
Distributional Reinforcement Learning with Sample-set Bellman Update

Weijian Zhang1, Jianshu Wang2, Yang Yu2

Abstract— Distributional Reinforcement Learning (DRL) not
only endeavors to optimize expected returns, but also strives to
accurately characterize the full distribution of these returns, a
key aspect in enhancing risk-aware decision-making. Previous
DRL implementations often inappropriately treat statistical
estimations as concrete samples, which undermines the integrity
of learning. While several studies have addressed this issue, they
frequently give rise to new complications, including computa-
tional burdens and diminished stochastic behavior. In our work,
we present a novel DRL framework that leverages the Gaussian
mixture model to adeptly depict the distribution of returns. This
approach ensures precise, authentic sampling critical for ro-
bust learning, while also preserving computational tractability.
Through extensive evaluation on a diverse array of 59 Atari
games, our method not only surpasses the efficacy of prior
DRL algorithms but also presents formidable competition to
contemporary top-tier RL algorithms, signifying a substantial
advancement in the field.

I. INTRODUCTION

The concept of return, defined as the cumulative reward,
is pivotal and typically serves as the common objective in
Reinforcement Learning (RL). Traditional RL primarily con-
centrates on estimating the mathematical expectation of the
return, often neglecting the return’s stochasticity. In contrast,
the emerging Distributional Reinforcement Learning (DRL)
paradigm endeavors to model this return distribution. Such
a return distribution offers a more nuanced basis for real-
world decision-making, particularly in fields sensitive to risk
[1], [2].

DRL algorithms typically follow a two-stage framework.
In the first stage, a neural network generates statistics, such
as quantiles, to represent the return distribution. In the second
stage, these statistics are updated using a Bellman operator to
form the target for the neural network’s training. However,
not all statistics are amenable to updates via the Bellman
operator [3]. Inappropriate handling of statistics in DRL
algorithms can lead to biased models. For example, directly
updating quantiles using the Bellman operator, as in QR-
DQN [4], can underestimate the true variance and converge
to a degenerate distribution [3].

The capacity for statistics to be directly updated by the
Bellman operator is known as Bellman closeness [3]. This
property suggests that a set of statistics can be analytically
transformed to represent the outcome following a Bellman
update, reflecting the advantages of these statistics in terms of
update efficiency and accuracy. While conventional moments

1Weijian Zhang is affiliated with Polixir.ai, Nanjing, China, email:
weijian.zhang@polixir.ai

2Jianshu Wang and Yang Yu are affiliated with National Key Laboratory
for Novel Software Technology, School of Artificial Intelligence, Nanjing
University and Polixir.ai, Nanjing, China

Fig. 1: Median scores (bars, left-axis) and Count of Better
than Human (BTH Count) scores (stars, right-axis) of the
compared baseline and state-of-the-art algorithms over 59
Atari games

can achieve Bellman closeness, alternative approaches have
been developed to address this theoretical limitation by
applying the Bellman update to actual return samples instead
of derived statistics, resulting in what is termed approximate
Bellman closure.

The ER-DQN approach introduces an imputation strategy
that generates a set of samples from expectiles [3]. How-
ever, this strategy requires solving a system of multivariate
nonlinear equations iteratively, which is computationally
demanding and reduces the practicality of ER-DQN. The
MMD algorithm circumvents the Bellman closeness issue by
maintaining a consistent sample set throughout the learning
process [5]. Nevertheless, the lack of randomness in the
fixed sample set undermines the essential characteristics of
sampling.

To balance approximate Bellman closure with computa-
tional efficiency, this paper proposes employing a Gaussian
Mixture Model (GMM) to represent the return distribution.
GMMs are known for their sampling efficiency and reliable
parameter estimation through the Expectation-Maximization
(EM) method. To alleviate the computational burden inherent
in the iterative EM process, we introduce an advanced single-
iteration parameter estimation technique. However, due to the
non-linear nature of the EM method with respect to samples,
updating the neural network based on random samples may
introduce bias. We address this by proposing a practical
sample-set augmentation strategy that preserves unbiased
learning. The proposed Mixed Weighted Gaussian (MWG)
DRL algorithm integrates these techniques within a DQN
framework.

