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Abstract— Reliable autonomous navigation requires adapting
the control policy of a mobile robot in response to dynamics
changes in different operational conditions. Hand-designed
dynamics models may struggle to capture model variations due
to a limited set of parameters. Data-driven dynamics learning
approaches offer higher model capacity and better generaliza-
tion but require large amounts of state-labeled data. This paper
develops an approach for learning robot dynamics directly from
point-cloud observations, removing the need and associated er-
rors of state estimation, while embedding Hamiltonian structure
in the dynamics model to improve data efficiency. We design
an observation-space loss that relates motion prediction from
the dynamics model with motion prediction from point-cloud
registration to train a Hamiltonian neural ordinary differential
equation. The learned Hamiltonian model enables the design
of an energy-shaping model-based tracking controller for rigid-
body robots. We demonstrate dynamics learning and tracking
control on a real nonholonomic wheeled robot.

I. INTRODUCTION

Autonomous mobile robot navigation is playing an in-
creasingly important role in industrial manufacturing, agri-
culture, transportation, and warehouse automation. Reliable
robot use over long duration requires robustness to changing
conditions. Autonomous navigation requires adapting robot’s
control strategy due to its own dynamics which can be done
using model-free [1] or model-based [2] control techniques.

In this paper, we focus on model-based control of a rigid-
body robot for trajectory tracking. The challenge is to infer a
robot dynamics model from sensor observations and design
a control policy that can successfully execute reference
trajectories from a motion planner. Traditionally, a dynamics
model is derived from first principles and its parameters are
optimized using system identification techniques [3]. Hand-
designed models, however, have a limited set of parameters
and may not be sufficiently expressive to capture variations in
the system dynamics. Recently, machine learning techniques
have excelled at learn robot dynamics from data [4]–[8] by
optimizing a large number of parameters in an expressive
model, e.g., neural networks. However, these techniques
require large datasets of state trajectories to learn a good
dynamics model. Physics-informed neural networks reduce
the amount of required data by embedding prior knowledge,
such as physics laws and kinematic constraints, in the model
architecture, ensuring that these requirements are satisfied
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Fig. 1: Clearpath Jackal robot equipped with a LiDAR.

by design instead of being inferred from data. This leads
to better generalization and data efficiency. For example,
Lagrangian [9]–[13] and Hamiltonian formulations [14]–
[22] have been used to design neural network models to
approximate dynamics of mechanical systems, where the
equations of motions are enforced in the neural network
architecture. Another approach is to assume known nominal
dynamics for the system and only learn residual dynamics,
e.g., when system dynamics change due to model uncer-
tainty or disturbances. The residual dynamics can be learned
online explicitly [23]–[29], allowing adaptation of the con-
troller to dynamics uncertainty, or implicitly by learning
controller’s parameters [30], [31]. Many physics-informed
dynamics learning approaches, however, assume perfect state
estimation for supervised training, and hence, are prone to
estimation errors or are reliant on motion capture systems,
limiting their real-world applications. Instead, our approach
learns the robot dynamics directly from sensor observations,
while maintaining a Hamiltonian-based machine learning
model for data efficiency, generalization, and control design.

Learning control policies from observations, such as im-
ages or point clouds, has been extensively studied in rein-
forcement learning. A common approach is to learn a latent
state space, and train a control policy in the latent state space
to maximize the reward or control performance. For example,
Zhang et al. [32] learn a latent space for control purposes
using bisimulation metrics, which measure the similarity be-
tween two latent states if they have similar cumulative future
reward. Kamran et al. [33] use convolutional neural networks
to map images to an embedded space and learn a tracking
controller via an actor-critic approach. Tian et al. [34] learn
a latent state representation and latent dynamics model
from observations to achieve discrete-time linear quadratic
Gaussian regulation. The authors establish a finite-sample
guarantee for obtaining a near-optimal state representation
and control policy. In contrast, our work uses a known state
representation but learns non-linear control-affine dynamics
with Hamiltonian structure. We use a cycle consistency loss
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that relates motion prediction from the dynamics model with
motion prediction from registration of point-cloud obser-
vations. Cycle-consistency has been exploited in computer
vision as a self-supervised learning technique to learn a
model using unlabeled data for image alignment [35], [36],
image-to-image translation [37], structure from motion [38],
[39], and space-time alignment in videos [40], [41]. Recently,
cycle consistency between observations has been used to
transfer a learned control policy across different domains [42]
without considering robot dynamics.

