
Conflict Area Prediction for Boosting Search-Based Multi-Agent
Pathfinding Algorithms

Jaesung Ryu1, Youngjoon Kwon1, Sangho Yoon1, and *Kyungjae Lee1

Abstract— We address the challenge of efficiently controlling
multi-agent systems, crucial in fields like logistics and traffic
management. We propose a novel approach that combines
learning-based techniques with search-based methods, focusing
on enhancing the conflict-based search (CBS). The CBS ensures
optimality but suffers from increasing complexity as agents
or maps grow. To tackle this, we leverage learning-based
approaches to enhance computational efficiency. By training
a conflict area prediction (CAP) network, we anticipate po-
tential conflict areas, allowing for low-level path planners to
explore conflict-free paths. Our experiments demonstrate the
effectiveness of our method in reducing computational demands
compared to existing approaches.

I. INTRODUCTION

Recently, multi-agent control systems have found exten-
sive applications across various industries. They are utilized
for controlling multiple vehicles and mobile robots [1] in
scenarios such as large-scale logistics warehouses [2], traffic
management [3], and congested airports [4]. Finding conflict-
free and shortest paths for multiple agents is essential to ef-
ficiently control these multi-agent systems. Multi-agent path
finding (MAPF) is a problem in which multiple agents, each
with their own start and goal locations, need to find optimal
paths to their respective goals while avoiding conflicts with
each other. To solve the MAPF problem, various search-
based methods [5]–[10] have been developed to ensure opti-
mality and completeness, like a conflict-based search (CBS)
[11]. However, there still remain significant challenges as the
number of agents increases or the map size grows, resulting
in exponentially increasing computational complexity.

From the perspective of computational complexity,
learning-based methods have recently been developed to
reduce computational loads. Learning-based methods train
path planners (or controllers) for each agent to reach their
target locations without conflicts with other agents by using
imitation learning [12], or guiding agents with their shortest
path information, or enhancing cooperative behaviors [13].
While the training phase requires significant computational
resources, once the training is completed, it can find paths
with several inferences of the trained model.

*:Corresponding author.
1J.Ryu, Y.Kwon, S.Yoon, K.Lee are with the Department of Ar-

tificial Intelligence, Chung-Ang University, Seoul 06974, Republic
of Korea (e-mails: jaesungryu96@gmail.com, dud842655@gmail.com,
sh.y970719@gmail.com, kyungjae.lee@ai.cau.ac.kr)

This work was supported by the Institute of Information & Communica-
tions Technology Planning & Evaluation (IITP) and the National Research
Foundation of Korea(NRF) grant funded by the Korean government (MSIT)
(No.2021-0-01341, AI Graduate School Program, CAU, 50%) and (No. RS-
2023-00211357, Smart Assembler: Robot Active Learning for Unseen Parts
Assembly, 50%), respectively.

Fig. 1: Motivation to reduce conflicts in advance. A dog and
mouse aim to reach B1 and A2, respectively, but their initial
plans have the conflict at B3. If a cost is added at B3, their
initial plan can be changed to conflict-free ones.

While the majority of learning-based methods efficiently
reduce computational time compared to search-based meth-
ods, they do not guarantee optimality and completeness,
which are critical for industrial applications. In this regard,
we propose a novel approach that leverages learning to boost
the computational efficiency of search-based methods while
preserving these properties. We mainly improve the CBS
which is known as an effective optimal MAPF solver. CBS
typically operates on two levels. The low-level focuses on
finding the optimal paths for individual agents. When these
paths encounter conflicts, the high-level enforces constraints
on the conflicting agents to prevent these conflicts, where
optimal is shortest. Search-based methods are applied at
the high-level process, exploring tree searches to determine
what constraints need to be added to resolve conflicts while
finding an optimal path. In this regard, as the number of
conflicts increases, the computational demand and memory
requirements increase. To address this, we train a conflict
area prediction network to anticipate the areas where con-
flicts may arise. Using these predictions, we can prioritize
the exploration of non-conflict paths in the low-level process
as shown in Fig. 1. To validate our method, we conducted ex-
periments on various MAPF scenarios with various numbers
of agents and different map sizes, comparing the proposed
method with various search-based and learning-based MAPF
algorithms. In experiments, we confirmed that the proposed
method is approximately 9.3% better than learning-based
approaches in terms of optimality and around 40% faster
than search-based methods in terms of computation time.

