
Contrastive Initial State Buffer for Reinforcement Learning

Nico Messikommer, Yunlong Song, Davide Scaramuzza

Abstract— In Reinforcement Learning, the trade-off between
exploration and exploitation poses a complex challenge for
achieving efficient learning from limited samples. While recent
works have been effective in leveraging past experiences for
policy updates, they often overlook the potential of reusing past
experiences for data collection. Independent of the underlying
RL algorithm, we introduce the concept of a Contrastive Initial
State Buffer, which strategically selects states from past experi-
ences and uses them to initialize the agent in the environment
in order to guide it toward more informative states. We validate
our approach on two complex robotic tasks without relying on
any prior information about the environment: (i) locomotion
of a quadruped robot traversing challenging terrains and (ii)
a quadcopter drone racing through a track. The experimental
results show that our initial state buffer achieves higher task
performance than the nominal baseline while also speeding up
training convergence.

Multimedia Material A video is available at https:
//youtu.be/RB7mDq2fhho and code at https://
github.com/uzh-rpg/cl_initial_buffer

I. INTRODUCTION

In Reinforcement Learning (RL), achieving efficient learn-
ing from limited samples has been a central pursuit [1],
[2]. The trade-off between exploration and exploitation lies
at the heart of this field, posing a complex problem for
researchers and practitioners alike. The paradigm of utilizing
past experiences to guide future actions has emerged as an
effective strategy, leading to the development of techniques
such as experience replay [3], [4], [5]. One common aspect of
these techniques is the reliance on a replay buffer, a struc-
ture that stores past experiences. However, these methods
primarily focus on reusing past experiences for updating the
policy, overlooking a potentially significant factor: reusing
past experiences for data collection.

Traditionally, agents in benchmark tasks are often initial-
ized randomly based on a predefined state distribution. How-
ever, many robotic tasks present a considerable challenge
for exploration in reinforcement learning since prohibitive
amounts of exploration are required to reach certain states
and receive some learning signal.

Let’s consider a task where a humanoid robot needs to
learn how to perform a backflip. In this task, directly initial-
izing the robot with initial states drawn from a successful
backflip trajectory would significantly reduce the required

The authors are with the Robotics and Perception Group, Department
of Informatics, University of Zurich, and Department of Neuroinformatics,
University of Zurich and ETH Zurich, Switzerland (http://rpg.ifi.
uzh.ch. nmessi@ifi.uzh.ch). This work was supported by the Eu-
ropean Union’s Horizon 2020 Research and Innovation Programme under
grant agreement No. 871479 (AERIAL-CORE) and the European Research
Council (ERC) under grant agreement No. 864042 (AGILEFLIGHT).

Fig. 1: Initial State Buffer for Reinforcement Learning.
Our method uses a network to project observations otk to an
embedding space, in which we apply K-means clustering. In
a next step, we add states sti close to the cluster center to an
Initial State Buffer, which sets the initial states of the robot
in the environment si0 during the roll-out.

number of environment interactions compared to starting
the robot from the ground. This approach leverages prior
knowledge about the desired behavior and allows the robot
to collect more relevant and informative training data from
the beginning. As a result, the movements necessary for
successful execution are learned much faster compared to
initializing the robot from the ground. However, in most
cases, a successful trajectory, or even complete information
about the environment, is not available beforehand.

To achieve the benefits of sampling from an optimal trajec-
tory but without any prior knowledge of the task or environ-
ment, we use the concept of Initial State Buffer (ISB), which
leverages past experiences for data collection. To optimally
select states for the ISB, we propose a novel Contrastive-
Learning Buffer (CL-Buffer), which maps observations to
an embedding space with a learned projection, grouping
together states with similar task-relevant experiences, see
Fig. 1. The projection is trained in an unsupervised manner,
ensuring that states experiencing similar changes in their
value function after policy-gradient updates are in close
proximity in the embedding space. By using the distance
in the embedding space, a diverse set of states featuring a
wide range of experiences can be added to the ISB.