Empirical studies on 59 Atari games indicate that the
MWG algorithm exhibits significant performance improve-

2024 IEEE International Conference on Robotics and Automation (ICRA 2024)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 2852

ments over current state-of-the-art DRL models. As shown
in Figure 1, the median score of MWG on the Atari game
platform exceeds that of DreamerV2 [6], and it outperforms
human-level performance in 49 out of the 59 games, sur-
passing DreamerV3 [7]. These results highlight MWG’s
effectiveness in addressing specific challenges and its broad
applicability.

The primary contributions of this paper are threefold: first,
it employs a GMM for modeling the return distribution;
second, it proposes a single-step EM algorithm tailored
for reinforcement learning, addressing the computational
efficiency issues of traditional EM algorithms; and third,
it introduces a sample-set mixing technique to estimate
the expected distribution, thereby overcoming the non-linear
transformation problem associated with the EM algorithm.

II. BACKGROUND

In a Markov Decision Process, described by the tuple
(S,A, T, R, γ), the environment initially presents a state s.
An agent then decides to select an action a to execute. This
action induces a state transition in the environment, leading
to a new state s′ and providing a reward r to the agent.
The agent’s objective is to maximize the cumulative reward
over several interactions (i.e., the return). To accomplish this,
the agent persistently optimizes its policy π in response to
the received rewards. In indeterministic environments, the
return is a random variable due to the randomness of the
state transitions T and the rewards R, denoted by Zπ(s, a) =∑∞

t=0 γ
tRt, and its distribution by ηπ(s, a).

Similar to the value-based reinforcement learning (RL)
theory, the core concept of distributional RL (DRL) is the
distributional Bellman operator:

ηπ(s, a) := (T πηπ)(s, a) = E[(BR,γ)#ηπ(S
′, A′)s, a], (1)

where BR,γ : R → R is defined by BR,γ(x) = R + γx,
and g#η ∈ P(R) denotes the pushforward operation of the
distribution η by the function g, such that for any Borel
set A ⊆ R, g#η(A) = η(g−1(A)). Due to the stochastic
nature of environment transitions, a variety of subsequent
state-action pairs (s′, a′) can emerge from a given pair
(s, a). These pairs form a set {(s′, a′)}, with each element
corresponding to a return distribution (BR,γ)#ηπ(s

′, a′),
referred to as a sample distribution. The average of these
distributions, E

[
(BR,γ)# ηπ(S

′, A′)
]
, termed the expected

distribution, defines the return distribution ηπ(s, a).
The goal of DRL algorithms is to model the return distri-

bution ηπ(s, a). Since the return distribution is an infinite-
dimensional function, it cannot be accurately represented
with a finite number of parameters. The common approach
is to use a set of statistics to approximate it. Existing DRL
algorithms are categorized based on the statistics used for
approximation. Algorithms such as C51 [8], D4PG [9], and
Rainbow [10] are based on a discrete distribution model,
while QR-DQN, IQN [11], and FQF [12] utilize a quantile
model. ER-DQN employs an expectile model, and MoG [13]
is based on the Gaussian mixture model.

A. QR-DQN: Typical Case

QR-DQN is a representative DRL algorithm. Given a
transition tuple (s, a, r, s′, a′), it predicts a set of quantiles
q = [q1, . . . , qK] to approximate the return distribution
ηπ(s, a) and another set q′ = [q′1, . . . , q

′
K] for ηπ(s′, a′).

These quantile sets are associated with quantile fractions
τ = [τ1, . . . , τK]. The algorithm updates the q′ quantiles
with a Bellman operation:

q̂ = [r + γq′1, . . . , r + γq′K]

A loss function is then constructed using the quantile regres-
sion framework. The temporal-difference error δij for each
pair of quantiles is computed as:

δij = q̂j − qi

The neural network parameters θ are updated by minimizing
the following objective:

argmin
θ

K∑
i=1

K∑
j=1

∣∣τi − I(δij<0)

∣∣ |δij | (2)

where θ denotes the network parameters.