In this work, we develop a cycle consistency approach
for robot dynamics learning from sensor observations. Our
approach predicts the robot motion using a Hamiltonian
dynamics model and measures the motion error using point
cloud registration. Our prior work [20], [43] developed a
Hamiltonian neural ODE (HNODE) method for learning
quadrotor dynamics and an energy-shaping control formula-
tion for quadrotor trajectory tracking. In this paper, we apply
the HNODE approach to learn nonholonomic dynamics of
a ground robot and supervise the learning process directly
from sensor observations. Given a control input, we predict
the robot’s next pose using the dynamics model and obtain
an observation from the sensors. The observations at two
consecutive steps should be consistent, e.g., features from
the first observation, after transformation to the next frame,
should appear in the second observation. Violations of this
cycle-consistency principle create a loss function that we
use to train the Hamiltonian dynamics model via a neural
ODE framework [44]. We then develop an energy-shaping
trajectory tracking controller for the learned dynamics and
demonstrate our approach in simulated and real autonomous
navigation experiments with nonholonomic wheeled robots.

II. PROBLEM STATEMENT

Consider a robot modeled as a single rigid body with
pose represented by position p ∈ R3 and rotation matrix
R ∈ SO(3). Let r1, r2, r3 ∈ R3 be the rows of R,
and define the robot’s generalized coordinates as q =[
p⊤ r⊤1 r⊤2 r⊤3

]⊤ ∈ R12. Denote the generalized veloc-
ity of the robot by ζ =

[
v⊤ ω⊤]⊤ ∈ R6, where v ∈ R3

is the linear velocity and ω ∈ R3 is the angular velocity,
expressed in the body frame. The evolution of the robot state
x =

[
q⊤ ζ⊤]⊤ ∈ R18 is governed by control input u

according to a continuous-time dynamics model:

ẋ(t) = f(x(t),u(t)). (1)

We assume that the robot is equipped with a distance sensor,
such as depth camera or LiDAR, which provides point clouds
Yn = {yn,m ∈ R3}Mm=1 at discrete time steps tn. Assuming
that the robot dynamics model is unknown, our objective is
to design a control policy using a dataset of control inputs
and point-cloud observations such that the robot is able to
track a desired reference trajectory.

Problem 1. Consider a rigid-body robot with unknown dy-
namics model in (1). Let D = {t(i)n ,Y(i)

n ,x
(i)
0 ,u

(i)
n }D,N

i=1,n=0

be a training dataset of D trajectories. Each trajectory i

consists of an initial state x
(i)
0 , control inputs u

(i)
n applied

at times t
(i)
n and held constant during [t

(i)
n , t

(i)
n+1), and point

clouds Y(i)
n received by the robot at t(i)n for n = 0, . . . , N .

Design a control policy u = π(x,x∗(t)) using the data
D such that the robot is able to track a desired reference
trajectory x∗(t) = [q∗(t)⊤ ζ∗(t)⊤]⊤ for t ∈ [0,∞).

III. LEARNING FROM OBSERVATIONS USING CYCLE
CONSISTENCY

We develop a model-based approach to solve Problem 1.
We first learn a model of the system from point-cloud obser-
vations and then design a control policy π(x,x∗(t)) based
on the learned model. We use a deep neural network model
fθ to approximate the unknown dynamics f in (1). Training
a continuous-time neural ODE model can be done via the
adjoint method [44]. Instead of a dataset D of observations
and controls as in Problem 1, the usual formulation uses a
dataset {t(i)n ,x

(i)
n ,u

(i)
n }D,N

i=1,n=0 of states and controls. The
parameters θ are determined by minimizing a loss function,
measuring the distance between predicted and actual states:

min
θ

D∑
i=1

N∑
n=1

ℓs(x
(i)
n , x̃(i)

n ) + ℓr(θ) (2)

s.t. ˙̃x(i)(t) = fθ(x̃
(i)(t),u(i)), x̃(i)(t0) = x

(i)
0

x̃(i)
n = x̃(i)(tn), ∀n = 1, . . . , N, ∀i = 1, . . . , D,

with the predicted states x̃
(i)
n obtained from an ODE solver:

x̃(i)
n = ODESolver(x(i)

0 , fθ,u
(i)
0 , . . . ,u(i)

n , t
(i)
0 , . . . , t(i)n ).