We evaluate the effectiveness of our approach on two com-
plex robotics tasks without relying on any prior information
about the environment: (i) a quadruped robot learning to walk

2024 IEEE International Conference on Robotics and Automation (ICRA 2024)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 2866



from scratch on challenging terrains and (ii) a quadrotor
flying through a challenging race track. Our results show
that, for the same number of iterations, the introduction of
the CL-Buffer leads to overall faster training convergence
along with 18.3% higher task performance for the quadruped
walking task. Additionally, for the drone racing task, our
buffer achieves a success rate of 0.9, in contrast to the
baseline without ISB, which has a success rate of 0.2.

II. RELATED WORK

Leveraging past experiences for policy improvement has
been studied extensively in the literature. Notably, experience
replay [3], [4], [5], [6] via a replay buffer plays a key
role in the off-policy setting. However, standard off-policy
RL methods can fail in practice due to the overestimation
of values induced by the distributional shift between the
collected data and the learned policy. Moreover, on-policy
algorithms suffer from low sample efficiency since they
cannot leverage past experiences for policy improvement.

Researchers are increasingly focusing on enhancing sam-
ple efficiency by accumulating more valuable data. These
approaches exploit domain knowledge, as demonstrated in
studies by [7], [8], [9], [10], or leverage reference demonstra-
tions [11], [12] to initialize the robot with valid initial states.
For example, in [7], the initial state of the robot is sampled
either from a previous trajectory or a random distribution,
with equal probability. Similarly, [9] proposed using an initial
state buffer to store valid states in a drone racing task via
a heuristic state machine. Compared to our tackled setting,
those methods rely on prior knowledge of either the task or
the environment, e.g., the race track. For goal-conditioned
tasks, [13] proposed using reverse curriculum generation,
which teaches an agent to reach the goal from starting
positions that are progressively distant from the target. In
[14], an archive of visited states is constructed and used to
robustify the policy by returning to specified states from the
archive. Once the agent reaches the selected archive state,
it further explores its environment from there. However, the
states are discretized by downscaling images or discretizing
robot states, which quickly becomes infeasible for high-
dimensional state space common in robotics tasks. In con-
trast, we propose a contrastive learning embedding combined
with k-means to discretize the visited states adaptively to
the capabilities of the agent. The sampling of states is also
used in other fields, e.g., sampling-based motion planning,
where supervised learning from optimal trajectories [15] or
Gaussian Mixture Models [16] can guide the optimization.

Finally, exploring the environment can also be induced
by directly designing RL agents with intrinsic motivation
through adapting the reward formulation [17], [18], [19].
Since our proposed method selects initial states for the roll-
out without any assumption on the underlying RL agent, our
approach can be applied together with these approaches.

III. PRELIMINARIES

General robot tasks solved by Reinforcement Learning
(RL) algorithms can be modeled by a Markov decision

process (MDP) which is described by the tuple M =
(S,A, p, p0, R, γ) with state space S, action space A, tran-
sition probabilities between states p, initial state distribution
p0 and rewards R with discount factor γ.

While the MDP defines the specific task setting, a stochas-
tic control policy π : S × A → R represents a strategy
for the robot to navigate in the given setting by proposing
actions a ∼ π(s) that the robot should take in each state
s ∈ S. Therefore, starting from an initial state distribution
s0 ∼ p0, a policy induces a probabilistic trajectory of states
and actions τ = {s0, a0, s1, a1, ..., sT , aT−1}. As shorthand,
we will write that τ ∼ π to denote this relationship. When
starting at a specific fixed state s0, the possible states and
actions reached by a policy will be denoted as τ ∼ π|s0.
Following the control policy π, the expected future return
achieved by the robot at the current state si can be expressed
with the value function

V π(si) = Eτ∼π|si

[ ∞∑
t=i

γtR(st, at)

]
. (1)

The goal is to find a policy π∗ = argmaxπ Es0∼p0
[V π(s0)],

which maximizes the expected cumulative return obtained by
starting from initial states s0 ∼ p0. The distribution of initial
states is often crucially important in RL since it determines
the overall distribution of roll-outs, and may thus affect
learning speed and effectiveness. In what follows, we will
have a closer look at this distribution and how to leverage it
to increase the sample efficiency.