B. ER-DQN: Separate Statistics from Samples

QR-DQN faces a conceptual challenge: the network’s out-
puts are treated as both samples and statistics during updates
and loss evaluation, leading to potential biases. Rowland et
al. [3] proposed a method to reconcile this by converting
statistical outputs into samples for consistent updates. ER-
DQN utilizes expectiles as a robust statistical representation,
where for a set of expectiles [ek], the loss function is:

L(ek; τk) = E
ψ∼ηπ

[
(τkIψ>ek + (1− τk)Iψ≤ek) (ψ − ek)

2] (3)

However, the iterative computation required to infer the
sample set from expectiles is computationally intensive
and sensitive to initial conditions, which can lead to non-
representative sample sets.

C. MMD: Deterministic Sample-Set

To address the computational inefficiencies and inaccu-
racies in ER-DQN, Nguyen et al. [5] proposed a direct
sampling approach. They define the discrepancy between two
sample-sets using Maximum Mean Discrepancy (MMD):

LMMD2({mi}, {ni};K) =
1

M2

∑
i,j

K(mi,mj)+

1

N2

∑
i,j

K(ni, nj)−
2

MN

∑
i,j

K(mi, nj)
(4)

where {mi} and {ni} are two sample-sets and K is a
kernel function measuring sample distances. Although MMD
ensures the neural network outputs a deterministic sample-
set, it neglects the beneficial stochasticity in learning and
exploration, revealing an area for improvement in sampling
methodologies.

2853

III. MIXED WEIGHTED GAUSSIAN ALGORITHM

In the preceding sections, we highlighted the prevalent
issue of misinterpreting statistical outputs as samples in DRL
algorithms and reviewed two approaches aimed at rectifying
this problem, each with its own set of challenges. Motivated
by the need for efficiency, accuracy, and stochasticity in
the sampling process, we posited that the Gaussian Mixture
Model (GMM) could be an ideal representation of the return
distribution. Hence, we introduce a new DRL algorithmthe
Mixed Weighted Gaussian (MWG) algorithmthat adeptly
addresses the sampling issues and effectively resolves the
misuse of statistical outputs as samples.

A. GMM in DRL

A GMM approximates a given distribution through a com-
bination of several Gaussian distributions, each characterized
by a mean µ, a standard deviation σ, and a weight ω:

ηπ(s, a) ≈
K∑

k=1

ωkN (µk, σ
2
k), where

K∑
k=1

ωk = 1. (5)

Here, K is the number of Gaussian components used. The-
oretically, GMM can approximate any distribution precisely
with a sufficiently large K.

We design a neural network, denoted as F , to out-
put the GMM parameters. For a state-action pair (s, a),
the network F provides the statistics Γπ(s, a) =
[(µ1, σ1, ω1), . . . , (µK , σK , ωK)] representing the return dis-
tribution.

Sampling Operation I
As outlined in study [3], the sampling operation I maps

the statistics Γπ(s, a) to a sample-set Ψπ(s, a):

I (Γπ(s, a)) 7→ Ψπ(s, a) = {ψi}Mi=1, (6)

where ψi denotes a sampled return. The sampling for a GMM
is straightforward: for each Gaussian component, we draw
mk = ωkM samples, which are then concatenated to form
Ψπ(s, a) = {ψ1,1, · · · , ψ1,m1

, · · · , ψK,1, · · · , ψK,mK
}.

Projection Operation Π
Directly determining the likelihood function of a GMM

for use as a loss function in neural network updates is not
feasible. Instead, we employ the EM algorithm to estimate
the GMM parameters from the samples and then update
the neural network using the MSE loss. The Jensen-Tsallis
Divergence (JTD) has been used in the past to measure the
discrepancy between mixture models, but it assumes non-
Maxwell-Boltzmann statistics, which do not hold for the
stochastic returns in reinforcement learning. Consequently,
we do not consider the JTD as a suitable loss function.

We refer to the computation of statistics from a sample-set
as the Projection Operation Π:

Π(Ψπ(s, a)) 7→Γπ(s, a) =

[(µ1, σ1, ω1), . . . , (µK , σK , ωK)].
(7)

However, to avoid the computational complexity of the
traditional EM algorithm, we introduce a single-step EM
method, detailed in steps 7 to 11 of Algorithm 1.