The error ℓr is a regularization term for the network pa-
rameters θ, while the error ℓs can be defined as a sum
of square distance functions in R3 for position, SO(3) for
orientation, and R6 for generalized velocity (e.g., see [20]).
The gradient of the loss function with respect to θ is obtained
by solving an adjoint ODE backwards in time [44]. In
this work, we extend the neural ODE formulation by (i)
choosing fθ to satisfy Hamilton’s equations of motion, which
guarantee energy conservation and kinematic constraints,
and (ii) training the model parameters θ using point-cloud
observations Y(i)

n rather than system states x
(i)
n .

A. Imposing Hamiltonian Dynamics

To ensure energy conservation, the structure of fθ can be
designed to follow Hamiltonian dynamics [18], [20]:[

q̇
ṗ

]
= Jθ(q,p)

[
∇qHθ(q,p)
∇pHθ(q,p)

]
+

[
0

gθ(q)

]
u, (3)

where p = Mθ(q)ζ is the system momentum, Mθ(q) is
a positive semidefinite generalized mass matrix, gθ(q) is
an input gain matrix, Jθ(q,p) is a state interconnection
matrix, and Hθ(q,p) is the Hamiltonian modeling the total
energy of the system as a sum of kinetic energy Tθ(q,p) =
1
2p

⊤Mθ(q)
−1p and potential energy Vθ(q):

Hθ(q,p) = Tθ(q,p) + Vθ(q). (4)

The dynamics of the generalized velocity ζ are described
by ζ̇ = Ṁθ(q)p + Mθ(q)ṗ. Eq. (3) and ζ̇ describe our
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approximated dynamics function fθ(x,u) in (2). To model
energy dissipation (e.g., friction) and ensure the kinematic
constraints of the orientation matrix R, the matrix Jθ(q,p)
in (3) needs to have the following structure [20]:

Jθ(q,p) =

[
0 q×

−q×⊤ p×

]
−
[
0 0
0 Dθ(q,p)

]
, (5)

where the first matrix is skew-symmetric and the second
matrix models energy dissipation with positive semidefinite
Dθ(q,p). The operators, q× and p×, are defined as:

q× =

[
R⊤ 0 0 0
0 r̂⊤1 r̂⊤2 r̂⊤3

]⊤
, p× =

[
0 p̂v

p̂v p̂ω

]
, (6)

where (̂·) : Rn 7→ so(n) maps x ∈ Rn to a skew-symmetric
matrix x̂ ∈ so(n). This model is referred to as HNODE with
Mθ(q), Vθ(q), gθ(q), Dθ(q,p) as neural networks. Instead,
we introduce a nominal model in each of the learnable terms
and only learn residual components as follows:

Mθ(q) = (L̄(q) + L̃θ(q))(L̄(q) + L̃θ(q))
⊤,

Dθ(q,p) = (Λ̄(q) + Λ̃θ(q))(Λ̄(q) + Λ̃θ(q))
⊤,

Vθ(q) = V̄(q) + Ṽθ(q), gθ(q) = ḡ(q) + g̃θ(q),

(7)

where the terms with bar and tilde accents represent fixed
nominal models and learnable residuals, respectively. The
structure of Mθ(q) and Dθ(q,p) is chosen to ensure that
they remain positive semidefinite using lower-triangular ma-
trices L̄(q), L̃θ(q), Λ̄(q), Λ̃θ(q).

B. Training from Observations

Next, we focus on reformulating dynamics learning prob-
lem in (2) to use point-cloud observations Y(i)

n instead
of states x

(i)
n . While point-cloud observations are available

directly from RGBD cameras and LiDAR sensors found on
most mobile robots, the robot states need to be estimated via
LiDAR-based odometry, visual-inertial odometry, or a mo-
tion capture system. State estimation introduces localization
errors in the dynamics learning process or requires additional
infrastructure in the case of motion capture.

