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Abstract— Multi-task reinforcement learning could enable
robots to scale across a wide variety of manipulation tasks
in homes and workplaces. However, generalizing from one
task to another and mitigating negative task interference still
remains a challenge. Addressing this challenge by successfully
sharing information across tasks will depend on how well
the structure underlying the tasks is captured. In this work,
we introduce our new architecture, Projected Task-Specific
Layers (PTSL), that leverages a common policy with dense
task-specific corrections through task-specific layers to better
express shared and variable task information. We then show
that our model outperforms the state of the art on the MT10
and MT50 benchmarks of Meta-World consisting of 10 and 50
goal-conditioned tasks for a Sawyer arm.

I. INTRODUCTION

Complex manipulation is common in a number of desir-
able real-world robotic use cases—such as wiping various
kitchen surfaces in a busy restaurant, routing cables in a
datacenter, or screwing parts in an manufacturing assembly.
While these individual tasks are different, they are often com-
posed of similar manipulation primitives. Humans intuitively
recognize and scaffold upon these primitives to implement
different tasks, but it is challenging for robots, which are
often only trained on individual, specific tasks, to do the
same. Enabling robots to reason through multiple related
tasks with multi-task reinforcement learning [1] can unlock
more general-purpose robotics—allowing efficient learning
across similar tasks and using their shared structure to learn
a better performing policy [2]–[4].
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Multi-task learning often, however, requires a careful
choice of tasks and balanced sampling, and even then
may not always improve learning. For complex manipula-
tion, learning-based approaches may generalize over unseen
tasks [5] but can still be difficult to scale successfully [6],
[7]. Recent work has argued that learning methods should
use shared task structures [8], [9] but most approaches still
learn a single shared policy used across all tasks which may
not adequately represent variations between tasks [6], [10].

Instead, we propose a new backbone architecture, the Pro-
jected Task-Specific Layers (PTSL), which combines a large,
shared fully-connected policy with low-rank task-specific
layers as shown in Fig. 1. After each layer, the hidden state
from the shared policy and the low-rank task-specific policy
are combined, making PTSL expressive of different tasks.
We evaluate PTSL as a standalone backbone or on top of
the Context-based Representation (CARE [4]) encoder that
leverages text descriptions of the task as metadata to project
a mixture of encodings.

The main contributions of this work are:
• We propose the PTSL architecture for deep multi-task

reinforcement learning that adds low-rank task-specific
layers on top of each layer of a shared backbone.

• Our results with PTSL outperforms CARE [4], the
current state-of-the-art, on both the MT10 and MT50
Goal-conditioned benchmarks from Meta-World [11].

• Further, our results suggest that multi-task learning with
a shared projection is more sample efficient and can
improve learning on individual tasks.

• Finally, our results provide insights into the benefits of
intermediate architectures sharing an embedding space
between task-specific layers and a backbone.

Fig. 1: Simplified diagram of different architectures for multi-task reinforcement learning: Shared backbone for all tasks
(left), Individual backbone for each task (center) and Projected Task-Specific Layers (ours) (right)

.
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II. RELATED WORK

A. Reinforcement Learning for Robotics

Reinforcement learning (RL) has recently shown suc-
cess in various domains such as Atari [12], Go [13], and
Starcraft [14]. In robotics, RL has been well studied in
self-driving cars [15], manipulation [16]–[18], and locomo-
tion [19]. Multi-task reinforcement learning is a subfield
of RL for teaching a single agent to solve multiple tasks.
Whereas single-task RL optimises for one reward function,
multi-task learning optimises for multiple objectives [2].

One of the main challenges of multi-task learning is task
interference or negative transfer: learning a new task can
deteriorate the performance of a previously learned task.
This has been documented in previous literature [3], [20]
and several approaches have been proposed for mitigation.
One approach is to train single policies for each task and
use knowledge transfer [21] or policy distillation [22], but
this requires separate networks or a large number of net-
work parameters. Other previous approaches [23], [24] have
addressed this issue by modifying the training algorithm or
having a model architecture that can support different sub-
policies [4], [25], but these methods are often slow and scale
poorly to the number of tasks. Thus, in this work we choose
to address this issue by focusing not on the optimization
method but the underlying architecture.