IV. INITIAL STATE BUFFER

One of the main challenges of RL is low sample efficiency,
leading to slow training [20]. This problem is amplified for
large spaces S, especially when the transition probabilities
impede the fast traversal of the state space by the robot. To
tackle the sample efficiency problem, we instead propose to
sample initial robot states from an Initial State Buffer (ISB)
which we incrementally build from previously visited states
throughout training. We leverage this buffer to (i) reduce the
number of initializations of the agent in situations where
it must solve already mastered sub-tasks, since this adds
training iterations without improving training, and (ii) focus
the attention on new or hard situations which require multiple
training iterations but are rarely visited.

This greatly diversifies the robot experience leading to
enhanced training performance, an observation which was
already made in [10], [7], [8], [9], [21], albeit with prior
information about the environment and task. By contrast, our
ISB can be used in a general setting without domain-specific
knowledge. It is thus generally applicable to a diverse set of
RL algorithms and problems.

A. Sampling from the ISB

The overview of the ISB for the specific subvariant of
the CL-Buffer is visualized in Fig. 1. Since storing all of the
already visited states during the roll-out phases is intractable,
we use a rolling buffer of states called the visited states buffer

2867



V = ((s0, a0), (s1, a1), ..., (sk, ak))1, which continuously
collects states from the active agents and replaces them in a
first-in-first-out fashion. After each roll-out phase, N = 256
states from V are added to the ISB. Every time an episode is
terminated, a new episode is started by initializing the robot
with a probability of p = 0.8 at a state from the ISB and
a probability of 1 − p at the original start state s0. In what
follows, we will discuss three variants of ISB, namely the
Random-Buffer, Obs-Buffer, and Contrastive Learning Buffer
(CL-Buffer).

Random-Buffer The Random-Buffer simply selects a set
S of N random states from V

S = RandomSampleN (V) (2)

While this strategy ensures some diversity, it also tends to
oversample states in which the robot spends most of the time
during the roll-out episode, e.g. simple transition actions.
These states usually also share similar task-relevant experi-
ences. It is thus important to modify the sampling algorithm
to increase the diversity of states, which is addressed by the
next ISB variant.

Obs-Buffer To ensure efficient learning, it should be
avoided to oversample states from V that are too similar.
We thus design an Obs-Buffer, which initiates a K-Means
clustering with K = 64 in the observation space based on
the cosine similarity and then samples the N/K states closest
to the obtained cluster centers.

{Ck}Kk=1 = KMeansCluster(V) (3)

S =

K⋃
k=1

NearestNeighborN/K(Ck), (4)

By doing so, frequently visited states sharing the same obser-
vations are all assigned to the same cluster and, thus, are not
oversampled. While this modification alleviates the problem
of oversampling, clustering in the observation space tends
to group states together that, actually, lead to completely
different task outcomes. This is because even small changes
in the overall state, especially in unstable configurations, e.g.,
when a robot is about to crash, can have drastically different
expected rewards. It is thus beneficial to reenvision how
“closeness” is defined when performing clustering, which is
discussed next in the Contrastive Learning Buffer.

B. Contrastive Learning Buffer

The Contrastive Learning Buffer (CL-Buffer) differs from
the Obs-Buffer, in that it trains a neural network f , here a
three-layer MLP with Tanh activations, to map the observa-
tion to an embedding space, before clustering is performed.
However, how this feature space is constructed is non-trivial
since it should encode task knowledge to work effectively.
Intuitively, we want the network to map states to close-by
embeddings if they provide similar experiences to the RL
agent since these may require the same ”skills”, i.e. subrou-
tine of actions, to solve. We use the term experience here

1Note here states may come from multiple agents, and thus we use
superscripts to avoid confusion with states within one rollout.

to describe, in general, the distribution of tuples containing
the observation, action, and reward information acquired at
specific states. For example, let us consider the skill of a
quadruped to climb stairs facing the stairs upward. In this
case, states at the lower and upper part of the stairs provide
similar experiences to train the robot to climb stairs. In
contrast, letting a quadruped walk backward on a flat surface
will provide different experiences, which are less relevant
for climbing stairs. Thus, the states on the stairs should be
clustered together, whereas the state on a flat surface should
be further away in the embedding space.