To enable learning from point-cloud observations, we
introduce an observation-space error function ℓo and obser-
vation predictions ỹ

(i)
n,m in the dynamics learning problem:

min
θ

D∑
i=1

N∑
n=1

M∑
m=1

ℓo(y
(i)
n,m, ỹ(i)

n,m) + ℓr(θ)

s.t. ỹ
(i)
n+1,m = R̃

(i)⊤
n+1(R̃

(i)
n ỹ(i)

n,m + p̃(i)
n − p̃

(i)
n+1),

˙̃x(i)(t) = fθ(x̃
(i)(t),u(i)), (8)

x̃(i)(t0) = x
(i)
0 , ỹ

(i)
0,m = y

(i)
0,m,

x̃(i)
n = x̃(i)(tn), ∀n = 0, . . . , N, ∀i = 1, . . . , D,

where ℓo(y
(i)
n,m, ỹ

(i)
n,m) can be selected as the square Eu-

clidean distance ∥y(i)
n,m − ỹ

(i)
n,m∥22. The correspondence

(y
(i)
n,m,y

(i)
n+1,m) is obtained using point-cloud registra-

tion [45]. The motivation for using a loss function in the
observation space, instead of recovering the robot pose
first, is to enable more general robot observations (e.g,

Ground-truth 
dynamics

 ሶ𝒙 = 𝒇(𝒙, 𝒖)

Approximated 
dynamics
ሶ𝒙 = 𝒇𝜽(𝒙, 𝒖)

𝒙𝒏

Ground-truth 𝒙𝒏+𝟏

Predicted state ෥𝒙𝒏+𝟏

Transformed to ෥𝒙𝒏+𝟏 frame

Cycle consistency
loss 𝓛

𝒚𝒏

෥𝒚𝒏+𝟏

𝒚𝒏+𝟏

Fig. 2: Illustration of our observation-space loss function design.

image features) and states (e.g., velocity) in future work.
The loss function can be modified to handle outliers, e.g.,
via a robust estimator, and even consider data association
optimization. The key idea in this formulation is to relate
motion predictions x̃

(i)
n+1 from the learned dynamics with

point-cloud prediction ỹ
(i)
n+1,m in the first constraint in (8).

As illustrated in Fig. 2, a point cloud Y(i)
n observed at time

tn in the robot’s body-frame is transformed to the world-
frame using the predicted state x̃

(i)
n . With the control input

u
(i)
n at tn, the model predicts the next state x̃

(i)
n+1 at tn+1,

and transforms the 3D points back to the robot’s body frame
to obtain Ỹ(i)

n+1. The discrepancy between these predictions
and the actual observations is captured by ℓo. The term ℓr
in (8) is used to promote sparsity in the learned dynamics
model. For example, in underactuated systems the input gain
gθ is often sparse because some inputs affect a subset of
the states. Promoting sparsity through regularization ensures
that the model remains simple and reflects the underactuation
model structure accurately.

IV. CONTROL DESIGN FOR TRAJECTORY TRACKING

Given the Hamiltonian dynamics model learned from
observations in Sec. III, a tracking control policy is designed
using the interconnection and damping assignment passivity-
based control (IDA-PBC) approach [46]–[48]. We present a
general approach in Sec. IV-A and apply it to nonholonomic
wheeled robots in Sec. IV-B.

A. IDA-PBC Control Approach

Let x∗(t) = [q∗(t)⊤ ζ∗(t)⊤]⊤ be the desired trajectory
that the system should track. For readability, we omit the time
dependence of x∗ in the remainder of the paper. The desired
momentum of the system in the body frame is calculated

as p∗ = M

[
R⊤R∗v∗

R⊤R∗ω∗

]
, leading to the desired (q∗,p∗) for

the learned Hamiltonian system. The Hamiltonian function
H(q,p) is generally not minimized at (q∗,p∗). Therefore,
the key idea of IDA-PBC is to inject energy to the system via
the control input to achieve a desired Hamiltonian Hd(q,p)
that has a minimum at (q∗,p∗). Let (qe,pe) be the error in
generalized coordinates and momentum:

Re = R∗⊤R =
[
re1 re2 re3

]⊤
, pe = p− p∗,

qe =
[
p⊤
e r⊤e1 r⊤e2 r⊤e3

]⊤
, pe = p− p∗.

(9)
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A common choice of Hd(q,p) is:

Hd(q,p) = Td(qe,pe) + Vd(qe), (10)

where Td(qe,pe) and Vd(qe) are the desired kinetic and
potential energy, respectively.

