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like obstacle avoidance, there is still a notable gap in
handling sophisticated articulated object manipulation tasks.

In this work, we delve into the problem of harnessing
LLMs for generalizable articulated object manipulation, rec-
ognizing that the rich world knowledge inherent in LLMs
is adept at providing reasonable manipulation understanding
of various articulated objects. For instance, when presented
with the instruction “open the cabinet", LLMs can provide
a systematic approach: 1) Locate the handle or knob, 2)
Determine the hinge direction, and 3) Either push or pull
based on the hinge type. However, to fully leverage the
rich world knowledge within LLMs for precise articulated
object manipulation, we still confront the critical challenge
of converting these abstract manipulation commonsense into
precise low-level robotic control.

To tackle the aforementioned challenge, we propose a
kinematic-aware prompting framework. This framework is
designed to extract the kinematic knowledge of various
objects and prompt LLMs to generate low-level motion
trajectory waypoints for object manipulations as shown in
Figure 1(c). The idea behind this method is that the kinematic
structure of an object determines how we can manipulate
it. Therefore, we first propose a unified kinematic knowl-
edge parser, which represents the various articulated objects
as a unified textual description with the kinematic joints
and contact location. Harnessing this unified description,
a kinematic-aware planner is proposed to generate precise
3D manipulation waypoints for articulated object manip-
ulation via a kinematic-aware chain-of-thought prompting.
Concretely, it initially prompts LLMs to generate an abstract
textual manipulation sequence under the kinematic structure
guidance. Subsequently, it takes the generated kinematic-
guided textual manipulation sequence as inputs, and outputs
3D manipulation trajectory waypoints via in-context learn-
ing for precise robotic control. With this kinematic-aware
hierarchical prompting, our framework can effectively utilize
LLMs to understand various object kinematic structures to
achieve generalizable articulated object manipulation.

To validate the efficacy of our framework, we conduct
exhaustive experiments on 48 objects across 16 categories
in Isaac Gym [18] simulator and extend our method to real-
world scenarios. The results prove that our framework could
generalize across seen/unseen object instances and categories
in a zero-shot context. Moreover, the real-world experiments
prove our framework’s ability to extend its generalization to
practical scenarios.

The main contributions of our work are as follows:
• We propose the Kinematic-aware prompt framework,

aiming for generalizable articulated object manipulation
across novel instances and categories with minimal
robotic data requirements.

• We design the unified kinematic knowledge parser and
kinematic-aware planner components, utilizing the kine-
matic knowledge to prompt LLMs to generate precise
3D manipulation trajectory waypoints.

• We evaluate our method on 48 instances across 16
categories. The results prove our framework exhibits

zero-shot ability for articulated object manipulation.
The real-world experiments also prove our framework’s
generalization to practical scenarios.

II. RELATED WORKS

A. Policy Learning for object manipulation

Object manipulation policy learning methods have primar-
ily focused on imitation learning from demonstrations [1],
[5], [19] and reinforcement learning [3] in simulations. To
devise a practical manipulation policy for specific scenar-
ios, these methods [5]–[7], [20] often rely on numerous
demonstrations or episodes. To reduce the cost of data
collection, some researchers [9], [21]–[23] employ generative
models to augment the limited robotic data for robotic policy
training. In addition to innovations in dataset augmentation,
recent works [1], [2] seek to bolster the learning efficacy of
models. Leveraging the transformer architecture, numerous
studies have showcased efficient policy learning in a limited
demonstration dataset [2], [24]. Moreover, Jia et al. [1]
incorporates the idea of hierarchical reinforcement learning
with imitation learning for generalizable policy learning.
However, these studies still face challenges in unseen sce-
narios when training with a limited dataset. In this work, we
propose a kinematic-aware prompting framework that guides
LLMs to generate low-level motion trajectory waypoints with
the object kinematic knowledge, thereby facilitating a more
generalized approach to articulated object manipulation with
minimal reliance on robotic demonstrations.