2024 IEEE International Conference on Robotics and Automation (ICRA 2024)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 14548

II. RELATED WORK

Algorithms for solving the MAPF problem are continu-
ously being researched. Among these, a CBS [11] is well-
known for its conflict-free and optimal characteristics. CBS
encounters a challenge such as exponentially increasing com-
putation time as the number of agents or scenario complexity
grows, due to the increasing conflicts that need to be resolved
in the constraint tree. Consequently, various approaches have
been proposed to address these issues.

Some approaches to the CBS algorithm [11] involve
adding specific methods to reduce the size of constraint tree
[14] or to sacrifice optimality to decrease computation time
[15], [16]. Improved-CBS (ICBS) [14] utilizes prioritizing
conflicts (PC) and bypass (BP) techniques within the CBS
algorithm. It reduces the constraint tree size by validating
newly discovered paths before expanding nodes. The validity
of the path means to resolve conflicts through constraints.
Enhanced-CBS (ECBS) [15] sacrifices optimality to some
extent but introduces a method to find bounded sub-optimal
paths within limited compromise, demonstrating the ability
to discover paths in a shorter time, even in cases where CBS
struggles to find a solution within a time limit. The bound
size can be adjusted by a parameter called w, with w = 1
corresponding to standard CBS. Hierarchical cooperative A*
(HCA*) [16] is another sub-optimal search-based algorithm.
It finds the shortest path for one agent, and this path occupies
the global reservation table. When the next agent searches
for a path, the areas occupied by the previous agents are
considered as obstacles, and the path is found with those
areas already blocked.

There are also approaches to solving MAPF problems
using learning techniques [12], [13], [17], [18]. In [12], a
path finding via reinforcement And imitation multi-agent
learning (PRIMAL) has been proposed where PRIMAL
addresses the computational challenges of the existing CBS-
like algorithms. PRIMAL is inspired by the concept of en-
abling each agent to navigate independently, avoid conflicts,
and reach their targets to quickly solve the MAPF problem.
In [17], a globally guided reinforcement learning (G2RL)
has been proposed where the ratio of detour actions by
PRIMAL agents is reduced, such as moving in directions
other than the goal direction or getting stuck in a specific
area due to obstacles. G2RL informs an agent of one of the
possible optimal paths obtained through the A* algorithm
and introduces a reward design that penalizes deviations
from this path. Furthermore, a distributed heuristic MAPF
with communication(DHC) [13] modified G2RL’s global
guidance by addressing the potential confusion caused by
providing a single optimal path as guidance because the
optimal path may not be unique. Instead, they changed
their approach to provide guidance based on heuristic map
information in the direction the agents were moving. Both
G2RL and DHC have mainly employed the results of A*
which provides optimal and complete examples, however,
the resulting policy cannot strongly guarantee optimality
and completeness since it just guides the learning processes.

SACHA [18] improves cooperative action among agents by
supplementing their observations with heuristic map infor-
mation from neighboring agents. Additionally, it enhances
performance by implementing the soft actor-critic framework
and proposing an optional communication module.

We propose a novel approach that distinguishes itself by
integrating learning techniques with search-based algorithms,
specifically designed to boost the search-based algorithm.
This integration maintains optimality and completeness while
significantly reducing computation time by combining the
strengths of both learning and search-based methods.