Our single-step EM method improves upon the standard
method by optimizing the initialization of Gaussian compo-
nents. Since reinforcement learning is iterative by nature, this
approach leverages the previous iteration’s output from the
neural network F as initial values for the EM algorithm,
effectively integrating the EM iteration into the reinforce-
ment learning process. This not only reduces computational
demands but also enhances the stability of the learning
procedure.

B. Expected Distribution Estimation

Adhering to Equation 1, a distributional Bellman update
entails initially estimating the expected distribution. Subse-
quently, we adapt the neural network parameters by employ-
ing this expected distribution as the benchmark in our loss
function computation. However, present DRL algorithms do
not perform these operations due to two primary constraints:
the first is the sheer magnitude of the state space in practical
applications, which makes the recurrence of identical state-
action pairs exceedingly rare, thus limiting the availability
of next state samples. The second is that in many DRL
algorithms, the loss function’s gradient with respect to the
distribution is affine. This affineness indicates that the ex-
pected value of the stochastic gradient, when derived from
a sample distribution, coincides with the gradient obtained
from the expected distribution:

E
[
∂L((BR,γ)#ηπ(S

′
i, A

′
i))

∂θ

]
=
∂L(E[(BR,γ)#ηπ(S

′
i, A

′
i)])

∂θ
.

Unfortunately, the EM algorithm used to generate target
statistics for GMM is not affine relative to the sample-set,
which implies that employing GMM as the distribution rep-
resentation model leads to biased learning during stochastic
gradient updates for the neural network.

As it is impractical to compute the expected distribution
by accumulating transition samples from (s, a), we resort
to stochastic update techniques to incrementally estimate it.
In this approach, the current distribution ηπ(s, a) produced
by the neural network serves as our initial estimate. By
integrating the sample distribution from the Bellman update
(BR,γ)#ηπ(s

′, a′) with the current estimate, we refine our
estimation of the expected distribution. This refined estimate
more accurately reflects the true expected distribution, albeit
indirectly. However, directly merging these distributions as
probability density functions is not feasible:

η(t+1)
π (s, a) = (1− β)η(t)π (s, a) + β(BR,γ)#η

(t)
π (S′, A′).

Nonetheless, by obtaining sample-sets that represent each
distribution, we can combine these sets to approximate the
average of the distributions:

Ψ̂(t+1)
π (s, a) = Ψ(t)

π (s, a) ∪ [R+ γΨ(t)
π (S′, A′)]

= {ψ(t)
1 (s, a), . . . , ψ

(t)
M1

(s, a),

R+ γψ
(t)
1 (S′, A′), . . . , R + γψ

(t)
M2

(S′, A′)}.

(8)

Here, the ratio M1 : M2 is defined by (1 − β) : β,
where β is the proportion of the newly obtained sample-
set in the blending process. The value of β modulates the

2854

Fig. 2: The Structure of the MWG algorithm

balance between the speed of convergence and the stability of
the estimated distribution. The sample-set Ψ̂(t+1)

π (s, a) thus
serves as an effective surrogate for the expected distribution.

C. Mixed Weighted Gaussian Algorithm

We combine these enhancements to propose a novel
Deep Reinforcement Learning (DRL) algorithm, the Mixed
Weighted Gaussian (MWG) algorithm, as outlined in Algo-
rithm 1.1

Given a transition tuple (s, a, r, s′, a′), the MWG algo-
rithm follows these steps:

1) Indexing: Generate the statistics Γπ(s, a) and
Γπ(s

′, a′) using the neural network F .
2) Sampling: Create the sample sets Ψπ(s, a) and

Ψπ(s
′, a′) from the computed statistics through the

sampling operation I .
3) Distributional Bellman Update: Update each return

sample in Ψπ(s
′, a′) via the Bellman equation to

obtain a new sample set ΨB
π (s

′, a′), corresponding to
(BR,γ)#ηπ(s

′, a′).
4) Mixing Sample Sets: Combine Ψπ(s, a) and

ΨB
π (s

′, a′) based on the mixing coefficient β, produc-
ing the blended sample set Ψ̂π(s, a) that approximates
the expected distribution E[(BR,γ)#ηπ(S

′, A′)].
5) Projection: Calculate the statistics Γ̂π(s, a) from

Ψ̂π(s, a) using the Expectation-Maximization (EM)
method and sort the components by their means.