The IDA-PBC designs a control policy π(x,x∗) such that
the dynamics of the closed-loop system are also Hamiltonian
with Hd(q,p) as the total energy:[

q̇e

ṗe

]
= Jd(qe,pe)

[
∂Hd

∂qe
∂Hd

∂pe

]
, (11)

where Jd(qe,pe) is chosen in our design as follows [20]:

Jd(qe,pe) =

[
0 J1

−J⊤
1 J2

]
−
[
0 0
0 Kd

]
,

J1 =

[
R⊤ 0 0 0
0 r̂⊤e1 r̂⊤e2 r̂⊤e3

]⊤
, J2 = 0.

(12)

By matching the original dynamics in (3) and the closed-
loop dynamics (11), we observe that the control input u has
to satisfy the following matching equations:

0 = J1
∂Hd

∂pe

− q× ∂Hθ

∂p
+ q̇− q̇e, (13)

g(q)u = q×⊤ ∂Hθ

∂q
− J⊤

1

Hd

∂qe

+ J2
∂Hd

∂pe

− p× ∂Hθ

∂p

−Kd
∂Hd

∂pe

+Dθ(q,p)
∂Hθ

∂p
+ ṗ− ṗe. (14)

Our choice of J1 and J2 in (12) satisfies the condition (13).
We obtain the control policy u = π(x,x∗) from (14) as the
sum u = uES +uDI of an energy-shaping component uES

and a damping-injection component uDI :

uES =g†(q)

(
q×⊤ ∂Hθ

∂q
− J⊤

1

∂Hd

∂qe

+ J2
∂Hd

∂pe

−p× ∂Hθ

∂p
+Dθ(q,p)

∂Hθ

∂p
+ ṗ− ṗe

)
,

uDI =− g†(q)Kd
∂Hd

∂pe

, (15)

where g†(q) =
(
g⊤(q)g(q)

)−1
g⊤(q) is the pseudo-inverse

of g(q). Let g⊥(q) be a maximal-rank left annihilator of
g(q), i.e., g⊥(q)g(q) = 0. The control policy (15) exists
when the following matching condition is satisfied:

g⊥(q)

(
q×⊤ ∂Hθ

∂q
− J⊤

1

Hd

∂qe

+ J2
∂Hd

∂pe

− p× ∂Hθ

∂p
(16)

−Kd
∂Hd

∂pe

+D(q,p)
∂Hθ

∂p
+ ṗ− ṗe

)
= 0.

B. Control Design for Nonholonomic Wheeled Robots

In this section, we consider an IDA-PBC control policy
design for a nonholonomic wheeled robot. The wheels of
a nonholonomic rigid-body only allow forces to be applied
along the body’s x-axis and torques around the z-axis. With
two control inputs, we are able to control at most two degrees
of freedom in the robot’s configuration q, making the system
underactuated. The desired closed-loop dynamics (11) need

to be chosen carefully to ensure that there exists a control
policy that can achieve them. Inspired by Lyapunov function
designs in prior works [49], [50], where a nonholonomic
wheeled robot is steered to approach a target pose at a
specified angle, we design a desired Hamiltonian func-
tion that accounts for the underactuation. A natural choice
of the desired kinetic and potential energies for a fully-
actuated rigid-body robot is Td(qe,pe) =

1
2p

⊤
e M(qe)

−1pe

and Vd(qe) =
kp

2 p⊤
e pe + kR

2 tr
(
I − Re

)
, where Vd(qe)

measures the quadratic Euclidean and chordal distance [51],
respectively, from the current to the desired position and
orientation with kp and kR as positive scalars. In the case
of a nonholonomic wheeled robot, the orientation part of
the desired potential energy needs to be shaped to guide the
robot to approach the desired configuration q∗ at the correct
orientation because the nonholonomic constraint prevents
making sideways corrections instantaneously. We shape the
desired potential energy as:

Vd(qe) =
kp
2
p⊤
e pe + VR1

(qe)VR2
(qe) + VR3

(qe), (17)

where VR1
(qe) =

1

2
tr
(
I−R⊤

∆2
R(pe)

⊤R∆1
R∗Re

)
,

VR2
(qe) =

kR1

2
tr
(
I−R∗⊤R⊤

∆1
R(pe)

)
,

VR3(qe) =
kR2

2
tr
(
I−R(pe)

⊤R∆1R
∗Re

)
.

