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Abstract— Offline reinforcement learning (RL) has been
shown to be successfully modeled as a sequence modeling
problem, drawing inspiration from the success of Transformers.
Offline RL is often limited by the quality of the offline dataset,
so offline-to-online RL is a more realistic setting. Online decision
transformer (ODT) is an effective and representative sequence
modeling-based offline-to-online RL method. Despite its effec-
tiveness, ODT still suffers from the sample inefficiency problem
during the online fine-tuning phase. This sample inefficiency
problem arises because the agent treats all state-action pairs
in the replay buffer equally when trying to learn from the
replay buffer. In this paper, we propose a simple yet effective
method, called weighting online decision transformer with
episodic memory (WODTEM), to improve sample efficiency. We
first attempt to introduce an episodic memory (EM) mechanism
into the sequence modeling-based RL methods. By utilizing the
EM mechanism, we propose a novel training objective with a
weighting function, based on ODT, to improve sample efficiency.
Experimental results on multiple tasks show that WODTEM
can improve sample efficiency.

I. INTRODUCTION

Offline reinforcement learning (RL) [20] has attracted
attention in recent years due to its applicability in real-
world scenarios where large-scale online data collection
might be costly or unsafe. Researchers have explored the
potential of training robust agents by leveraging deep neural
networks and large-scale offline datasets [17], [18], and have
proposed some traditional offline RL methods that try to fit
value functions or compute policy gradients [17], [18], [25].
Recently, the Transformer architecture [31] has become a
cornerstone in multiple domains, such as natural language
processing [6], [4], computer vision [7], and robotics [28],
[14]. Motivated by the success of the Transformer architec-
ture, recent works show that the Transformer architecture can
be adopted to conduct one whole sequential decision-maker
directly [5], [13], [10], [34], [32], [35], [21], [27]. One of
the representative methods is decision transformer (DT) [5].
Here, the RL problem is modeled as a sequence modeling
task, wherein an agent learns to generate a policy auto-
regressively using an offline dataset and yields high returns.
This category of methods is called sequence modeling-based
offline RL methods.

While these sequence modeling-based offline RL methods
have achieved promising performance in various tasks [21],
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[15], they still suffer the problem that agents trained through
these methods might end up with sub-optimal policies due
to the limited quality of the offline dataset. To overcome
this problem, introducing online fine-tuning is necessary
further to enhance agents’ performance [25], [38], result-
ing in a more realistic setting, offline-to-online RL. In
offline-to-online RL, agents can train their policies using
the offline dataset (offline training phase) and then fine-
tune their policies through small-scale online interactions
from the environments (online fine-tuning phase). Recently,
researchers have proposed some sequence modeling-based
offline-to-online RL methods [38], [33]. Although sequence
modeling-based offline-to-online RL methods benefit from
online fine-tuning, they still suffer from sample inefficiency.
This sample inefficiency problem occurs because the training
phase of the agent’s policy equally learns from all state-
action pairs in the replay buffer. In other words, it assigns
the same weight to each state-action pair in the replay
buffer, regardless of whether some state-action pairs are more
valuable or informative than others.

Episodic memory (EM) mechanism [29], [1] can record
the historical optimal actions and the corresponding histor-
ical optimal discounted returns for states across all expe-
rienced trajectories, and it has been well applied in tra-
ditional RL methods to improve sample efficiency [22],
[19], [23], [37]. To the best of our knowledge, the EM
mechanism has not been integrated into sequence modeling-
based RL methods, especially sequence modeling-based
offline-to-online RL methods. We make the first attempt to
introduce the EM mechanism into sequence modeling-based
RL methods and propose a simple yet effective method,
called weighting online decision transformer with episodic
memory (WODTEM), to improve sample efficiency. The
contributions of this work are briefly outlined as follows:

• WODTEM is the first work to introduce the EM mech-
anism into sequence modeling-based RL methods.

• We propose an EM mechanism that enables the agent
to access the approximate historical optimal discounted
return and approximate historical optimal action for
each state.