6) Neural Network Update: Adjust the neural network
parameters θ to minimize the Mean Squared Error
(MSE) loss.

Figure 2 demonstrate the structure of the MWG algorithm.

D. Analysis of Contraction Mapping properties of MWG

Bellemare et al. [14] have asserted that while the distri-
butional Bellman optimality operator is not a contraction
mapping, the existence of an action gap in the optimal value

1The corresponding project code, resources, and configurations can be ac-
cessed at https://github.com/xiaojianyang820/Dopamine/
tree/main.

function can stabilize the optimal policy after sufficient iter-
ations. This stabilization effectively transforms the operator
into the distributional Bellman operator, as stated in Theorem
7.9. For convergence to a unique fixed point, the projection
operation Π must preserve the mean, despite approximation
errors introduced by Π.

The term mean-preserving refers to an operation that
maintains the mean of the distribution’s statistics equal to
that of the sample set prior to projection, thus not affecting
the optimal policy. The EM method in the MWG algorithm
classifies samples in the sample set and then computes the
mean within each class. Since the weighted sum of these
means equals the overall sample set’s mean, this projection
is mean-preserving. Moreover, the neural network’s inherent
approximation error when estimating the return distribution
ensures the presence of an action gap in the value function.
Consequently, the projected distributional Bellman optimality
operator for MWG will, after enough iterations, become a
contraction mapping.

IV. EXPERIMENTS

To illustrate the performance characteristics of the Mixed
Weighted Gaussian (MWG) algorithm, we employ the
Dopamine framework [15] for benchmarking against stan-
dard algorithms in the Atari 2600 gaming environment
[16] under the "Sticky action" setting. This setting, along
with parameter configurations, reward shaping functions, and
scoring methodology, align with the protocols established by
Dopamine, reflecting contemporary best practices within the
domain of DRL.

A. Comparative Performance Analysis
We study the effectiveness of the MWG algorithm with

established benchmarks, including Deep Q-Network (DQN),
Rainbow, Implicit Quantile Networks (IQN), and Mixture
Model-based Distributions (MMD). Figure 3 presents the
learning curves of these algorithms across a suite of 12 Atari
games, revealing the superior performance of MWG.

The mean and median normalized scores aggregated over
59 games serve as pivotal benchmarks for algorithmic assess-
ment. We introduce Best Count, the tally of games where

2855

Algorithm 1 Mixed Weighted Gaussian Algorithm

1: Input: a transition sample (s, a, r, s′, a′)
2: Index: Γπ(s, a) = [(µ1, σ1, ω1), · · · , (µK , σK , ωK)]; Γπ(s

′, a′) = [(µ′
1, σ

′

1, ω
′
1), · · · , (µ′

K , σ
′

K , ω
′
K)]

3: Sample: Ψπ(s, a) = I (Γπ(s, a)) = {ψ1, · · · , ψM}; Ψπ(s
′, a′) = I (Γπ(s

′, a′)) = {ψ′
1, · · · , ψ′

M}
4: Distributional Bellman Update: ΨB

π (s
′, a′) = {r + γψ′

1, · · · , r + γψ′
M}

5: Sample-set Mix:

Ψ̂π(s, a) = {ψ1, · · · , ψM1
, r + γψ′

1, · · · , r + γψ′
M2

},M1 +M2 =M ; M1 :M2 = (1− β) : β

6: Project (Single-Step EM Method):
7: Set Initial Parameters: [N1, · · · ,NK] = Γπ(s, a) = [(µ1, σ1, ω1), · · · , (µK , σK , ωK)]
8: E Step:

γ̂mk =
ϕ(ψm|Nk)∑K
k=1 ϕ(ψm|Nk)

, ∀ψm ∈ Ψ̂π(s, a), ∀Nk ∈ [N1, · · · ,NK]

9: M Step:

µ̂k =

∑M
m=1 γ̂mkψm∑M

m=1 γ̂mk

, σ̂2
k =

∑M
m=1 γ̂mk(ψm − µ̂k)