B. Large Language Models for Robotics

Motivated by the rich world knowledge exhibited by
LLMs, recent literature has explored the integration of
LLMs with robotics across various domains [25]–[27]. To
enable robots to adapt to complex real-world scenarios,
many works [28]–[38] focus on task planning and the de-
composition of complex instructions. Although these studies
exhibit superior planning ability to decompose complex
unseen instructions into subgoals, inevitably, they still de-
pend on a pre-trained skill library for the fulfillment of
subgoals. However, this dependence poses challenges due
to the scarcity of extensive robotic datasets for learning
various skills. To improve this skill acquisition process, some
researchers [39], [40] employ LLMs for reward designing.
Moreover, Mirchandani et al. [15] encodes actions into
separate tokens and leverages LLMs to generate correspond-
ing token sequences for robotic control through in-context
learning. While, Huang et al. [17] and Zhao et al. [16]
construct the environment information to prompt LLMs to
produce action sequences for manipulation. However, these
works primarily focus on elementary manipulation tasks such
as obstacle avoidance and pick-and-place tasks, exhibiting
shortcomings in the manipulation of complex articulated
objects. To harness the full potential of LLMs for articulated
object manipulation, we extract object kinematic knowledge
to prompt LLMs to generate precise 3D manipulation way-
points, and achieve zero-shot manipulation for articulated
objects across novel instances and categories.
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Fig. 2: We first propose the Unified Kinematic Knowledge Parser component to grasp the object’s kinematic structure as
a kinematic knowledge description for LLMs as shown in (a). Based on the description, we construct a kinematic-aware
hierarchical prompt, which is used in the Kinematic-aware Manipulation Planner component to guide LLMs to generate an
abstract textual manipulation sequence, and 3D manipulation waypoints for generalizable articulated object manipulation in
(b). Distinct colors assigned to numbers represent the properties of the different kinematic structure components.

III. METHOD

We aim to solve generalizable articulated object ma-
nipulation problems that require kinematic and geometric
reasoning of objects to generate precise manipulation pol-
icy. As shown in Figure 2, the proposed kinematic-aware
prompting framework is composed of two modules: Unified
Kinematic Knowledge Parser and Kinematic-aware Manip-
ulation Planner. Given the manipulation instruction I, the
unified kinematic knowledge parser (Sec. III-A) extracts the
kinematic structure of various articulated objects O and
formats it as a unified kinematic knowledge description K.
Then, the kinematic-aware manipulation planner (Sec. III-B)
incorporates this kinematic description with few manipula-
tion demonstrations to prompt LLMs to generate a sequence
of 3D manipulation waypoints W = {w1, w2, .., wn} for
manipulation. Finally, the manipulation policy is executed via
waypoints following a traditional motion planning algorithm.

A. Unified Kinematic Knowledge Parser

The manipulation policy of an articulated object is mostly
determined by its kinematic structure [41], [42], and the
strong complex reasoning capability of LLMs presents a
promising pathway to general kinematic structure under-
standing. For manipulating objects with different kinematic
structures, a unified and effective kinematic knowledge de-
scription is essential for LLMs to understand various articu-
lated objects and subsequently generate manipulation policy.
Thus, as depicted in Figure 2(a), we propose the unified
kinematic knowledge parser component to represent the
articulated object as a unified textual kinematic description
for kinematic structure understanding. Concretely, the unified
kinematic knowledge parser consists of two distinct steps.

First, we detect and segment the geometric and kine-
matic structures of a given articulated object via an off-
the-shelf model. In the simulator, we could directly extract
this information. While, in the real world, we rely on
existing perception models [41], [43] for joint estimation to

obtain this information. The output of this step consists of
geometric-linked parts, kinematic joints between parts, and
a contact point for the manipulation. These part segments,
joint properties, and the contact point represent the kinematic
structure of this object and determine how to manipulate it.

Inspired by the remarkable aptitude of LLMs in parsing
structured textual data [38], ultimately, we translate the
kinematic joint structure and contact location into a unified
structured .xml format. Using the proposed unified kinematic
knowledge parser, the complex kinematic structure of differ-
ent articulated objects can be easily understood by LLMs via
this code-like textual kinematic knowledge description K.

B. Kinematic-aware Manipulation Planner

To enable LLMs to generate precise 3D waypoints for
articulated object manipulation, we propose a hierarchical
prompting method named kinematic-aware planner com-
ponent, to prompt the LLMs with the unified kinematic
knowledge description K and the manipulation instruction I.
Concretely, the hierarchical prompting method is composed
of manipulation sequence planning and manipulation way-
points generation, achieving abstract textual manipulation
planning to precise manipulation waypoints conversion via
chain-of-thoughts prompting.

Manipulation Sequence Planning. As shown in Figure 2,
given an articulated object O, a manipulation command
specified by textual instruction I, and its kinematic descrip-
tion K from unified kinematic knowledge parser. First, the
manipulation instruction I and kinematic description K are
concatenated as the header of the prompting. Then, we
prompt LLMs with this concatenated text to produce an
abstract textual manipulation sequence A.