• Utilizing the EM mechanism, we propose a novel
training objective with a weighting function, based on
ODT [38], to improve sample efficiency. Here, the
weighting function enables the agent to pay attention
to the state-action pairs in the replay buffer whose
discounted returns are higher than their corresponding
approximate historical optimal discounted returns.
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• Experimental results on multiple tasks show that our
method can improve sample efficiency.

II. RELATED WORK

A. Transformers for Sequential Decision-maker

Recent methods have made much progress when formu-
lating the RL problem as a sequence modeling problem [21],
which resembles the supervised learning paradigm [8], [30].
These methods predict action sequences conditioned on some
task specifications, like states, desired returns, actions, etc.
Most of these methods focus on the offline RL setting, where
agents’ policies are trained on offline datasets. This category
of these methods is referred to as sequence modeling-
based offline RL methods. The representative sequence
modeling-based offline RL methods include DT [5], TT [13],
GDT [10], BootT [32], DoC [35], and QDT [34]. These
methods focusing on the offline RL setting might result in
sub-optimal policies for agents due to the limited quality of
the training dataset.

Introducing online fine-tuning can help the agent alleviate
the impact of the quality of the training dataset. Hence,
offline-to-online RL is a more realistic setting where agents
can train their policies using the offline dataset and then fine-
tune them through small-scale online interactions from the
environments. Building upon DT [5], researchers proposed
sequence modeling-based offline-to-online RL methods [38],
[33]. The most representative method is online decision
transformer (ODT) [38]. Although ODT can online interact
with the environment to overcome the limitation of offline
datasets, ODT still suffers from the sample inefficiency
problem.

B. Episodic Memory

From the perspective of psychobiology, the reason why hu-
mans can quickly exploit the high reward after the discovery
is the fact that the hippocampus of humans stores episodic
memory (EM) [29], [1]. Motivated by the hippocampus’s
ability, the EM mechanism has been widely applied in the
online RL setting to help the agent remember past valuable
experiences and improve sample efficiency [3], [26], [22],
[19], [36], [11], [23], [37]. When the action space is discrete,
representative works include MFEC [3], NEC [26], and
EMDQN [22]. As for the action space being continuous,
EMAC [19], CEC [36], and GEM [11] have achieved some
progress. Except for these methods for single-agent online
RL, the EM mechanism has been extended into multi-agent
online RL to improve sample efficiency [23], [37]. For offline
RL setting, VEM [24] utilizes EM to accelerate training.
While EM has been well utilized in traditional RL methods,
EM has not been introduced into the sequence modeling-
based RL methods.

III. PRELIMINARIES

A. Notations and Setting

Following ODT [38], we model the environment as a
Markov decision process (MDP) [2], which is denoted as
a tuple ⟨S,A,P,R,γ,ρ⟩. Here, S ∈ RF is the state space, and

A is the action space. P(st+1|st ,at) represents the probability
distribution over transitions. R(st ,at) is the reward function,
and γ ∈ (0,1] is the discount factor. An agent starts in an
initial state s1 ∈ S, which is sampled from ρ(s1). At each
time-step t, the agent receives a state st ∈ S and then takes
an action at ∈ A. The environment then yields a reward
rt = R(st ,at) and transits to the next state st+1 ∼ P(·|st ,at).
Let τ represent a trajectory with a length of |τ|. The return-
to-go (RTG) of a trajectory τ at time-step t, denoted as
gt , is computed as the sum of rewards from time-step t
until the end of the trajectory: gt = ∑

|τ|
t ′=t rt ′ . Please note

that the RTG g1 is equivalent to the total return of the
trajectory τ . The discounted return (DR) of a trajectory
τ at time-step t, denoted as dt , is the discounted sum of
rewards from time-step t until the end of the trajectory:
dt = ∑

|τ|
t ′=t γ t ′−trt ′ . We use sss−C,t = (smax(1,t−C+1), · · · ,st) to

represent the sequence of states with the latest C time-steps
at time-step t, respectively. Here, C is denoted as the context
length. Similarly, ggg−C,t represents the sequence of RTGs,
aaa−C,t represents the sequence of actions, and ddd−C,t represents
the sequence of DRs, all with the same context length C.