To quantify such a ”closeness”, we argue that states ex-
hibiting a comparable change in the value function based on
a policy gradient update contain shared learning experiences.
We formalize this similarity by analyzing the value function
increase at those states after one policy gradient step, which
updates a policy π0 to π1

∆V π1(s)
.
= V π1(s)− V π0(s)

= E(s0,a0,...)∼π0

[ ∞∑
t=0

γtAπ1(st, at)

]
(5)

≈
∞∑
t=0

γtAπ1

GAE(st, Rt, st+1, Rt+1, ...). (6)

Here we approximate the change of the value function
following [22] by using the advantage function Aπ1(st, at).

Training the Embedding Network At the beginning of
each policy update phase, we select a fixed set of states
s0, s1, ..si from the visited state buffer V , see Fig. 2. For
each of those states, we can define a sub-MDP, which
shares all of the same properties as the original MDP, i.e.,
M = (S,A, p,R, γ) except for a different start distribution
p0. At those selected states, we can compute the value
function increase ∆V π1(s) after each policy update. Since
we only have access to the roll-out trajectories obtained with
π0, we leverage the fact that Eq. 5 uses the expectation
over the trajectories τ ∼ π0, which we approximate by
considering only one sample τ obtained during the roll-out
phase. Additionally, we approximate the advantage function
in Eq. 5 with the General Advantage Estimator introduced
in [23]. Eq. 6 enables us to quantify for each policy gradient
step the improvement over the original policy, for which we
have collected the roll-out samples. This difference in the
value function at different states can then be used to cluster
states with similar task-relevant experiences together.

For each policy update step, the predefined states can be
ranked according to the approximated value function increase
∆V π1(s). The top-k states with the highest increase in the
expected return are then used as a positive set P , whereas the
lowest-k states are used as a negative set N . Additionally, we
select the embedding xi = f(si) of a state from the positive
sets P as an anchor point. Similarly to [24], we use the
anchor point, the positive and negative set to formulate the
soft-nearest neighbor loss [25], which is a version of the

2868



Fig. 2: sub-MDP. A standard MDP problem can be divided
into multiple sub-MDPs.

InfoNCE loss [26], as follows

Lcontra = − log

∑
j∈P exp (−g(xi,xj)/τ)∑

k∈N
⋃

P exp (−g(xi,xk)/τ)
(7)

The function g computes, in our case, the cosine similarity
between two different embedding vectors xi, xj while τ is a
temperature parameter. By backpropagating through the loss,
we can update the parameters of the projection network f .
Using this network, we map the states in the visited state
buffer V to the embedding space and then perform K-Means
clustering. The sampling procedure thus becomes

X = {x1, ..., xN} = f(V) (8)

{Ck}Kk=1 = KMeansCluster(X ) (9)

S =

K⋃
k=1

NearestNeighborN/K(Ck), (10)

where we compute the nearest neighbors in the embedding
space. Note that while states are regularly mapped to the
embedding space to perform sampling, the network is con-
tinually trained throughout RL training, which means that
it can learn to shift the focus from states as they no longer
change in terms of the value function. This type of clustering
thus adds a dynamic behavior to the ISB.

V. EXPERIMENTS

Setup We evaluate the different ISB strategies on two
robotic platforms: a quadruped and a quadrotor.