As demonstrated in the textual manipulation sequence of
Figure 2(b), our hierarchical prompt first promotes LLMs
to generate an abstract textual manipulation sequence. To
generate a kinematic-feasible manipulation sequence, we
prompt the LLMs to pay attention to the referred kinematic
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Fig. 3: The illustration of the articulated objects used in our experiments. Each of these entities corresponds to either a
singular or a pair of manipulation instructions.

components in kinematic representation K such as handle
and joint. To align the abstract manipulation plan with
the concrete object kinematic knowledge, we make LLMs
copy the corresponding properties (e.g., coordinate and joint
orientation) of referred kinematic components into the textual
manipulation sequence. With this explicit alignment between
kinematic knowledge and abstract manipulation sequences,
we could incorporate the rich world knowledge of LLMs into
3D spatial reasoning for articulated object manipulation.

Manipulation Waypoints Generation. Following the
generated textual manipulation sequence, the kinematic-
aware planner then produces a sequence of 3D waypoints
for precise robotic control. To apply the generated waypoints
for various manipulation tasks, we provide five basic actions
for LLMs to control the end-effector as follows: (1) move:
move the gripper to the target position. (2) grasp: close
the gripper. (3) release: open the gripper. (4) clockwise
rotate: clockwise rotate the gripper by 30 degrees. (5) anti-
clockwise rotate: anti-clockwise rotate the gripper by 30
degrees. As shown in Figure 2(b), LLMs could understand
the 3D spatial information and generate waypoints with the
formatted commands referring to the textual manipulation
sequence via in-context learning. Further, utilizing an op-
erational space controller, we can transform the output of
the LLMs into low-level robotic control actions. With these
explicit prompting between abstract manipulation sequences
to precise 3D manipulation waypoints, the LLMs show a
strong 3D spatial reasoning capability to generate reasonable
3D waypoints to manipulate various articulated objects.

IV. EXPERIMENTS

A. Experiment Setting

In this work, we propose the kinematic-aware prompting
method for zero-shot articulated object manipulation. To
comprehensively evaluate the generalization capability of our
framework, we first conduct experiments within the Isaac
Gym simulator [18], utilizing 48 distinct object instances
across 16 types of articulated objects from the PartNet-
Mobility dataset [44]. As shown in Figure 3, our evaluation
dataset contains a broad spectrum of commonplace artic-
ulated objects, which covers the diversity of manipulation

policies and articulated structures. To enhance the scale of
our evaluation data, we devised two opposite instructions for
many object categories, like open/close window, open/close
oven, lift/lay down bucket, turn on button, etc. In experi-
ments, we provide the performance for all these manipulation
instructions, and the order is consistent with Figure 3.

To guide LLMs in generating 3D manipulation waypoints
with the object kinematic knowledge, we collect 17 3D ma-
nipulation waypoints demonstrations across 8 distinct object
categories for in-context learning in the kinematic-aware
manipulation planner module. These demonstrations cover
open/close drawers, open/close ovens, open/close safes, lift/
lay down straps, open/close refrigerators, turn on buttons,
turn on/turn off faucets, and turn on bottles. To further
comprehensively measure the performance of different meth-
ods, we divide the dataset into two subsets. The first subset
comprises objects from eight categories of provided demon-
strations, but with diverse poses and instances. The second is
devoted to object categories unseen from the demonstrations,
which is more challenging for the LLMs’ reasoning capabil-
ity and commonsense. During the evaluation, we randomly
place the object in a reachable position for the robotic arm.

In each experiment, we employ a simple operational space
controller to follow generated 3D waypoints to manipulate
objects in simulation, and each object category is evaluated
thrice by randomly selected object instances, constrained
by the API cost limitation. The results are reported by the
Average Success Rate (ASR) of manipulation for assessing
overall performance.

B. Comparison Experiments
We compare our method with other approaches:

• LLM2Skill: We implement LLM2Skill baseline as a
variant of Code as Policy [38]. We predefined 18
action primitives that could finish both the demonstrated
and novel instructions. Here, LLMs would determine
the suitable action primitive given the detailed object
kinematic knowledge.

• LLM2Waypoints: We implement this method as a
naive attempt to directly output manipulation waypoints
for articulated object manipulation without considering
the kinematic knowledge.
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Seen Categories with Unseen Instances and Poses

Methods drawer oven safe strap refrigerator button faucet bottle

LLM2Skill 100%/ 100% 66.6%/ 100% 33.3%/ 66.6% 0%/ 0% 66.6%/ 33.3% 100% 33.3%/ 33.3% 100%
LLM2Waypoints 100%/ 100% 100%/ 100% 100%/ 33.3% 33.3%/ 33.3% 100%/ 100% 100% 33.3%/ 33.3% 100%

BC 33.3%/ 33.3% 33.3%/ 33.3% 33.3%/ 66.6% 33.3%/ 66.6% 33.3%/ 66.6% 100% 33.3%/ 0% 33.3%

Ours 100%/ 100% 100%/ 100% 100%/ 100% 100%/ 100% 66.6%/ 100% 100% 66.6%/ 66.6% 66.6%

TABLE I: Evaluation results on seen categories objects. We use / to differentiate the model’s performance on different
manipulation commands for the same object.