In this paper, we focus on the offline-to-online RL setting.
During the offline training phase, the agent uses an offline
dataset (replay buffer) Doffline, sampled from the offline data
distribution Doffline. During the online fine-tuning phase, the
agent utilizes a replay buffer denoted as Donline. Donline initially
contains trajectories from Doffline and is then updated using
trajectories collected by the agent through online interactions
with the environment, following a first-in-first-out manner.

B. Online Decision Transformer

Under the offline-to-online RL setting, online decision
transformer (ODT) [38] is one of the representative works
that formulates the RL problem as a sequence modeling
problem. ODT learns a stochastic policy πθ (at |sss−C,t ,ggg−C,t)
with the policy parameters θ . For the continuous action
space, the stochastic policy is represented as a multivariate
Gaussian distribution with a mean vector µθ (sss−C,t ,ggg−C,t),
and a diagonal covariance matrix Σθ (sss−C,t ,ggg−C,t). The orig-
inal paper of ODT [38] only focuses on the continuous
action spaces. In the case of discrete action spaces, we
extend ODT by modeling the policy πθ (at |sss−C,t ,ggg−C,t) using
a categorical distribution, a common choice [12]. During
the online fine-tuning phase, the agent is given an online
RTG gonline,1 and an initial state s1. At the time-step t, the
agent takes the action at based on its stochastic policy, and
then receives the next state st+1 ∼ P(·|st ,at) and a reward
rt = R(st ,at). The next online RTG gonline,t+1 is updated as
gonline,t+1 = gonline,t − rt . This process is repeated until the
trajectory is terminated. Then, we compute the RTGs and
store τ = (s1,a1,g1, . . . ,s|τ|,a|τ|,g|τ|} in Donline.

Given the replay buffer D (Doffline, or Donline), ODT
samples a sub-trajectory (sss−C,t ,aaa−C,t ,ggg−C,t), which is abbre-
viated as (sss,aaa,ggg) by omitting subscripts. This sub-trajectory
contains multiple samples {(sssc

−C,t ,aaa
c
−C,t ,ggg

c
−C,t)|max(1, t −

C + 1) ≤ c ≤ t} with different lengths. Here, sssc
−C,t =

(smax(1,t−C+1), · · · ,sc), similarly for aaac
−C,t , and gggc

−C,t . ODT
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Fig. 1. (a) The grid-world task. “S” is the start location of the agent, and “G” is the goal location of the agent. The blue blocks mean the optimal trajectory
of the agent. (b) Training curve about the mean trajectory length of ODT across 5 random seeds. The grey dotted line represents the optimal policy. (c)
Distribution of trajectory lengths, which is summarized from all encountered trajectories after offline training and online fine-tuning across 5 random seeds.
(d) Comparison of the action distribution at “S” of learned policy with that in the Doffline and Donline. Here, Donline is obtained after offline training and
online fine-tuning. R, L, D and U denote Right, Left, Down and Up, respectively. R-D, R-U, L-D and L-U denote right-down, right-up, left-down, and
left-up, respectively.

solves the following training objective by alternately opti-
mizing θ and λ :

max
λ⩾0

min
θ

J(θ)+λ (η− H̄(θ)), (1)

where

J(θ) = E(sss,aaa,ggg)∼D[−
1
|Ct | ∑

c∈Ct
logπθ (ac|sssc

−C,t ,ggg
c
−C,t)], (2)

and

H̄(θ) = E(sss,ggg)∼D[
1
|Ct | ∑

c∈Ct
H(πθ (·|sssc

−C,t ,ggg
c
−C,t))]. (3)