(18)

The target-direction rotation matrix, R(pe), the rotations
R∆1

and R∆2
are defined as:

R(pe) =
[
−pe

∥pe∥ U −pe

∥pe∥ e3
]
, (19)

R∆1
= U exp

(
θ̂1

∥θ1∥
π

2

)
, R∆2

= exp

(
θ̂2

∥θ2∥
π

2

)
,

where U =

0 −1 0
1 0 0
0 0 1

, θ1 = log
(
U⊤R∗⊤R(pe)

)∨
,

θ2 = log
(
R∗⊤R⊤

∆1
R(pe)

)∨
, and (·)∨ : so(3) 7→ R3 is

the inverse of the hat map. In (17), Vd(qe) is composed
of three components. The first drives the robot position p
towards the desired position p∗. The second approaches p∗

in a circular motion by orienting the robot perpendicular to
the direction −pe and aligning R(pe) with R∗ to specify
the rotation direction. The third aligns R with R(pe) for a
direct straight-line path to p∗. Once R(pe) is in alignment
with R∗, the first component becomes zero, leaving only the
second component active.

Assuming a constant Mθ(q) ≡ Mθ, Eq. (15) becomes:

uES = g(q)†
(
q×⊤ ∂Vθ

∂q
− p×M−1

θ p+Dθ(q,p)M
−1
θ p

− e(q,q∗) + ṗ∗
)
, (20)

uDI = −g(q)†KdM
−1
θ (p− p∗),
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Fig. 3: Evaluation of our Hamiltonian Neural ODE network (a)-(g) along a trajectory and (h) pose stabilization in the Sapien simulator.

with e(q,q∗) =
[
ev(q,q

∗)⊤ eω(q,q
∗)⊤
]⊤

defined as:

ev(q,q
∗) = R⊤

(
kppe + VR2(qe)

∂VR1
(qe)

∂pe

+ VR1
(qe)

∂VR2
(qe)

∂pe
+

∂VR3
(qe)

∂pe

)
, (21)

eω(q,q
∗) =

kR2

2

(
R(pe)

⊤R∆1R−R⊤R⊤
∆1

R(pe)

)∨

+
VR2(qe)

2

(
R⊤

∆2
R(pe)

⊤R∆1
R−R⊤R⊤

∆1
R(pe)R∆2

)∨

.

Please refer to the extended version1 of the paper [52] for
the computation of the derivatives of the terms VRi

.

V. EVALUATION

In this section, we verify the effectiveness of our approach
in both simulated and real experiments with a Jackal robot.
We describe data collection for training in Sec. V-A, and
then evaluate our training results and control performance in
simulation (Sec. V-B) and in real experiments (Sec. V-C).

A. Data Collection

We collected a dataset D = {t(i)n ,Y(i)
n ,x

(i)
0 ,u

(i)
n }D,N

i=1,n=0

consisting of D N -sample trajectories with sampling interval
of dt seconds by driving the robot manually using a joystick.
The convergence of model parameter estimates requires a
persistence of excitation condition to be satisfied [53]. Hence,
it is important to collect a diverse range of linear and
rotational motions. A short trajectory duration N is chosen
to avoid numerical instability of the predicted states from
an ODE solver. Each data point includes a point cloud
Y(i)
n from a 3D LiDAR sensor and the control inputs u

(i)
n .

From two consecutive LiDAR scans, we apply fast global
registration [45] to pick M random correspondences to create
two corresponding point clouds Y(i)

n and Y(i)
n+1.

1Paper website: https://altwaitan.github.io/DLFO/.

B. Sapien Simulation

We build a simulated differential drive robot in a physics-
based simulation environment Sapien [54]. The control input
is u(i)

n =
[
τL τR

]⊤ ∈ R2, consisting of left τL and right τR
wheel torques. A dataset D was collected as described in Sec.
V-A with (N,D,M, dt) = (250, 32, 40, 0.05) by driving the
robot using sampled wheel torques.