III. BACKGROUNDS

Given an undirected and connected graph G = (V,E)
and N agents indexed by i = {1, 2, ..., N}, each agent has a
unique start vertex si ∈ V and a unique goal vertex gi ∈ V .
Time is represented by discrete time steps t = 0, 1, ...,∞.
At each time step, an agent can either wait at the current
vertex or move to an adjacent vertex. conflicts between
agents involve vertex conflicts when two agents occupy the
same vertex simultaneously, and edge conflicts when two
agents traverse the same edge in opposite directions. A
MAPF solution consists of conflict-free paths for all agents.
Commonly used metrics for path quality involve the total
sum of path lengths, where the path length indicates the
time an agent takes to reach the goal vertex. Our research
is conducted on a 4-connected grid where five possible
movements are available: left, right, down, up, and wait.

CBS iterates through two processes, the low-level and
high-level processes, to find optimal paths as illustrated in
Fig. 2. The low-level process employs the A* algorithm
to find paths for all agents individually. A* algorithm [19]
calculates costs for all vertices in the scenario using the
equation f(v) = g(v) + h(v). Here, g(v) represents the
distance from the start vertex si to the current vertex v,
and h(v) is the estimated cost calculated by a specific
heuristic function from the current vertex v to the goal
vertex gi. Euclidean and Manhattan distances are commonly
used for the heuristic function. In the high-level process, by
comparing paths for all agents, detect conflicts, and con-
straints are added to restrict specific agent movements and
resolve conflicts. Adding constraints prompts the low-level
process to generate new paths that adhere to the constraints.
The resulting tree structure is known as the constraint tree.
Once the shortest paths resolving all conflicts are found,
the algorithm terminates. ICBS aimed to reduce computation
time by effectively reducing the size of the constraint tree.

IV. METHODS

A. Conflict Area Prediction

We propose a method to reduce computation time com-
pared to the standard CBS algorithm by introducing an
additional heuristic value into the low-level A* search. As
previously mentioned, A* calculates estimated costs using
the formula f(v) = g(v) + h(v) and finds paths in the
direction with the lowest estimated cost. Our approach aims

14549

Fig. 2: Illustration of CBS. Given an initial scenario, the lower-level process first computes the shortest path for each agent.
CBS generates a root node containing conflict information and paths, and then extends the constraint tree by adding child
nodes. These child nodes add a constraint from conflicts in the parent node and compute the new paths that resolve the
conflicts. The constraint tree continues to expand until a solution with no conflicts is found

Fig. 3: Illustration of the proposed method. Compared to Fig. 2, the conflict map influences the initial low-level results to
prioritize paths that avoid regions where conflicts are likely to occur.

to add an additional heuristic value cf(v) to set the esti-
mated cost of conflict-prone vertices, adjusting the heuristic
function to h′(v) = h(v)+ cf(v) and consequently, the cost
function to f(v) = g(v)+h′(v).This adjustment encourages
the A* algorithm to output paths that avoid these conflict-
prone vertices.

We use a neural network to predict these conflict areas
and generate a conflict map with additional heuristic values
in those areas. The predicted conflict map is then provided
to CBS, and the subsequent steps are the same as standard
CBS. Fig. 3 illustrates cases where our proposed method
successfully provides an advantage over traditional CBS.

Additional heuristics generated from the network can
alter the solutions of A*. If the network accurately predicts
conflict areas, A* will bypass these areas and find the precise
optimal solution. However, it is essential to discuss whether
the optimality of CBS is compromised in case of incorrect
predictions. Fortunately, even if the network mispredicts the
conflict areas, CBS can still find the optimal solution while
computational demands may increase. We categorize the
misprediction scenario into three cases based on an optimal
solution: straight scenario, multiple diagonal scenario, and
unique diagonal scenario.