Here, H(πθ (·|sssc
−C,t ,ggg

c
−C,t)) is the Shannon entropy of the

distribution πθ (·|sssc
−C,t ,ggg

c
−C,t), Ct = {c|max(1, t −C + 1) ≤

c≤ t} and (sss,ggg) is the abbreviation of (sssc
−C,t ,ggg

c
−C,t). η is a

constant.
During evaluation, the agent is given an evaluation RTG

geval,1 and an initial state s1 at the beginning of a trajectory.
At the time-step t, ODT selects the mean vector of the action
distribution as its action at for the continuous action spaces,
and ODT selects the action with the maximum probability as
its action at for the discrete action spaces. The agent executes
the action at and then receives the next state st+1 ∼P(·|st ,at)
and a reward rt = R(st ,at). The next evaluation RTG geval,t+1
is updated as geval,t+1 = geval,t − rt . This process is repeated
until the trajectory is terminated.

IV. METHOD

In this section, we first use a motivating example to
illustrate that ODT suffers from the sample inefficiency
problem. Then, we propose a simple yet effective method,
called weighting online decision transformer with episodic
memory (WODTEM), to improve sample efficiency.

A. Motivating Example

We use a simple grid-world task with a 6× 6 grid to
demonstrate the sample inefficiency problem encountered
by ODT [38] and to reveal interesting findings. The agent
in this task has 8 actions, including 4 cardinal directions
(right, down, left, up) and 4 diagonal directions (right-down,
right-up, left-down, left-up). The agent aims to reach the
bottom-right “G” from the top-left “S” within 100 time steps.

The agent only receives a reward of 1 upon reaching “G”,
where the trajectory is terminated. In all other locations,
the agent receives a reward of 0. For offline training, we
use an offline dataset consisting of 500 trajectories. These
trajectories were collected using a fixed sub-optimal policy,
with a mean trajectory length of 47.50 and a mean return of
0.91. This fixed sub-optimal policy operates as follows: at
each state, the agent’s policy assigns a probability of 20%
to the left action, a probability of 20% to the down action,
and a probability of 10% each to any other available action.
Fig. 1a shows the snapshot of the grid-world task, and the
blue blocks represent the optimal trajectory of the agent,
which has a length of 5.

We evaluate ODT on this task with a sample budget of
20K online interactions, and the hyper-parameters settings
of ODT are detailed in the following experimental section.
After offline training and online fine-tuning, ODT converges
to a sub-optimal policy with a mean trajectory length of
approximately seven and a mean return of 1, which is an
improvement over the policy adopted by the offline dataset.
However, ODT still suffers from sample inefficiency since
it fails to capture the optimal policy corresponding to the
optimal trajectory. Considering five random seeds, Fig. 1b
demonstrates the training curve about the mean trajectory
length of ODT during the online fine-tuning phase, and
Fig. 1c summarizes the mean number of trajectories with
varying lengths across all encountered trajectories after of-
fline training and online fine-tuning. We observe that the
agent has collected some valuable trajectories with lengths
shorter than seven, even the optimal trajectory. This finding
illustrates that ODT ignores these valuable trajectories. We
also compare the action distribution at “S” of the learned
policy with that in Doffline and Donline, as shown in Fig. 1d.
Here, Donline is obtained after offline training and online fine-
tuning. Please note that the optimal action at “S” is right-
down (R-D). We can find that although the probability of
R-D in the learned policy is higher than that in the offline
dataset, these three action distributions still share similarities.
This finding illustrates that the policy only matches the action
distribution in the replay buffer, and this might be caused by
equally weighing over all state-action pairs, which causes
sample inefficiency. Hence, this example motivates us to put
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different weights for state-action pairs in the replay buffer to
improve sample efficiency.

B. Weighting ODT with Episodic Memory

To address the above problem, we first propose an EM
mechanism, which enables the agent to access the approx-
imate historical optimal action and approximate historical
optimal DR for each state. Then, we propose a novel training
objective with a weighting function based on ODT [38] to
improve sample efficiency.