2∑M
m=1 γ̂mk

, ω̂k =

∑M
m=1 γ̂mk

M
, k = 1, 2, · · · ,K

10: Sort: Γ̂π(s, a) = [(µ̂1, σ̂1, ω̂1), · · · , (µ̂K , σ̂K , ω̂K)|µ̂1 ≤ · · · ≤ µ̂K]
11: Network Update:

argmin
θ

K∑
k=1

[(µk − µ̂k)
2 + (σk − σ̂k)

2 + (ωk − ω̂k)
2]

TABLE I: Summaries of scores of the compared algorithms
using 5 random seeds

Mean Median Best Count BTH Count
DQN 2.66 0.67 0 20
Rainbow 5.22 1.48 7 42
IQN 5.56 1.25 5 40
MMD 4.79 1.36 11 38
MWG 8.51 2.19 36 49

an algorithm secures the top score among all contenders,
and BTH Count (Better Than Human Count), indicative of
the number of games where the algorithm outperforms the
human baseline. These indicators are crucial for a holistic
evaluation of algorithmic prowess, as summarized in Table
I.

Table I reveals the escalated challenge of control tasks
under the sticky mode. While Rainbow, IQN, and MMD
exhibit comparable performance without a clear frontrunner,
the MWG algorithm demonstrates a pronounced edge, out-
stripping its peers across all key statistical measures. Notably,
even with a sample size reduced to a mere quarter, MWG
surpasses the median score of 2.03 attained by the state-of-
the-art model-based algorithm DreamerV2, underscoring the
importance of precision in sample selection and the intrinsic
randomness within the sample set.

B. Abalation Study

Number of Gaussian Components K
The representational capacity of a Gaussian Mixture

Model (GMM) is significantly influenced by the number
of Gaussian components. We investigate the impact of this
parameter on the MWG algorithm by experimenting with

TABLE II: Comparison of 3 and 5 Gaussian components
across 59 Atari games with 5 random seeds

Mean Median Best Count BTH Count
MWG_3g 7.26 2.15 13 49
MWG_5g 8.51 2.19 46 49

3, 5, and 7 components, denoted as mwg_3g, mwg_5g,
and mwg_7g, respectively. Figure 4 illustrates the learning
curves, where the experiments with 3 and 5 components
each employed five random seeds, while the 7-component
experiment utilized a single seed.

In an evaluation across 12 games, it appears that a greater
quantity of Gaussian components enhances the learning abil-
ity of the algorithm, as evidenced by improved performance
across a broader array of games. However, the recorded
median scores for 3, 5, and 7 components are 1.56, 1.98,
and 1.94, respectively, indicating that the approximation ca-
pabilities of a GMM with 5 to 7 components are sufficiently
robust for reinforcement learning tasks.

Table II summarizes the comparative performance of using
3 versus 5 Gaussian components across 59 Atari games, each
tested with 5 random seeds. The results clearly demonstrate
the superiority of the 5-component configuration over the 3-
component one. Nevertheless, the findings also suggest that
while additional Gaussian components may improve scores
in games where the algorithm already performs well, they
do not necessarily overcome existing challenges.
Sample-set Mixture Ratio β

The mixing ratio of sample-sets, denoted by β, is a critical
factor in the performance of the MWG algorithm. As Figure
5 reveals, the optimal β value is between 0.5 and 0.8, which

2856

Fig. 3: Learning curves of algorithms on 12 Atari games
using 5 random seeds.

Fig. 4: Impact of varying Gaussian components: 3, 5, and
7 on performance.

Fig. 5: Performance variation with different mixture ratios
β, normalized to the standard MWG algorithm (β = 0.5)

TABLE III: The Impact of Sample Randomness on algo-
rithm performance using 5 random seeds)

Standard NR in Action NR in Learning NR in Both
4.13 3.65 3.82 3.45

indicates a preference for fresher target sample-sets. This
finding contrasts with the minimal update ratios commonly
used in stochastic updates, and is attributed to the dynamic
nature of the learning targets in RL, where newer targets
should be weighted more heavily to prevent early stagnation.
The Randomness of Return Samples

The stochastic nature of reward distribution samples plays
a dual role in the learning and action selection processes
of DRL algorithms. Stochasticity in action selection enables
directed exploration by allowing probabilistic choice among
actions with similar expected values. Concurrently, in the
learning process, it introduces a variety of target signals that
contribute to the robustness of the algorithm. The signifi-
cance of this randomness is underscored by our experiments
on six Atari games, repeated five times, as summarized
in Table III. The abbreviation NR denotes the absence of
randomness in the samples.