1) Straight Scenario: The first scenario involves a goal
point positioned horizontally or vertically, resulting in a
straight optimal path. When a mispredicted conflict map is
added to this path, A* would only deviate from the straight
path if the additional heuristic value exceeded 2 since the
minimum distance between grids is 1 and the deviation from
and recovering back to the straight path requires double
transitions. Hence, if we set the range of the conflict map to
cf(v) ∈ (0, 1), then, the misprediction does not hamper A*.

2) Multiple Diagonal Scenario: The second scenario fea-
tures a goal point positioned diagonally, leading to multiple
potential optimal paths. Since there are multiple optimal
paths, even if one optimal path is blocked by misprediction,
the solver can take an alternative optimal one.

3) Unique Diagonal Scenario: The third scenario is the
worst case, which also has a diagonal goal point, but only
a unique optimal path is possible due to conflicts with
other agents. When a mispredicted conflict map directs the
algorithm towards the conflict-prone path, additional time is
required for the high-level process to recognize that the path
encounters a conflict while not affecting optimality.

In all these cases, we verified that the mispredicted conflict
map does not compromise the optimality of CBS. We also
experimentally confirmed this property for 22,000 scenarios.

B. Training Data Generation

We employed scenarios from the MAPF benchmark [20].
The positions of obstacles in benchmark scenarios were kept
fixed, while the agents’ starting positions and goals were
randomly placed to generate various scenarios. We selected
scenarios solvable by CBS and ICBS within less than five
minutes. Simultaneously, we collected conflict data for each
scenario from the CBS results. Using this data, we generated
the target conflict map for each agent. Locations of conflict
data were assigned a cost of 1 and then passed through a
Gaussian filter to create a heatmap, which was normalized
to values between 0 and 1.The conflict map was utilized as
training data for the neural network to predict conflict areas.
The input of a neural network consists of map and positional
information. Map information consists of obstacle maps and
heuristic maps. The obstacle map is encoded such that empty

14550

Fig. 4: The structure of the proposed conflict area prediction network.

spaces are represented as 0, while obstacles are represented
as 1. The heuristic map’s heuristic values are calculated using
Dijkstra’s algorithm. Positional information includes current
agent position (sx, sy), goal point (gx, gy), and goal vector
(gx−sx

mag , gy−sy
mag), and mag, where mag denotes the distance

from the position to the goal point. Positional information
also includes the information of other agents, such as the
relative position to the current agent (sxother−sx, syother−
sy) and goal vector and mag.

C. Architecture and Training

We constructed a network to predict conflict-prone areas
and generate the conflict map. Fig. 4 displays the structure
of our network and how the two input data types, map
information and positional information, are input into the
network. The map information passes through convolution
layers and max-pooling layers iteratively until it reaches
the bridge. At this point, it is concatenated with the other
input data, the positional information. The concatenated
data then goes through a linear layer to ensure the sizes
match. Afterward, it passes through up-convolution layers
and convolution layers iteratively. Finally, it goes through a
linear layer to adjust the output size and generate the conflict
map. The network takes inputs of dimensions (#Agents ×
((2 ×W ×H) + (7 + #Other agents × 5))) and produces
outputs of dimensions (#Agents × (W × H)). Learning
occurs through comparison with the target conflict map
generated from conflict data. The mean squared error (MSE)
loss function was employed in this process.

V. EXPERIMENTS

To verify the effectiveness of the proposed method, we
compare our algorithm with other MAPF algorithms in
various benchmark scenarios. All experiments were tested
on a 12th Gen Intel® Core™ i7-12700KF processor and a
GeForce RTX 3080 Lite Hash Rate GPU.

We generate data using scenarios from the MAPF bench-
mark. We utilized scenarios of sizes 32 × 32, 64 × 64, and

(a) 32× 32 (b) 64× 64

(c) 128× 128 (d) 256× 256

Fig. 5: Pictures of each scenario.