1) EM Mechanism: The EM mechanism can help the
agent to remember past valuable experiences, for example,
historical optimal actions of states and historical optimal
DRs of states. The key to constructing the EM mechanism
is establishing a lookup table, denoted as QQQ, indexed by
states. Each entry in QQQ, corresponding to a state s, stores
a tuple Q(s) = (s,ae,e). Here, e represents the highest DR
ever obtained in state s and is called historical optimal
DR. ae is the action for achieving e in state s and is
called historical optimal action. Given a collected trajectory
τ from either an offline dataset or online interactions from
the environment, we calculate the DR for each state-action
pair and use DRs to refresh the trajectory. Then we get
τ = (s1,a1,g1,d1, . . . ,s|τ|,a|τ|,g|τ|,d|τ|). The lookup table QQQ
is updated by τ based on the following update rules:

Q(st)←

 Q(st), if Q(st) is stored in QQQ and e≥ dt ;
(st ,at ,dt), if Q(st) is stored in QQQ and e < dt ;
(st ,at ,dt), if Q(st) is not stored in QQQ;

(4)
where 1≤ t ≤ |τ|. Here, e≥ dt signifies that the highest DR
obtained in state st recorded in QQQ is larger than or equal to
the DR obtained in state st during this trajectory. The update
rules mean that for each state, we update its historical optimal
DR with the maximum DR and its historical optimal action
with the action corresponding to the maximum DR. The
lookup table QQQ serves as a buffer for storing the most valu-
able experiences within historical trajectories. The historical
optimal DR stored in each entry is updated non-decreasingly.
Following prior works [3], [22], [23], the number of entries
in the lookup table QQQ is increased until the maximum size
constraint is satisfied. When QQQ is filled, we remove the least
frequently accessed entry. Moreover, we also employ random
projection as a dimensionality reduction technique [16] to
project a state from the original state space S ∈ RF into a
lower-dimensional space with dimension F1≪ F .

The most similar EM mechanism to our work is the EM
mechanism in CEC [36], both implemented by maintaining a
table with state-action-DR tuples. However, there is a notable
difference in updating the lookup table. CEC uses a nearest
neighbor search method to update the table, while our work
focuses on exact state matching and then updates the corre-
sponding action and DR. The exact state matching adopted
by our work can avoid imprecise updates and information
loss, which can occur when using the nearest neighbor search
method.

2) Approximate Historical Optimal DR and Approximate
Historical Optimal Action: The EM mechanism adopts a
lookup table QQQ to record the most valuable experiences from
the collected trajectories. We expect that given a query state
sq, we can look up from QQQ and get Q(sq) = (sq,ae

q,eq). Then,
we can utilize the historical optimal action ae

q and the histori-
cal optimal DR eq for the state sq to assist the agent training.
However, in many applications, the above expectation suffers
from a problem that many states have been visited only once
or zero times by the agent, especially in an environment
with a high-dimensional and continuous state space. This
leads to two possible cases when considering a query state
sq: either the state sq is not found in QQQ, or when found,
the corresponding historical optimal action ae

q and historical
optimal DR eq have not been sufficiently updated because the
state sq is visited infrequently. Consequently, the challenge
lies in efficiently approximating a historical optimal DR and
a historical optimal action to assist the agent training in such
cases.

As assumed in prior works like [36], [19], neighboring
states can be considered similar to the query state and then
can contribute valuable information. We adopt a strategy of
looking up the K closest states (neighboring states) {sk|k =
1, . . . ,K} to a query state sq within the lookup table QQQ
and providing an approximate historical optimal DR and an
approximate historical optimal action for the agent. However,
it is essential to note that even the closest state retrieved
might not always be similar to the query state. Hence, we
need to filter out those dissimilar states. Following [19], the
similarity between two states sq and sk can be measured by
the l2 distance metric, expressed as q(sq,sk) = ∥sq− sk∥2

2.
Then, we filter out those dissimilar states to the query state
by using a distance threshold ε . Specifically, given a query
state sq and one of K closet states in QQQ, sk, if q(sq,sk)≥ ε ,
the states sq and sk are dissimilar and sk should be filtered
out. Hence, we can get a set KKK(sq) that comprises similar
states with a maximum number of K, their corresponding
historical optimal DRs, and historical optimal actions, shown
as follows:

KKK(sq) = {(sk,ae
k,ek)|q(sq,sk)< ε,1≤ k ≤ K}.