REFERENCES

[1] Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone, “Risk-
constrained reinforcement learning with percentile risk criteria,” The

Journal of Machine Learning Research, vol. 18, no. 1, pp. 6070–6120,
2017.

[2] W. R. Clements, B. Van Delft, B.-M. Robaglia, R. B. Slaoui, and
S. Toth, “Estimating risk and uncertainty in deep reinforcement
learning,” arXiv preprint arXiv:1905.09638, 2019.

[3] M. Rowland, R. Dadashi, S. Kumar, R. Munos, M. G. Bellemare,
and W. Dabney, “Statistics and samples in distributional reinforcement
learning,” in International Conference on Machine Learning. PMLR,
2019, pp. 5528–5536.

[4] W. Dabney, M. Rowland, M. Bellemare, and R. Munos, “Distributional
reinforcement learning with quantile regression,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[5] T. T. Nguyen, S. Gupta, and S. Venkatesh, “Distributional reinforce-
ment learning with maximum mean discrepancy,” Association for the
Advancement of Artificial Intelligence (AAAI), 2020.

[6] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba, “Mastering atari with
discrete world models,” arXiv preprint arXiv:2010.02193, 2020.

[7] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap, “Mastering diverse
domains through world models,” arXiv preprint arXiv:2301.04104,
2023.

[8] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional per-
spective on reinforcement learning,” in International Conference on
Machine Learning. PMLR, 2017, pp. 449–458.

[9] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Hor-
gan, D. Tb, A. Muldal, N. Heess, and T. Lillicrap, “Dis-
tributed distributional deterministic policy gradients,” arXiv preprint
arXiv:1804.08617, 2018.

[10] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski,
W. Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow:
Combining improvements in deep reinforcement learning,” in Thirty-
second AAAI conference on artificial intelligence, 2018.

[11] W. Dabney, G. Ostrovski, D. Silver, and R. Munos, “Implicit quantile
networks for distributional reinforcement learning,” in International
conference on machine learning. PMLR, 2018, pp. 1096–1105.

[12] D. Yang, L. Zhao, Z. Lin, T. Qin, J. Bian, and T.-Y. Liu, “Fully param-
eterized quantile function for distributional reinforcement learning,”
Advances in neural information processing systems, vol. 32, 2019.

[13] Y. Choi, K. Lee, and S. Oh, “Distributional deep reinforcement learn-
ing with a mixture of gaussians,” in 2019 International Conference on
Robotics and Automation (ICRA). IEEE, 2019, pp. 9791–9797.

[14] M. G. Bellemare, W. Dabney, and M. Rowland, Distributional Rein-
forcement Learning. MIT Press, 2023, http://www.distributional-rl.
org.

[15] P. S. Castro, S. Moitra, C. Gelada, S. Kumar, and M. G. Bellemare,
“Dopamine: A Research Framework for Deep Reinforcement
Learning,” 2018. [Online]. Available: http://arxiv.org/abs/1812.06110

[16] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,”

2857

Journal of Artificial Intelligence Research, vol. 47, pp. 253–279, jun
2013.

[17] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness,
M. Hausknecht, and M. Bowling, “Revisiting the arcade learning
environment: Evaluation protocols and open problems for general
agents,” Journal of Artificial Intelligence Research, vol. 61, pp. 523–
562, 2018.

[18] T. Pohlen, B. Piot, T. Hester, M. G. Azar, D. Horgan, D. Budden,
G. Barth-Maron, H. Van Hasselt, J. Quan, M. Večerík, et al., “Observe
and look further: Achieving consistent performance on atari,” arXiv
preprint arXiv:1805.11593, 2018.

2858