Unseen Categories with different instances and poses

Methods dishwasher cabinet door bucket window trashcan laptop stapler

LLM2Skill 33.3%/ 33.3% 0%/ 33.3% 0%/ 0% 0%/0% 33.3%/ 0% 0% / 0% 0%/ 0% 0%
LLM2Waypoints 33.3%/ 0% 33.3%/ 33.3% 0%/ 33.3% 33.3%/ 0% 0%/ 0% 33.3%/ 0% 0%/ 0% 33.3%

BC 33.3%/ 33.3% 0%/33.3% 0%/ 33.3% 0%/ 0% 0%/ 0% 0%/ 33.3% 0%/ 33.3% 100%

Ours 66.6%/ 100% 66.6%/ 66.6% 66.6%/ 66.6% 66.6%/ 100% 66.6%/ 66.6% 100%/ 33.3% 66.6%/ 100% 100%

TABLE II: Evaluation results on unseen categories objects. We use / to differentiate the model’s performance on different
manipulation commands for the same object.

• Behavior Cloning. We train a language-conditioned be-
havior cloning algorithm on the demonstrations, lever-
aging the structure of Decision Transformer [24].

We systematically evaluate these methods on the divided
two subsets, and the results are as follows:

Results on unseen instances and pose: We evaluate
the methods on seen categories, but with different poses
and instances. As illustrated in Table I, most LLM-based
methods were able to exhibit considerable performance on
these familiar categories, drawing strength from their robust
in-context learning capabilities and a wealth of inherent
commonsense knowledge. Conversely, it is challenging for
learning-based methods to generalize to previously unseen
instances, primarily due to the lack of demonstration data.

Notably, we discerned that similar manipulation policies
might be applicable across diverse instances, allowing the
LLM2Skill method to demonstrate appreciable performance
on these relatively easy categories such as drawers, and
buttons. However, when faced the variations within the
kinematic structures, LLM2Skill fails due to the inability
to craft novel trajectories for different kinematic structures
like lifting straps and turning on faucets. Meanwhile, our
method could still generalize to these object instances with
a more flexible manipulation policy benefiting from the
comprehension of kinematic knowledge.

Results on unseen categories: We extended our eval-
uation to objects within unseen categories. As shown in
Table II, LLMs could easily generalize to prismatic artic-
ulated objects like kitchen pots, given that the manipulation
trajectory is a simple straightforward linear path. Conversely,
when manipulating revolute articulated objects, these base-
line models exhibit a notable decline in the average success
rate. This decline is due to that objects with revolute joints
require more complex trajectories to manipulate. For exam-
ple, when attempting to open a door, the generated trajectory
must account for both the radius and angle to align with the
object’s kinematic structure. Otherwise, it would get stuck
due to force constraint issues. Nonetheless, leveraging the

comprehension of the object’s kinematic knowledge provided
by our unified kinematic knowledge parser component, our
method is adept at manipulating these revolute objects.

Despite equipping the LLM2Skill method with action
candidates tailored to these novel categories, it still fails due
to the lack of 3D reasoning capabilities essential for versatile
articulated object manipulation.

Although the behavior cloning method shows some suc-
cess on a few tasks, we find that these successes are the
result of random movements in the environment. Such un-
predictability is not usable for real-world applications, given
the inherent risks. However, by representing the action as
a sequence of manipulation waypoints, our method could
combine with traditional motion planners to ensure safety
and applicability in real-world scenarios.

C. Ablation Experiments

In the ablation experiments, we evaluate the effectiveness
of our kinematic-aware prompt and waypoints generation
method. Concretely, the model without the kinematic-aware
planner component would directly utilize the unified kine-
matic description to generate manipulation waypoints with-
out the hierarchical prompt. The model without waypoints
would use the predefined action list as LLM2Skill but
with our kinematic-aware prompting framework. We follow
the setting in comparison experiments and demonstrate the
results on unseen categories.