Given a query state sq and KKK(sq), the approximate histor-
ical optimal DR for sq is denoted as ê(sq) and is calculated
as a weighted sum of the corresponding historical optimal
DRs in KKK(sq), shown as follows:

ê(sq) = ∑
(sk,ae

k,ek)∈KKK(sq)

exp(−q(sq,sk))ek

∑(sk1 ,a
e
k1
,ek1 )∈KKK(sq) exp(−q(sq,sk1))

.

(5)
And the approximate historical optimal action for sq is
denoted as â(sq), which is chosen from {ae

k|(sk,ae
k,ek) ∈

KKK(sq)}. Among these similar states, a higher value of the
historical optimal DR indicates a better action. Hence, we
sample the action â(sq) from the set {ae

k|(sk,ae
k,ek)∈KKK(sq)}

based on the probability, which is proportional to their
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Fig. 2. Architecture of WODTEM during the offline training phase and the online fine-tuning phase.

historical optimal DRs, shown as follows:

p(ae
k|sq,sk,ek) =

exp(ek)

∑(sk,ae
k,ek)∈KKK(sq) exp(ek)

. (6)

3) Training Procedure: As discussed in Section IV-A,
the agent needs to assign appropriate attention to different
state-action pairs in the replay buffer. We leverage approxi-
mate historical optimal DRs and actions to help the agent
allocate varying weights to state-action pairs in the re-
play buffer. Given a sub-trajectory (sss−C,t ,aaa−C,t ,ggg−C,t ,ddd−C,t)
sampled from the replay buffer, we get multiple samples
{(sssc
−C,t ,aaa

c
−C,t ,ggg

c
−C,t ,ddd

c
−C,t)|max(1, t −C + 1) ≤ c ≤ t} with

different lengths. For (sssc
−C,t ,aaa

c
−C,t ,ggg

c
−C,t ,ddd

c
−C,t), we look up

sc in QQQ and obtain KKK(sc). Based on (5), we obtain the
approximate historical optimal DR ê(sc). If dc ≥ ê(sc), ac
is the historical optimal action, and the agent has reason to
pay more attention to this state-action pair from the replay
buffer. If dc < ê(sc), it means that ac, which is sampled from
the replay buffer, is not the historical optimal action, and the
agent needs to pay less attention to this state-action pair. This
is summarized as a weighting function, shown as follows:

w(sc,ac) =

{
1, if dc ≥ ê(sc);
α, otherwise; (7)

where α ∈ [0,1] is a constant. Moreover, when dc < ê(sc),
we can use the approximate historical optimal action â(sc)
to assist the agent in finding its potential optimal action at
state sc. Hence, based on ODT, we propose a novel training
objective with the weighting function (7), shown as follows:

max
λ⩾0

min
θ

L(θ)+λ (η− H̄(θ)), (8)

where

L(θ) = E(sss,aaa,ggg,ddd)∼D[−
1
|Ct | ∑

c∈Ct
w(sc,ac) logπθ (ac|sssc

−C,t ,ggg
c
−C,t)

− 1
|Ct | ∑

c∈Ct
(1−w(sc,ac)) logπθ (â(sc)|sssc

−C,t ,ggg
c
−C,t)], (9)

and

H̄(θ) = E(sss,ggg)∼D[
1
|Ct | ∑

c∈Ct
H(πθ (·|sssc

−C,t ,ggg
c
−C,t))]. (10)

Here, Ct = {c|max(1, t −C + 1) ≤ c ≤ t}. â(sc) is the
approximate historical optimal action of the state sc.
H(πθ (·|sssc

−C,t ,ggg
c
−C,t)) is the Shannon entropy of the distri-

bution πθ (·|sssc
−C,t ,ggg

c
−C,t). η is a constant. The first term

in (9) aims at training the model πθ to selectively match

(a) (b) (c)
Fig. 3. (a) A snapshot of the hopper task. (b) A snapshot of the maze2d-
umaze task. (c) A snap of the antmaze task.