256 × 256 (Boston) and additionally scaled up the 64 × 64
scenario to create a 128×128 scenario, resulting in a total of
four scenarios. The number of agents was set to 40 for the
256×256 scenario and 20 for the rest, with agents randomly
placed in each scenario. We prepared approximately 11,400
data for the 32×32 scenario and around 3,000 data for each
of the other scenarios. These data were divided into a train-
validation-test split of 80 : 10 : 10. The hyperparameters
were set as follows: 200 epochs, a learning rate of 1e−4,
Adam optimizer, and a batch size of 32 for the 256 × 256
scenario and 20 for the others.

As our proposed method is built upon CBS, we included
CBS for comparison to determine if it could offer faster
computation time. Additionally, we incorporated ICBS as a

14551

baseline since it claims enhancements in computation time.
As baselines for learning-based methods, we utilized PRI-

MAL [12] and DHC [13]. To assess whether our proposed
method can achieve a similar computation time to learning-
based methods, we included these baselines. Furthermore,
learning-based methods do not guarantee optimality. We also
compared how our proposed approach differs in terms of
optimality and success rate from those methods.

We evaluated performance using several metrics to com-
pare our proposed approach with baseline methods. To verify
the computational efficiency, we first assessed the size of
constraint trees for CBS, ICBS, and ours by measuring
the number of generated nodes nGen and the number of
expanded nodes nExp. Furthermore, total CPU time taken
to solve the scenario is also measure where computation
time is calculated from scenario input to solution output,
excluding environment setup time for learning-based meth-
ods. Success rate measures the ability to complete a task
within the given time steps. The experiment was conducted
with scenarios that were successful in both CBS and ICBS
to verify the completeness of our method. To check the
optimality of each algorithm, we measure a cost error that
quantifies the discrepancy between the optimal cost found
by CBS and the total cost obtained by other algorithms,
i.e., (solution cost − optimal cost)/optimal cost, where the
cost represents total paths length. Hence, lower cost error
indicates better performance. These metrics were averaged
across test scenarios.

Fig. 6 illustrates the effectiveness of using the conflict
map. (b) and (c) show the initial A* result and results of CBS
without the conflict map. In contrast, (e), and (f) show the
initial A* result and results of CBS when using the conflict
map. In (d), the red area indicates the conflict map of the
red agent, demonstrating that the red agent has selected a
bypass of the same length in (e)

Table I shows the results obtained from the 32×32 scenar-
ios. A comparison with CBS reveals that our approach yields
improvements in constraint tree size and computation time.
Our method reduces approximately 40% in computation time
relative to CBS. While ICBS showcases a reduction in tree
size, it is observed to exhibit increased computation time. An
apparent reduction in computation time compared to CBS is
evident in learning-based methods. Our method outperforms
PRIMAL in speed and performs slightly slower than DHC.
DHC demonstrated approximately a 30% faster computation
time compared to our method. However, it is worth noting
that PRIMAL and DHC fail to achieve a 100% success rate,
with PRIMAL deviating by 18.7% and DHC by 8.1% from
the optimal path cost.

In a 64×64 scenario, our method achieves a computation
time reduction of approximately 40% compared to CBS. The
results presented in Table II show similar trends to those
observed in the 32x32 scenario. Once again, our approach
demonstrates reductions in both tree size and computation
time relative to CBS, while ICBS achieves a decrease in
tree size but an increase in computation time. Compared to
learning-based methods, our approach is slightly slower than

Metrics CBS ICBS DHC PRIMAL Proposed
nGen 557 434 N/A N/A 366
nExp 279 30 N/A N/A 183

CPU Time (s) 4.4 19 1.8 3.7 2.6
Success Rate (%) 100 100 99.9 91.3 100

Cost Error (%) 0 0 8.1 18.7 0

TABLE I: Performance comparison in 32 × 32 Scenarios.
The average optimal cost is 434.

Metrics CBS ICBS DHC PRIMAL Proposed
nGen 1074 173 N/A N/A 444
nExp 537 90 N/A N/A 223

CPU Time (s) 12.7 19.3 3.1 6.1 7.6
Success Rate (%) 100 100 99.4 97.4 100

Cost Error (%) 0 0 8.9 19.7 0

TABLE II: Performance comparison in 64 × 64 Scenarios.
The average optimal cost is 869.