The first task involves command following for a quadruped
platform, based on the implementation of [10]. The input to
the RL agent is the heading direction, which is translated
to an angular rotation, and linear velocities commands for
the x- and y-axis expressed in its body frame. Based on the
commands, the quadruped needs to traverse across different
terrain, including upwards- and downwards stairs, rough ter-
rain, smooth terrain, discrete terrain with different elevation
planes, and flat surfaces. These terrains are created as square
areas of 8m×8m in a simulated IsaacGym [27] environment.
During training, the robot is initialized in the middle of the
whole environment and needs to explore the other terrain
types. However, during validation, we initialize the robot in
the center of all of the different terrain types, which enables

us to directly asses how well the robot learned to walk on
the different terrains. These validation runs are conducted
throughout the training process in time intervals of 100 roll-
out phases. We perform 2000 training iteration steps with
1024 environments, which delivers the best trade-off between
result expressibility and run-time cost.

In the second task, we use the different ISB strategies to
train an agent for drone racing, which is a challenging task
that requires pushing the drone to its physical limit [21],
[28]. For this task, we train our agent in the Flightmare
simulator [29]. The agent receives as input the relative gate
corner of the next gate and the angular and linear velocity of
the quadrotor and outputs the collective thrust and the body
rates. Like the quadruped task, we evaluate each method
after 100 roll-out phases. As in [21], we use 2000 training
iterations with 100 environments.

Implementation We evaluate the different ISB variants:
Random-Buffer, Obs-Buffer, and CL-Buffer, as well as the
nominal Vanilla baseline without an ISB. To avoid intro-
ducing bias to the evaluation of the ISBs, we adopt the
same PPO algorithm and reward function design used in [10]
for the quadruped platform and the framework from [21]
for the quadrotor. Furthermore, the same environments and
training frameworks were shown multiple times to transfer
to the real world for the quadruped [10], [30], [31] and for
the quadrotor [21], [32]. This confirms the validity of the
simulation for real-world robotic applications.

We design a simple pre-selection of states to be added to
the visited state buffer V . For the quadrupedal locomotion,
we exclude states less than 15 timesteps away from their
episode start and states with an accumulated reward below
zero since this indicates that the command following is not
performed. The ablation experiments in Fig. 3 (d) conducted
with our CL-Buffer show that combining both filtering
steps leads to the best training performance throughout the
training. For drone racing, we only add states to the buffer,
which are visited in trajectories initialized at the original
start state to avoid diverging from the race track. Generally,
our method is not significantly impacted by parameters like
cluster numbers and buffer size for visited states.

VI. RESULTS

A. Quadrupedal Locomotion

Reward ↑

Method Overall Easy Hard
Vanilla 9.21±0.43 10.19±0.46 7.62±0.44
Random-Buffer 9.58±0.36 10.45±0.35 8.14±0.43
Obs-Buffer 10.40±0.33 11.13±0.30 9.19±0.38
CL-Buffer 10.90±0.15 11.81±0.08 9.46±0.36

TABLE I: Quadrupedal Locomotion. The validation perfor-
mance averaged over five different training seeds for different
terrain difficulties according to the parametrization of [10].

Performance of CL-Buffer Fig. 3 (a) shows the validation
performance of the tested methods at the different training
iteration steps. Since we initialize the robot at multiple

2869



(a) Training Performance (b) Prior Information (c) Other Baselines (d) Visited States Filtering

Fig. 3: Quadrupedal Locomotion. The mean validation performance at different iteration steps obtained with five different
training seeds for all of the tested methods.

terrains during validation, we can directly assess the learned
capabilities for different terrain difficulties. It can be ob-
served that initializing the states using an ISB speeds up
the learning at the start of the learning, as confirmed by the
higher validation performance achieved by all of the ISB
methods until the training iteration 1000. However, in the
later stages of the training, the Random-Buffer converges to
the same performance as the Vanilla approach. This confirms
the importance of strategically adding states to the ISB.

In terms of final validation performance, our CL-Buffer
outperforms Obs-Buffer, the closest ISB method, by 4.8%
and improves the performance compared to the Vanilla
baseline by 18.3%, as also reported in Tab. I. This confirms
the effectiveness of our proposed state selection based on a
learned projection network. It needs to be emphasized that
the performance increase is achieved without changing the
underlying RL algorithm, which shows the potential of our
proposed ISB for general RL tasks.