the observed action distribution from the replay buffer by
applying different weights to different state-action pairs. The
second term in (9) aims to use approximate historical optimal
actions to help train the model πθ . Moreover, the training
objective (10) is the same as that in ODT. This training
objective (10) controls the degree of action distribution
mismatch during the offline training phase and encourages
the agent to explore during the online fine-tuning phase.
The whole training objective (8) is solved by alternately
optimizing θ and λ . Please note that when α = 1, our
method degenerates to ODT. Fig. 2 shows the architecture of
WODTEM during the offline training and online fine-tuning
phase.

V. EXPERIMENTS

A. Tasks and Datasets

We focus on evaluating our method on three types
of tasks using offline datasets provided by the D4RL
benchmark [9], including gym-mujoco tasks, maze2d tasks,
and antmaze tasks. For gym-mujoco, we choose hopper,
walker2d, halfcheetah, and ant as tasks and use the medium
and medium-replay datasets to evaluate our method. For
maze2d, a 2D agent is required to reach a fixed goal
location. We choose three tasks, including umaze, medium,
and large. The datasets are generated by randomly selecting
goal locations and a planner. For antmaze, an 8-DoF ant
quadruped robot is required to reach a fixed goal location
and receives a sparse 0-1 reward. We choose the umaze as
a task. We use umaze and umaze-diverse as the datasets.
Fig. 3 shows the snapshots of the hopper, maze2d-umaze,
and antmaze tasks. We also evaluate all methods on the
grid-world task described in Section IV-A, and the way of
collecting the dataset has been described in Section IV-A.

B. Baselines

We choose DT [5] and ODT [38] for baselines. DT is the
basic architecture adopted by ODT and our method. In the

10797



TABLE I
HYPER-PARAMETER SETTINGS OF ODT ON THE GRID-WORLD TASK.
Hyper-parameter Value Hyper-parameter Value
Number of layers 1 Number of attention heads 1
Embedding dimension 512 Context length 1
Weight decay 0.0 Learning rate 0.001
Offline training updates 1e3 Online training updates per iteration 50
Buffer size 500 Position no
gonline 2.0 geval 1.0

TABLE II
HYPER-PARAMETER SETTINGS OF ODT ON THE MAZE2D TASKS.

Hyper-parameter Value Hyper-parameter Value
Number of layers 4 Number of attention heads 4
Embedding dimension 512 Context length 20
Weight decay 0.0 Learning rate 0.001
Offline training updates 2e4 Online training updates per iteration 300
Buffer size 1500 Position yes
gonline (maze2d-umaze) 340.0 geval (maze2d-umaze) 170.0
gonline (maze2d-medium) 560.0 geval (maze2d-medium) 280.0
gonline (maze2d-large) 560.0 geval (maze2d-large) 280.0

offline-to-online RL setting, ODT is the most representative
method that models the RL problem as a sequence modeling
problem. For gym-mujoco and antmaze tasks, we use the
same hyper-parameter settings as those in the original papers.
We summarize the specific hyper-parameter settings for the
grid-world task and all maze2d tasks in Table I and Table II,
respectively. Other hyper-parameter settings are the same as
that in [38].

C. Results on Tasks from D4RL

In this section, we evaluate our method and baselines
with five random seeds on the gym-mujoco, maze2d, and
antmaze tasks from D4RL [9]. ODT and our method both
have a sample budget of 200K online interactions. Following
the prior work [38], we also report the average normalized
scores. Table III summarizes the average normalized scores
of all methods on gym-mujoco, maze2d, and antmaze tasks.
Here, “m”, “mr” and “d” represent “medium”, “medium-
replay” and “diverse”, respectively. In our method, F1 is set
to 4 for the random projection technique. The lookup table
size is set to 4e6 for the maze2d-large task and is set to
2e6 for others. The discount factor γ is set to 0.99. α is
set to 0.9 and K is set to 2. ε is set to 0.2 and 0.6 for
walker2d and halfcheetah tasks, respectively. For ant and
antmaze tasks, ε = 0.3. ε is set to 0.1 for other tasks. Other
hyper-parameter settings are the same as those in ODT [38].
From Table III, we can find that our method can perform
better than ODT and DT in most tasks, demonstrating that
our method is effective and improves sample efficiency.