We train our dynamics model as described in Sec. III
with the dataset D for 400 iterations. The networks are
pretrained to a nominal model M0(q) = I, D0(q) = 10−3I,

V0(q) = 0, g0(q) =

[
1 0 0 0 0 −1
1 0 0 0 0 1

]⊤
to avoid

numerical instability by the ODE solver. The regularization
loss ℓr(θ) is set to 10−3||gθ(q)||1 to encourage sparsity in
gθ(q). Fig. 3 shows training and testing performance for
our HNODE design. The SO(3) constraints are satisfied, by
design, and the potential energy Vθ(q) remains constant due
to 2D plane motion. The learned mass Mθ(q) converged to
a diagonal matrix and the input gain gθ(q) is sparse with
nearly equal values in its first row and opposite signs in the
last, consistent with the nonholonomic constraint.

The controller proposed in Section IV-B was designed
with the learned parameters and control gain values
(kp, kR1

, kR2
,Kd) = (1.2, 7, 3, diag(1.2I, I)). Fig. 3h

shows that our controller successfully drives the robot to
the desired pose from various initial poses with desired yaw
achieved before converging to desired position.

C. Real World Deployment

We use a Clearpath Jackal robot to demonstrate our
approach. The control input u =

[
∆ω1 ∆ω2

]⊤ ∈ R2

represents the difference between the desired and actual
wheel velocity ∆ωi = ω∗

i −ωi. The closed-loop dynamics of
the wheels are modeled as a fist order system, similar to the
approach in [55], with ω̇ = 1

α (ω
∗−ω), where α denotes the

system’s time constant. In doing so, we establish a means
to control the wheel’s angular acceleration, which directly
correlates with torque, effectively satisfying Hamiltonian
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Fig. 4: Evaluation of our Hamiltonian neural ODE network (a)-(g) along a trajectory and (h) pose stabilization on a real Jackal.
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Fig. 5: Evaluating nominal and learned model performance in tracking circular and lemniscate trajectories.

dynamics. The unknown time constant α is learned as part
of the control matrix gθ(q) during the training process.

Given Hamiltonian network design, described in
Sec. III, we further specify that both the generalized
mass and dissipation matrices have a block-diagonal
form: Mθ(q) = diag(M1,θ(q),M2,θ(q)),Dθ(q) =
diag(Dv,θ(q),Dω,θ(q)) and only the first and last row
of gθ(q) are non-zero and to be learned from data. This
aligns with the nonholonomic constraint discussed in
Sec. IV-B. The model was trained for 400 iterations with
potential energy Vθ(q) = 0 and a fixed nominal model
with L̄(q) = block-diag

[√
mI Γ

]
, Λ̄(q) = 0.1I,g0(q) =[

η
αr 0 0 0 0 − ηw

2αr
η
αr 0 0 0 0 ηw

2αr

]⊤
where the nominal mass

m = 16kg, inertia ΓΓ⊤ = 0.4I, wheel radius r = 0.098m,
vehicle width w = 0.31m, wheel inertia η = 0.0458kgm2

and time constant α = 0.147 [56].
Fig. 4 presents both training and testing results. The

generalized mass and input gain converged similarly to the
simulation results in Sec. V-B, while the generalized inertia
has off-diagonal elements due to the LiDAR’s off-center po-

sition. The dissipation matrices have large values in [Dv,θ]1,1
and [Dω,θ]1,1 consistent with the nonholonomic constraints,
while [Dv,θ]0,0 and [Dω,θ]2,2 show smaller friction along x
axis and around z axis.

Finally, we demonstrate our energy-based controller’s per-
formance using both nominal and learned models, in two
experiments: (i) pose stabilization and (ii) trajectory tracking.
For pose stabilization, both models successfully achieved
the desired pose, as shown in Fig. 4, utilizing gains we
tuned for the nominal model with (kp, kR1 , kR2 ,Kd) =
(0.5, 0.5, 0.5, block-diag(1.5I, 0.05I)). But in case of track-
ing, the learned model outperforms the nominal model as
seen in Figure 5 without any additional controller tuning.

VI. CONCLUSIONS

We developed an approach for learning robot dynamics
from point-cloud observations via Hamiltonian neural ODEs,
design an energy-shaping trajectory tracking controller for
the learned dynamics and apply to wheeled nonholonomic
robots. Future work will focus on dynamics learning from
images and online adaptation to changing conditions.
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