In Fig. 4 (a), we visualize the state distributions for the
tested methods during a roll-out phase performed in the
middle of the training. The quadruped states are visualized in
a top-down view of the environment using different colors for
different methods. The figure shows that the Vanilla approach
has a limited exploration radius since it always initializes
the trajectories in the middle of the environment. As can
be further observed, the Random-Buffer increases the state
distribution evenly, which leads to the sampling of redundant
experiences. To select a more diverse set of initial states with
more relevant experiences, the Obs-Buffer uses observations
as distance metrics in the K-Means clustering. However,
the observation space can cluster uncorrelated dimensions,
making it an unsuitable metric for selecting diverse states.
This can lead to states being selected for the ISB, which
share similar experiences and are close in the environment,
as visualized in Fig. 4 (a). Instead, our CL-Buffer uses an
embedding space that clusters states with similar experiences.
The result is a diverse state distribution, leading to an
improved performance confirmed by the results.

Furthermore, we evaluate the methods if prior information
about the environment is available by initializing the agents
at the center of all terrains during the training. As can
be observed in Fig. 3 (b), the Prior CL-Buffer leads to
the best training performance and, compared to the Prior

Vanilla, also has a steeper reward curve at the end of the
training, indicating that the performance gain could even
further increase. In comparison, the Prior Random-Buffer
struggles in selecting useful states if the training data already
contains a widespread of situations present in the tested
environment. For the Prior Obs-Buffer, the uniform terrain
initialization can result in initial state clusters of excessively
high difficulty, causing some training runs to collapse, which
explains the high variance of the reward curve. If we compare
the Prior Vanilla with our CL-Buffer in Fig. 3 (a), which
does not have the significant advantage of having access to
environment information, the Prior Vanilla only performs
similarly and even slightly worse than our proposed CL-
Buffer. Furthermore, we evaluate two other simple ISB
strategies in Fig. 3 (c): a Terminal-Buffer, which selects
states close to the terminal states of previously conducted
roll-outs as initial states, and a Value-Buffer, which selects
states from the visited state buffer with the highest value
predicted by the estimated value function. Both strategies
lead to an underperforming training performance.

Analysis of CL-Buffer Clusters To provide more in-
sights into the state clustering of the learned embedding
space, three samples closest to three cluster centers are
visualized in Fig. 5, which shows the state of the quadruped
and the given command visualized as a red line. The visual-
ized clusters can be characterized into different skills, e.g.,
”Walking Forward,” ”Walking Sideways Up,” and ”Failure
State.” Notably, these skill-based clusters evolved during
training and were not directly enforced. This shows that
our CL-Buffer selects a diverse set of states featuring dif-
ferent experiences for different skills and thus increases the
training convergence and final performance, as confirmed by
the validation performance. Furthermore, the capability of
our projection network to cluster states in an unsupervised
fashion into skills relevant to the given task and adaptively
to the current policy throughout the training opens up the
door for various applications of the proposed clustering.
For example, the projection network can be used to design
training environments in a curriculum-learning fashion by
interpolating between visited states, similarly done as in
previous works in Deep Learning [33] and RL [34], [35].
We believe that our projection technique will provide the
tool for many future applications.

2870



Fig. 4: State Distribution. (a) The quadruped states during a roll-out phase in the middle of the training in a top-down
view. (b) For flying through a race track, if the agent can not fly yet through the complete racetrack, (c) the initial state
clusters from the CL-Buffer are located around the struggling gate. (d) Once the agent can finish the racetrack, the CL-Buffer
clusters are more spread out while still focusing on the difficult parts around the gates and less on the straight lines.

Fig. 5: Cluster State Visualization. Our proposed projection
network can be used to cluster the embeddings of different
states according to the corresponding experience. It can be
observed that each cluster represents a specific skill, i.e.,
Walking Forward, Walking Sideways Up, and Failure State.