B. Soft Actor-Critic

The Soft Actor-Critic (SAC) [26] algorithm optimizes
the maximum-entropy RL objective using off-policy data
to learn. SAC has been demonstrated to perform bet-
ter [11] than other algorithms such as Proximal Policy Op-
timization (PPO) [27] or Trust Region Policy Optimization
(TRPO) [28]. Accordingly, we choose to use the multi-task
adaptation of SAC with disentangled alphas (which refers to
having separate alpha coefficients for every task learned by
the policy [29]) to focus on the architecture of the agent.

C. Multi-task Architectures

Two common and opposing architectures for multi-task
learning are the multi-headed actor and the shared actor
architecture [11]. The multi-headed actor consists of a single
network with one head per task, but does not scale well due
to the sheer number of parameters. Meanwhile, the shared
actor consists of having a single network for all tasks, which
does not allow for task-specific corrections and often leads
to poor performance as the number of tasks increases [30].

Within these paradigms, a number of approaches exist.
Mixture of Experts (MOE) [31], [32] methods have in-
dependent experts with a learned gating network to output
weights. Similar work has been done with Hard routing [33]
which consists of having a routing network that selects the
expert for each task. However, good expert assignments
can be nontrivial. A third improvement on the multi-headed
architecture is called Soft Modularization [25], where each
”step” of the network is composed of multiple linear layers
and a routing network decides how to route the linear layers
of one step to the ones of the next step.

Another approach is to have a shared network with a
preprocessor that produces a vector to represent the state,
often denoted as an encoder. CARE (Contextual Attention-
based Representation learning) proposes a mixture of en-
coder architecture [4]. The idea is to have several indepen-
dent encoders that encode the task in a feature vector. Then,
another component produces attention scores based only on
the task of combining these embeddings. This embedding
is then fed to a fully linear network. This process is done
for the actor, critic, and value functions. However, while
a task-dependent encoder is useful, a shared policy like in
CARE [4] may not be the best approach because some tasks
may require small variations in the shared policy.

III. METHOD

In this section, we introduce our Projected Task-Specific
Layers (PTSL) architecture, which can be used on top
of methods such as CARE [4]. PTSL reconciles encoding
approaches and routing approaches for multi-tasking.

A. Projected Attention Layers

Encoding the state in a task-specific way, like in CARE,
may not be enough for all tasks. For example, in manip-
ulation, knowing how to push and pull may not benefit the
actions of picking and placing objects. Yet it is still beneficial
to have a shared policy because some skills can be shared.

PTSL permits small task-specific variations in the policy
and was inspired by Projected Attention Layers (PAL) [34], a
method that permits a transformer to have small task-specific
variations for Natural Language Processing (NLP). For each
task, the input goes through a series of transformer layers.
Each layer is made of two parts: one large shared attention
layer and one small task-specific attention layer. The latter
is computed by projecting down the input to a smaller
dimension, applying an attention layer trained specifically for
the task, and then projecting it up to the original dimension
and adding it to the shared attention layer output. This
process is repeated for each layer of the transformer.

The intuition is that a general backbone can contain most
of the knowledge (akin to grammar rules for a NLP Trans-
former), but small task-specific variations may be added as
some tasks may require different treatment (e.g. classification
versus summarization). PALs have been shown to be very
efficient in NLP tasks and we believe that this approach can
be applied to robotic manipulation as well.

B. Projected Task-Specific Layers

We propose Projected Task-Specific Layers (PTSL),
which adapts the PAL architecture to a linear layer setup
instead of a transformer, with a few modifications. This
architecture can replace the backbone of other methods to
obtain complex agents such as CARE + PTSL.

Similarly to PAL, PTSL is made of a shared backbone and
low-rank task-specific layers (one low-rank layer for each
task, on top of each shared layer) as detailed in Fig. 2. The
backbone is a linear layer that is shared between all tasks.
The task-specific layers are linear layers that are specific to
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Fig. 2: PTSL Architecture (ours), explained in Section III-B for details. The dotted red lines represent residual connections
(not always present). See Section III-C.3 for details. Projection modules that are reused are represented with the same color.
See Section III-C.2 for details.

each task. Where our approach differs from PAL is regarding
the projections to the task-specific dimension.