Metrics CBS ICBS DHC PRIMAL Proposed
nGen 409 97 N/A N/A 81
nExp 205 51 N/A N/A 41

CPU Time (s) 35.4 77.2 5.5 19.6 6.3
Success Rate (%) 100 100 94.2 99.5 100

Cost Error (%) 0 0 5.4 15.3 0

TABLE III: Performance comparison in 128×128 Scenarios.
The average optimal cost is 1714.

Metrics CBS ICBS DHC PRIMAL Proposed
nGen 150 27 N/A N/A 58
nExp 75 23 N/A N/A 29

CPU Time (s) 48.1 159.5 12.9 189.6 29.9
Success Rate (%) 100 100 44.7 1.3 100

Cost Error (%) 0 0 1.1 50.4 0

TABLE IV: Performance comparison in 256×256 Scenarios.
The average optimal cost is 7859.

the two methods for the 64 × 64 scenario. DHC exhibited
approximately 60% faster computation time compared to our
method. The success rate of learning-based methods was
above 97%, and the cost error for PRIMAL was 19.7%,
while for DHC, it was 8.9%. Cost error slightly increases
compared to the results obtained for the 32× 32 scenario.

Table III presents the results obtained from the 128 ×
128 scenario. The comparisons with search-based methods
exhibit similar trends to previous scenarios. In the 128×128
scenario, the proposed method achieves an approximate 80%
reduction in computation time, which can also be attributed
to the scaling-up effect. The computation time of DHC is
approximately 13% faster than our proposed method. DHC
exhibited a lower success rate, while PRIMAL achieved
a high success rate of 99.5%. Furthermore, the cost error
decreased compared to the previous scenario, with PRIMAL
at 15.3% and DHC at 5.4%.

Table IV is the results in the 256 × 256 scenario. The
results of search-based methods exhibit a similar pattern to
previous scenarios. Notably, the node count is lower than
in the 128 × 128 scenario, influenced by empty spaces
in the Boston scenario. Despite the reduced node count,
computation time has overall increased, attributed to the
larger map size and a more significant number of agents,
placing a higher load on centralized methods. Our proposed
approach achieves around a 38% reduction in computation
time compared to CBS. Learning-based methods exhibit

14552

(a) Start (circle) and goal (square) positions (b) Initial A* result (c) CBS result

(d) conflict map of red agent (e) Initial A* result with conflict map (f) CBS result with conflict map

Fig. 6: Illustration of comparing paths with and without utilizing the conflict map in CBS.

significantly reduced performance in the 256×256 scenario.
When aggregating the results from successful scenarios,
DHC is approximately 55% faster than our proposed method.
DHC and PRIMAL often encounter difficulties in scenarios
they fail to solve, repeatedly traversing long obstacles. This
behavior likely results from the observation size of agents
being insufficient to cover the extensive obstacles in the
Boston scenario. The higher success rate of DHC was
achieved by using the heuristic map as a global guidance
information different from the goal vector of PRIMAL and
using a communication module. The cost error for successful
scenarios was 50.4% for PRIMAL and 1.1% for DHC.

Through experiments, we conclude that our proposed
method can reduce computation time compared to CBS.
The extent of this reduction was around 40% in most
scenarios, excluding the larger 128 × 128 scenario where
the reduction reached 80%. This reduction in computation
time was achieved without compromising the optimality and
completeness of CBS. Additionally, we conducted compar-
isons with state-of-the-art learning-based methods, DHC and
PRIMAL, as well as distributed methods. Our proposed
approach achieved faster computation times than PRIMAL in
all scenarios except 64×64. Compared to DHC, our method
demonstrated approximately 45% slower in most scenarios.
Nevertheless, when considering the success rates and cost
errors, our approach reduces the computation time without
compromising optimality and completeness.