B. Drone Racing

Performance of CL-Buffer To show that the ISB frame-
work works on other environments and platforms without any
major changes, we evaluate the methods for drone racing.
In drone racing, the objective is to train a policy to pass
through a sequence of gates in minimum time, as visualized
in a top-down view in Fig. 4 (b). Using RL to address this
problem has one inherent challenge: delayed gratification.
Progress in early gates is critical to reaching and exploring
later gates. The agent may need to pass through gates 1 and
2 before seeing gate 3. Thus, a wrong action in gate 1 might
not manifest its negative consequence until gate 3. This long
causal chain makes the credit assignment difficult. As shown
in Fig. 6, the experimental results clearly show the benefit of
using an ISB. Our proposed CL-Buffer leads to the fastest
training convergence and the highest success rate, indicating
how many of the agents trained with different seeds can
complete one round of the race track. The achieved lap times
of successful passes are comparable for the different ISB
while the CL-Buffer leads to more successful passes.

Analysis of CL-Buffer Clusters The states found by the

CL-Buffer are visualized in Fig. 4 (c) and (d) as dots with
different colors, while initial states corresponding to the same
cluster center have the same color and are close in proximity.
The top-down view in Fig. 4 (c) shows that if the agent
has not mastered flying through the entire racetrack, most
of the cluster samples are located on the struggling gate,
which is, in this case, the last gate. Once the agent can finish
the racetrack, the cluster centers are more spread out while
focusing on the difficult parts around the gates, see Fig. 4 (d).
This shows the evolution ability of our proposed CL-Buffer
to adapt to the capabilities of the current trained agent.

Fig. 6: Drone Racing. The mean validation reward (left), and
the success rate (right) obtained with ten different seeds.

VII. CONCLUSION

This work evaluated the concept of Initial State Buffers
(ISB), which strategically select states from past experiences
to initialize the robot in the environment in order to guide
it toward more informative states. To ensure that the ISB
contains states with diverse task-relevant experiences, we
proposed a novel Contrastive Learning Buffer (CL-Buffer),
which relies on a learned projection to an embedding space in
which close-by states share similar experiences. Our results
show that the CL-Buffer leads to overall faster training con-
vergence along with 18.3% higher task performance for the
quadruped walking task. Additionally, for the drone racing
task, our buffer achieves a success rate of 0.9, in contrast to
the baseline without ISB, which has a success rate of 0.2.
By leveraging task and environment information, future work
can extend our CL-Buffer to consider a prioritized sampling
from the initial state buffer.

2871



REFERENCES

[1] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Process-
ing Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[2] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep rein-
forcement learning in a handful of trials using probabilistic dynamics
models,” Advances in neural information processing systems, vol. 31,
2018.

[3] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experi-
ence replay,” arXiv preprint arXiv:1511.05952, 2015.

[4] L.-J. Lin, “Self-improving reactive agents based on reinforcement
learning, planning and teaching,” Machine learning, vol. 8, pp. 293–
321, 1992.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[6] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, O. Pieter Abbeel, and W. Zaremba, “Hind-
sight experience replay,” Advances in neural information processing
systems, vol. 30, 2017.

[7] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.

[8] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deepmimic:
Example-guided deep reinforcement learning of physics-based char-
acter skills,” ACM Trans. Graph., vol. 37, no. 4, pp. 143:1–143:14,
July 2018.

[9] Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Au-
tonomous drone racing with deep reinforcement learning,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2021, pp. 1205–1212.

[10] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk in
minutes using massively parallel deep reinforcement learning,” in 5th
Annual Conference on Robot Learning, 2021. [Online]. Available:
https://openreview.net/forum?id=wK2fDDJ5VcF

[11] T. Salimans and R. Chen, “Learning montezuma’s revenge from a
single demonstration,” 2018.

[12] X. B. Peng, A. Kanazawa, J. Malik, P. Abbeel, and S. Levine, “Sfv:
Reinforcement learning of physical skills from videos,” ACM Trans.
Graph., vol. 37, no. 6, Nov. 2018.