C. Problem formulation and Preliminaries

In a multi-task setting, we have a set of tasks
T = {T1, T2, ..., TT } and a set of environments E =
{E1, E2, ..., ET } where each task Ti is associated with an
environment Ei. Each environment Ei is a Markov Decision
Process (MDP) defined by a tuple (S,A,P,R, γ) where S
is the state space, A is the action space, P is the transition
probability function, R is the reward function, and γ is the
discount factor. The goal of the agent is to learn a policy πθ

that maximizes the expected return J(πθ) where θ are the
parameters of the policy.

In a multi-task setting, the agent has to learn a policy πθi

for each task Ti. The agent is evaluated on its ability to
learn a policy for each task Ti so therefore we are interested
in the average return over all tasks. Since we evaluate our
method on Meta-World, we will focus on the discrete signal
that is the success rate of the agent on each task. Because
we consider a multi-task setting with no unseen tasks during
training, we do not consider the problem of generalization
to unseen tasks for this work.

1) Notation: We introduce the following notation:
• I the input dimension,
• O the output dimension,
• H the hidden dimension
• D the task-specific dimension,
• T the number of tasks,
• N the number of hidden layers (meaning that we have

N + 1 layers in total).
In addition, we note the input x and xi as the input of the
i-th layer (e.g., x = x0). Additionally, we define:

• SHi the shared i-th linear layer.
• TSi

j the i-th task specific layer for the j-th task.

• P i
down the i-th projection layer that projects from H to

D (except for P 0
down that projects from I to D).

• P i
up the i-th projection layer that projects from D to H

(except for PN
up that projects from D to O).

2) Projection to the task-specific dimension: In a trans-
former setup, we often have I = H = O, which allows
PAL to have a single shared down projection P ∗

down and a
single shared up projection P ∗

up. Under a maximum number
of parameters constraint, it is better to have a single shared
projection than a projection for each layer [34].

This is less relevant in our case as I and O are not
necessarily equal to H and the gain of sharing the projection
is less important as transformers such as BERT have 12
layers while we only have 3 hidden layers (meaning 4 layers
in total). Thus, we experiment with both options: a single
shared projection and a projection for each layer. In the case
of a single shared projection, we will note P ∗

down and P ∗
up

the shared projection layers. Note that we still have two
independent projections P 0

down and PN
up that are not shared

due to the difference in input and output dimensions.
In our case, we investigate whether having these two

specific projections is worthwhile. Indeed if I and O are
small, it may be more beneficial to skip the projection so
that TS0

j goes from I to D and TSN
j goes from D to O. We

can compute the number of parameters for each case:

• First Task-specific layer TS0
j : with a projection the

number of parameters is I×D+T.(D×D+D) while
without a projection it is T.(I ×D +D).

• Last Task-specific layer TSN
j : with a projection the

number of parameters is D×O+T.(D×D+D) while
without a projection it is T.(D ×O +O).

For Meta-World, it was more beneficial to have an individual
down projection P 0

down but no up projection PN
up as I = 104

(output of the CARE encoder) and O = 8.
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3) Residuals across task-specific layers: We also add
a residual connection between the task-specific layers, as
illustrated by the dotted red in Figure 2. Let us note the
function g : (RD,RD) → RD that combines the projection
of our input P i

down(xi) with the output of the previous task-
specific layer TSi

j(P
i−1
down(xi−1)) to obtain the input of the

current task-specific layer TSi
j .

In this paper we will consider four different functions g:
• No residual: g(xproj

i , ytask
i−1) = xproj

i .
• Addition: g(xproj

i , ytask
i−1) = xproj

i + ytask
i−1.

• Learnable sum: g(xproj
i , ytask

i−1) = αxproj
i + βytask

i−1 with
α, β ∈ R learnable parameters.

• Learnable projection: two vectors are concatenated to
a vector of R2D that is projected to RD. g(xproj

i , ytask
i−1) =

Pg × Concat
(
xproj
i , ytask

i−1

)
with Pg ∈ RD×2D, a learn-

able projection shared across tasks and layers.