D. Results on Grid-world

For the grid-world task, we do not use the random projec-
tion technique, and the lookup table size is set to 36 since
the number of all states is 36. The discount factor γ is set
to 0.99. K is set to 1 and ε is set to 0.1. α is set to 0.75.
ODT and our method both have a sample budget of 20K
online interactions. After offline training and online fine-
tuning, our method converges to the optimal policy with a
mean trajectory length of 5 and a mean return of 1. Fig 4a
shows the training curves about the mean trajectory length of
all methods. We find that after offline training, our method
performs better than other methods, which illustrates that our

TABLE III
COMPARISON OF THE AVERAGE NORMALIZED SCORES ON TASKS FROM

D4RL. WE REPORT THE MEAN AND STANDARD DEVIATION ACROSS

FIVE RANDOM SEEDS.

Dataset DT ODT WODTEM
hopper-m 61.03±5.11 95.56±3.53 999666...555444±±±444...666000
hopper-mr 62.75±15.05 85.52±3.26 888888...777888±±±222...111666
walker2d-m 72.03±4.32 72.58±1.42 777333...999999±±±222...222666
walker2d-mr 42.53±15.36 73.11±4.54 777666...222666±±±333...999777
halfcheetah-m 444222...444333±±±000...333000 42.38±0.25 42.17±0.11
halfcheetah-mr 35.92±1.56 40.08±0.46 444000...000999±±±000...555111
ant-m 999333...555666±±±444...999444 87.51±2.69 88.96±2.45
ant-mr 89.08±5.33 88.92±1.10 999111...333111±±±222...222555
sum 499.33 585.66 555999888...111000
antmaze-umaze 53.30±5.52 888222...666000±±±555...555777 80.20±1.33
antmaze-umaze-d 52.50±9.89 53.60±1.47 555888...666000±±±333...777222
sum 105.80 136.20 111333888...888000
maze2d-umaze 39.95±12.17 31.85±7.46 777555...111888±±±111000...777999
maze2d-medium 19.11±4.17 82.88±7.88 999666...222333±±±333...222444
maze2d-large 38.93±4.32 69.23±12.35 888444...222666±±±111666...555444
sum 97.99 183.96 222555555...666777
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Fig. 4. (a) Training curves of ODT, and WODTEM across 5 random seeds.
Due to DT does not have online fine-tuning, we use a reference line to show
DT. (b) Comparison of the action distribution at “S” of learned policy with
that in the Doffline and Donline after offline training and online fine-tuning.

method can learn better from the offline dataset compared
with other methods. During the online fine-tuning phase, our
method can collect the optimal trajectory by exploration. We
also find that our method quickly overlaps with the grey
dotted line, which represents the optimal policy. This obser-
vation verifies again that our method can improve sample
efficiency. Furthermore, we compare the action distribution
at “S” of the learned policy with that in Doffline and Donline,
as shown in Fig 4b. Here, Donline is obtained after offline
training and online fine-tuning. We can find that at “S”, the
action distribution of the learned policy is different from that
in the offline dataset Doffline. This observation illustrates that
our method can help the policy avoid blindly matching the
action distribution in the replay buffer.

VI. CONCLUSION

In this paper, we have proposed a novel and effective
method, WODTEM, to improve sample efficiency when
modeling the RL problem as a sequence modeling prob-
lem in the offline-to-online RL setting. To the best of our
knowledge, WODTEM is the first work to introduce the
EM mechanism into sequence modeling-based RL methods.
Utilizing the EM mechanism, we propose a novel training ob-
jective with a weighting function based on ODT to improve
sample efficiency. Experimental results on multiple tasks
have verified that WODTEM can improve sample efficiency.
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