[13] C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel, “Re-
verse curriculum generation for reinforcement learning,” in Conference
on robot learning. PMLR, 2017, pp. 482–495.

[14] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “First
return, then explore,” Nature, vol. 590, pp. 580–586, 2021.

[15] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions
for robot motion planning,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 7087–7094.

[16] J. Huh, B. Lee, and D. D. Lee, “Adaptive motion planning with high-
dimensional mixture models,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2017, pp. 3740–3747.

[17] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and
R. Munos, “Unifying count-based exploration and intrinsic motiva-
tion,” Advances in neural information processing systems, vol. 29,
2016.

[18] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by
random network distillation,” in International Conference on Learning
Representations, 2018.

[19] A. P. Badia, P. Sprechmann, A. Vitvitskyi, D. Guo, B. Piot, S. Kaptur-
owski, O. Tieleman, M. Arjovsky, A. Pritzel, A. Bolt, et al., “Never
give up: Learning directed exploration strategies,” in International
Conference on Learning Representations, 2019.

[20] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine,
“How to train your robot with deep reinforcement learning: lessons
we have learned,” The International Journal of Robotics Research,
vol. 40, no. 4-5, pp. 698–721, 2021.

[21] Y. Song, A. Romero, M. Mueller, V. Koltun, and D. Scaramuzza,
“Reaching the limit in autonomous racing: Optimal control versus
reinforcement learning,” Science Robotics, 2023.

[22] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proceedings of the 32nd International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, F. Bach and D. Blei, Eds., vol. 37. Lille,
France: PMLR, 07–09 Jul 2015, pp. 1889–1897. [Online]. Available:
https://proceedings.mlr.press/v37/schulman15.html

[23] J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and
P. Abbeel, “High-dimensional continuous control using generalized
advantage estimation,” in 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2016.
[Online]. Available: http://arxiv.org/abs/1506.02438

[24] J. Xing, L. Bauersfeld, Y. Song, C. Xing, and D. Scaramuzza,
“Contrastive learning for enhancing robust scene transfer in vision-
based agile flight,” in 2024 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2024.

[25] N. Frosst, N. Papernot, and G. Hinton, “Analyzing and improving
representations with the soft nearest neighbor loss,” in International
Conference on Machine Learning. PMLR, 2019, p. 2012–2020.

[26] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv preprint arXiv:1807.03748, 2018.

[27] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State,
“Isaac gym: High performance gpu-based physics simulation for robot
learning,” 2021.

[28] E. Kaufmann, L. Bauersfeld, A. Loquiercio, M. Müller, V. Koltun,
and D. Scaramuzza, “Champion-level drone-racing with deep rein-
forcement learning,” Nature, 2023.

[29] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza,
“Flightmare: A flexible quadrotor simulator,” in Conference on Robot
Learning, 2020.

[30] J. Frey, D. Hoeller, S. Khattak, and M. Hutter, “Locomotion policy
guided traversability learning using volumetric representations of
complex environments,” in 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2022, pp. 5722–5729.

[31] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and
M. Hutter, “Learning robust perceptive locomotion for quadrupedal
robots in the wild,” Science Robotics, vol. 7, no. 62, p. eabk2822,
2022. [Online]. Available: https://www.science.org/doi/abs/10.1126/
scirobotics.abk2822

[32] A. Romero, Y. Song, and D. Scaramuzza, “Actor-critic model predic-
tive control,” in 2024 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2024.

[33] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup:
Beyond empirical risk minimization,” in International Conference on
Learning Representations, 2018.

[34] R. Sander, W. Schwarting, T. Seyde, I. Gilitschenski, S. Karaman,
and D. Rus, “Neighborhood mixup experience replay: Local convex
interpolation for improved sample efficiency in continuous control
tasks,” in Learning for Dynamics and Control Conference. PMLR,
2022, pp. 954–967.

[35] J. Lin, Z. Huang, K. Wang, X. Liang, W. Chen, and L. Lin, “Contin-
uous transition: Improving sample efficiency for continuous control
problems via mixup,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2021, pp. 9490–9497.

2872