IV. EXPERIMENTS

In this section, we evaluate PTSL in the Meta-World
multi-task RL environment and compare against baselines.
We also conduct ablation studies to verify the effective-
ness of our method. To support the community, our code
is made publicly available at https://github.com/
JosselinSomervilleRoberts/PTSL which is a fork
of the CARE [4] repository that can be found at https://
github.com/facebookresearch/mtrl. In addition
to the code, the repository contains all the commands to
reproduce our experiments, our run results, and some imple-
mentation and training tips. All trainings were performed on
a NVIDIA RTX A6000 and averaged across n runs.

The first goal of our experimental evaluation is to assess if
the PSTL architecture improves the performance of a multi-
task agent without increasing the number of parameters. This
comparison is done in two different settings: short horizon
to evaluate the sample efficiency of PTSL and long horizon
to assess convergence to an efficient policy. We compare
our method to current state-of-the-art architecture baselines:
CARE [4], Soft Modularization [25], and MT-SAC. The
choice of baselines is described in detail in Section IV-B.

We also assess which variant of PTSL yields the best
results, and evaluate whether having a shared or independent
projection is better and what residual function should be
used. The residual functions considered are no residual, the
addition, the learnable sum, and the learnable projection (See
Section III-C.3 for the definitions).

A. Benchmark
We use Meta-World’s MT10 and MT50 Goal-conditioned

tasks as our benchmarks. Meta-World is a multi-task RL
benchmark containing 50 robotic manipulation tasks per-
formed by a simulated Sawyer robot. MT10 and MT50 are
two evaluation protocols based on Meta-World, where MT10
contains 10 tasks (shown in Fig. 3), and MT50 contains all
50 tasks. The state space is 12-dimensional and consists of
tuples of 3D Cartesian end-effector position, 3D Cartesian
positions of one or two objects, and the goal position. All
our tasks in MT10 and MT50 are goal-conditioned tasks.

Fig. 3: The MT10 benchmark from Meta-World contains 10
tasks: reach, push, pick and place, open door, open drawer,
close drawer, press button top-down, insert peg side, open
window, and open box.

B. Baselines

We compare our method to the following baselines that
are implemented in the CARE and our repository:

MT-SAC: a shared backbone [26] baseline with disentan-
gled alphas [29] that has a simple shared fully connected
backbone. There are N = 3 hidden layers with a hidden
dimension of H = 400 resulting in P = 1, 641, 222
parameters for both MT10 and MT50.

Soft Modularization: a soft modularization baseline that
learns different policies for each task using a routing net-
work. With also N = 3 hidden layers with a hidden
dimension of H = 400 resulting in P = 485, 766 parameters
for MT10 and P = 485, 806 for MT50.

CARE: the CARE [4] baseline1. Also N = 3 hidden
layers with a hidden dimension of H = 400. There are A = 4
experts in the Mixture of Experts with a hidden dimension of
HA = 50 resulting in P = 1, 871, 534 parameters for both
MT10 and MT50.

CARE + PTSL (ours): The proposed method on top
of CARE. To keep the comparison fair, we use nearly
the same number of parameters and layers as CARE, with
P = 1, 871, 532 parameters and N = 3 layers. To obtain
these numbers, we had to reduce H to 326 and set D to 50
for MT10 (with shared projections) and we kept the same
encoder parameters as CARE. For MT50, we reduced D to
32 and H to 274 to reach P = 1, 869, 908 parameters.

CARE + PTSL (shallow) (ours): Variation of PTSL with
fewer layers on top of CARE, N = 2 hidden layers, H =
400, and D = 50 resulting in P = 1, 556, 454 parameters.
All other parameters are identical to the previous CARE
+ PTSL architecture for MT10. We show that with fewer
layers and less parameters, we obtain similar performance
on a short horizon. This method is only tested for MT10.

PTSL only (ours): The proposed PTSL as a simple
standalone shared backbone with disentangled alphas. Once

1Although we used the implementation provided by CARE with the
same parameters and the same version of Meta-World, we were unable
to reproduce their results even after averaging over 10 or 20 seeds. This
is a known issue (seehttps://github.com/facebookresearch/
mtrl/issues). The results provided here may appear different from what
was published in the original paper. In the rest of this work, for the purpose
of comparison, all the reported CARE values will be the results that we
were able to reproduce on the same horizon and not the results published
in the original paper.
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(a) (b) (c) (d)

Fig. 4: Training curves of different methods on all benchmarks. For MT10, PTSL converges faster than baselines, and for
MT50, we see a gain in sample efficiency. The bolded line represents the mean over n = 10 runs for the short horizon and
n = 4 for the long horizon. The shaded area represents the standard error.

again we set N = 3 and we chose H and D to match
the number of parameters of CARE. This means that for
MT10, H = 367 and D = 50 resulting in P = 1, 869, 833
parameters. For MT50, H = 325 and D = 32 resulting in
P = 1, 871, 187 parameters.