As shown in Table III, the method with both components
achieves the best performance, which proves the effective-
ness of each component. Concretely, in experiments, we find
that the model without the kinematic-aware planner is more
likely to generate trajectories that do not correspond to the
task instructions. However, the model without waypoint gen-
eration could generate reasonable manipulation sequences
but fail in manipulating complex objects such as laptop
and bucket, due to the lack of flexibility. Combining with
both these modules, our method could fully understand the
kinematic structure of objects for generalizable articulated
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Unseen Categories with different instances and poses

Method dishwasher cabinet door bucket window trashcan laptop stapler

W/o. kinematic-planer planner 33.3%/ 66.6% 0%/ 33.3% 33.3%/ 33.3% 33.3%/ 33.3% 33.3%/ 0% 0%/ 0% 0%/ 0% 0%
W/o. waypoints 33.3%/ 66.6% 0%/ 0% 0%/ 33.3% 0%/33.3% 33.3%/ 33.3% 66.6% / 0% 33.3%/ 33.3% 66.6%

Ours 66.6%/ 100% 33.3%/ 66.6% 66.6%/ 66.6% 66.6%/ 100% 66.6%/ 66.6% 100%/ 33.3% 66.6%/ 100% 100%

TABLE III: The ablation study results. We use / to differentiate the model’s performance on different manipulation commands
for the same object.

Unseen Instance Unseen Categories

Method safe refrigerator dishwasher cabinet bucket

GPT-4 66.6%/ 66.6% 66.6%/ 100% 66.6%/ 100% 66.6%/ 66.6% 66.6%/ 100%

GPT-3.5-turbo 0%/ 0% 33.3%/ 33.3% 0%/ 0% 33.3%/ 33.3% 0%/ 0%

TABLE IV: Abalation study on different GPT models with
7 demonstrations as prompt.

Perception result of cabinet

Open cabinet

Close cabinet Perception result of drawer Close drawer

Open drawer

Turn on bottle Press Switch Turn on faucet Press StaplerLift up pot lid

Fig. 4: Real-world experiments: we generate 3D manipu-
lation waypoints with our framework for real-world object
manipulation. The joint information of cabinet and drawer
is estimated by the perception model, while the others are
provided manually.

object manipulation.
We compare the performance of different Large Language

Models. Due to the token limitation of GPT3.5, we only
provide 9 demonstrations across 4 categories, which contain
open/close safe, lift/lay down strap, open/close refrigerator,
and open/close oven. As shown in Table IV, we observe that
GPT-4 is better at following the prompt to reason the spatial
information, while GPT-3.5-turbo always fails to understand
the relationship between kinematic knowledge and manipula-
tion waypoints, and provide wrong manipulation waypoints.

D. Real-world Experiment

To demonstrate the effectiveness of our framework in
practical scenarios, we conducted experiments with a Franka
Panda robot arm in the real world. To convert the kinematic
structure of the manipulation object into texture format
with our unified kinematic knowledge parser, we first com-
bine Grounding-DINO [45] and Segment-anything [43] to
accurately segment the target object. We incorporate the
GAPartNet [41] as our backbone to detect actionable parts
and capture joint information.

As shown in Figure 4, we evaluate our framework on
7 distinct objects. For cabinet and drawer categories, we
utilize the perception model to obtain the contact point and

joint information, while for other categories, we manually
provide this information due to the limitation of perception
models. Further, we use LLMs to generate 3D manipulation
waypoints with our kinematic-aware prompting framework
given the joint and affordance information. The results prove
that our framework is capable of generalizing to practical
scenarios without any additional demonstrations collected in
the real world.

V. CONCLUSIONS AND LIMITATIONS

In this work, we propose a kinematic-aware prompting
framework to utilize the rich world knowledge inherent
in LLMs for generalizable articulated object manipulation.
Based on the idea that the kinematic structure of an object
determines the manipulation policy on it, this framework
prompts LLMs with kinematic knowledge of objects to gen-
erate low-level motion trajectory waypoints for various object
manipulations. Concretely, we build the unified kinematic
knowledge parser and kinematic-aware planner, to empower
LLMs to understand various object kinematic structures for
generalizable articulated object manipulation via in-context
learning. We evaluate our method on 48 instances across 16
categories, and the results prove our method could generalize
across unseen instances and categories with only 17 demon-
strations for prompting. The real-world experiments also
prove our framework’s generalization to practical scenarios.

Limitations. Provided with accurate object kinematic
knowledge, our framework could achieve generalizable ar-
ticulated object manipulation. However, its application in
the real world is constrained by the capability of existing
perception models. It is a promising way to combine the
visual foundation models with LLMs for more challenging
real-world scenarios. Further, the capability of LLMs in
mathematical reasoning and spatial comprehension remains
constrained, which would sometimes result in inaccuracy for
manipulation waypoint generation. Thus, methods aimed at
enhancing mathematical comprehension can be leveraged to
augment the efficacy of our object manipulation framework.
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