C. Comparative evaluation

Success — 200K (n = 10) MT10-Cond. MT50-Cond.

Multitask SAC [11] 0.389 ± 0.029 0.212 ± 0.018
Soft Mod. [25] 0.274 ± 0.033 0.152 ± 0.022
CARE [4] 0.360 ± 0.030 0.320 ± 0.027
CARE + PTSL (Ours) 0.511 ± 0.034 0.370 ± 0.020
CARE + PTSL (Shallow) (Ours) 0.503 ± 0.051 -

TABLE I: Success rate of the baselines on the short horizon
(200k steps per task) for MT10 and MT50 Goal-conditioned
benchmark. Results are averaged over n = 10 seeds for each
method. We report the mean and standard error.

Success — MT10-Cond. After 1M steps Best

Multitask SAC [11] 0.706 ± 0.050 0.737 ± 0.055
Soft Mod. [25] 0.533 ± 0.039 0.554 ± 0.050
CARE [4] 0.648 ± 0.060 0.683 ± 0.066
CARE + PTSL (Ours) 0.742 ± 0.067 0.772 ± 0.053
PTSL only (Ours) 0.697 ± 0.043 0.721 ± 0.050

TABLE II: Success rate of the baselines on MT10 Goal-
conditioned on the long horizon (1M steps per task). Results
are reported both at the end of the 1M steps and at the best
average value. The Results are averaged over n = 4 seeds
for each method. We report the mean and standard error.

Figure 4a shows the average success rate on the 10
tasks of the MT10 Goal-conditioned benchmark from Meta-
World [11] for MT-SAC, Soft Modularization, CARE, and
CARE + PTSL (both deep and shallow architectures). Suc-
cess rate is noisy since it is a binary variable, so we averaged
the results across multiple seeds (the number of seeds is
noted as n, set to 10 for short horizon and 4 for long horizon).

We consider 1 million steps as our long horizon, and 200
thousand steps as our short horizon. As noted earlier, all
methods are trained using SAC with disentangled alphas.

Success — MT50-Cond. After 1M steps Best

Multitask SAC [11] 0.466 ± 0.013 0.489 ± 0.016
Soft Mod. [25] 0.154 ± 0.010 0.206 ± 0.018
CARE [4] 0.388 ± 0.028 0.495 ± 0.024
CARE + PTSL (Ours) 0.354 ± 0.015 0.427 ± 0.020
PTSL only (Ours) 0.610 ± 0.021 0.614 ± 0.020

TABLE III: Success rate of the baselines on MT50 Goal-
conditioned on the long horizon (1M steps per task). Results
are reported both at the end of the 1M steps and at the best
average value. Results are averaged over n = 4 seeds for
each method. We report the mean and standard error.

As explained in Section IV-B, CARE does not perform
as well as described in the original paper [4]. In particular,
we noticed decreasing performances on long horizons (See
Figure 4d). To remove uncertainty coming from CARE in our
experiments, we trained two PTSL agents on long horizons,
one with CARE and one without.

Table I and Fig. 4a show that our method outperforms all
baselines on the short horizon on MT10. For comparison, in
the Meta-World paper [11], it takes around 1.5M steps for the
Multitask SAC agent to reach the accuracy that our CARE
+ PTSL agent reaches within 200K steps. This suggests that
our method is highly sample-efficient. Furthermore, we show
that using a shallow PTSL network yields very similar results
on MT10 after a short horizon, suggesting that lighter PTSL
architectures can still generalize.

Table I and Figure 4c also show that PTSL is beneficial
as CARE + PTSL outperforms all baselines with more tasks
(MT50) even if this means reducing the size of the hidden
layers (to keep the same number of parameters).

Tables II and III as well as Figures 4b and 4d show that
PTSL is able to learn a good policy on the long horizon.
For MT10, CARE + PTSL performs best and reaches a top
success rate of 0.772. For MT50, MT-SAC was the best-
performing agent since CARE stopped learning after 400K
steps. That is why while the CARE + PTSL agent does not
perform exceptionally, the standalone PTSL outperforms all
methods. Importantly, PTSL achieves a score of 0.61 on
MT50 Goal-Conditioned after only 1 million steps. This
surpasses the reported results from the original CARE paper
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[4] of 0.54 after 2 million steps, and the Soft-Modularization
paper [25] of 0.60 after 1 million steps on MT50-Fixed
(which is easier than Goal-Conditioned).

In all settings, adding PTSL to the best-performing method
improved the performance, whether it was CARE or a simple
Multitask SAC, suggesting PTSL can improve any method.

One issue while training a PTSL architecture is to balance
the training of the shared layers and the task-specific ones.
Ideally, a shared policy should be learned first and then
the task-specific layers should be learned to improve the
performance. Our experiments showed that initializing the
projection matrices to zero was a good way to enforce this.

D. Ablation study

Success — MT10-Cond. 200K (n = 10)

Independent projection 0.369 ± 0.045
Shared projection 0.511 ± 0.034

TABLE IV: Success rate of CARE + PTSL with indepen-
dent versus shared projections on MT10 Goal-Conditioned.
Results are averaged over n = 4 seeds for each method. We
report the mean and standard error.

Success — MT10-Cond. 200K (n = 10)

No residual 0.511 ± 0.034
Learnable sum 0.410 ± 0.031
Learnable projection 0.385 ± 0.032

TABLE V: Success rate of CARE + PTSL with various
residual functions. Results are averaged over n = 4 seeds
for each method. We report the mean and standard error.
The Sum residual is not indicated as it did not converge.

(a) (b)

Fig. 5: Training curves of different methods on all bench-
marks. The bolded line represents the mean over n = 10
runs for the short horizon and n = 4 for the long horizon.
The shaded area represents the standard error.

The result in the previous section suggests that PTSL
(with CARE or standalone) is both sample efficient and
yields a good policy on long horizons. In this section, we
further examine the influence of the different components
of the PTSL architecture on the performance of the model.

Shared versus independent projections. In Section III-
C.2, we discussed the relevance of using a shared projection
in our context since we have only a small number of layers.
We decided to compare the two approaches on the short
horizon setting with the same parameters: H = 326, D = 50,
and N = 3. This means that the independent projection has
slightly more parameters (about 12% more). We show the
results in Figure 5a.

Figure 5a shows that the shared projection is better than
the independent projection, and this is the case even though
the independent projection has more parameters. The shared
projection is therefore more efficient than the independent
projection in our context, as it helps the network to learn
a consistent mapping between the shared embedding space
and the task-specific embedding space. This result is in
agreement with the results from Stickland et. al. [34] that
show the shared projection is better than the independent
projection for NLP. The shared projection is also more stable
than the independent projection as it has a lower variance.

Comparison of residual functions. In Section III-C.3, we
discussed the relevance of using residual functions as they
have shown great results in other Deep Learning tasks [35].
To verify if residuals are relevant for PTSL, we evaluated
four variants on the short horizon setting with the same
number of parameters. We used H = 326, D = 50, and
N = 3 for all methods except the Learnable projection that
uses H = 321 resulting in roughly 1.871 million parameters.

Figure 5b and Table V shows that having no residuals is
better on the short horizon. This means that while the model
is more expressive, the additional complexity makes it less
sample-efficient and is not beneficial.

V. CONCLUSION

In this work, we present the Projected Task-Specific
Layers (PTSL), a novel method inspired by NLP, that
surpasses the state-of-the-art on the MT10 and MT50 Goal-
Conditioned benchmark from Meta-World.

Here we showed that PTSL learns a high-performing
policy faster than other popular methods with higher sample
efficiency and without introducing more parameters. Further-
more, PTSL can be integrated with existing methods like
CARE to improve them. Finally, we showed the benefits
of sharing a low-dimensional embedding space between the
shared backbone and the task-specific layers, which becomes
more obvious with task diversity (MT50).

In future work, we will include transfer learning of indi-
vidual layers from MT10 to MT50, hierarchical individual
layers to better scale, and the implementation of a routing
network for the individual layers to better share parameters.
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