In fact, directly comparing learning-based methods with

search-based methods can be unfair since learning-based
methods usually train controllers instead of planners, which
can be directly used to control multi-agents. From this
perspective, search-based methods have disadvantages in
that all agents must stop until solution paths are found.
Nevertheless, through experimental results of computation
time and success rate, we have observed that as the map
size increases, learning-based methods tend to fail in finding
feasible and optimal paths. Based on these observations, we
believe that accelerating search-based methods has a clear
benefit over learning-based methods.

VI. CONCLUSION
We introduced a novel approach to reduce computa-

tion time for solving traditional MAPF problems using a
deep learning. Our proposed method involves predicting
conflict-prone areas using a neural network to generate the
conflict map which is integrated into the A* algorithm.
By incorporating the conflict map, CBS is encouraged to
consider alternative paths that avoid areas where conflicts
are anticipated, ultimately leading to reduced computation
time. We conducted comparative experiments with various
search-based and learning-based MAPF methods. While our
approach often exhibited slower computation times compared
to the state-of-the-art learning-based method, DHC, our
experiments confirmed that our method does not compromise
optimality and completeness and can reduce computation
time for search-based methods without sacrificing these
properties.

14553

REFERENCES

[1] M. Bennewitz, W. Burgard, and S. Thrun, “Finding and optimizing
solvable priority schemes for decoupled path planning techniques for
teams of mobile robots,” Robotics Auton. Syst., vol. 41, no. 2-3, pp.
89–99, 2002.

[2] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” AI Mag., vol. 29,
no. 1, pp. 9–20, 2008.

[3] K. M. Dresner and P. Stone, “A multiagent approach to autonomous
intersection management,” J. Artif. Intell. Res., vol. 31, pp. 591–656,
2008.

[4] L. Pallottino, V. G. Scordio, A. Bicchi, and E. Frazzoli, “Decentralized
cooperative policy for conflict resolution in multivehicle systems,”
IEEE Trans. Robotics, vol. 23, no. 6, pp. 1170–1183, 2007.

[5] T. S. Standley, “Finding optimal solutions to cooperative pathfinding
problems,” in Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15,
2010, M. Fox and D. Poole, Eds. AAAI Press, 2010, pp. 173–178.

[6] G. Wagner and H. Choset, “M*: A complete multirobot path planning
algorithm with performance bounds,” in 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS 2011, San Fran-
cisco, CA, USA, September 25-30, 2011. IEEE, 2011, pp. 3260–3267.

[7] G. Sharon, R. Stern, M. Goldenberg, and A. Felner, “The increasing
cost tree search for optimal multi-agent pathfinding,” Artif. Intell., vol.
195, pp. 470–495, 2013.

[8] P. Surynek, “Towards optimal cooperative path planning in hard setups
through satisfiability solving,” in PRICAI 2012: Trends in Artificial
Intelligence - 12th Pacific Rim International Conference on Artificial
Intelligence, Kuching, Malaysia, September 3-7, 2012. Proceedings,
ser. Lecture Notes in Computer Science, P. Anthony, M. Ishizuka, and
D. Lukose, Eds., vol. 7458. Springer, 2012, pp. 564–576.

[9] J. Yu and S. M. LaValle, “Structure and intractability of optimal multi-
robot path planning on graphs,” in Proceedings of the Twenty-Seventh
AAAI Conference on Artificial Intelligence, July 14-18, 2013, Bellevue,
Washington, USA, M. desJardins and M. L. Littman, Eds. AAAI
Press, 2013.

[10] D. Sigurdson, V. Bulitko, S. Koenig, C. Hernández, and W. Yeoh,
“Automatic algorithm selection in multi-agent pathfinding,” CoRR, vol.
abs/1906.03992, 2019.

[11] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artif. Intell., vol. 219, pp.
40–66, 2015.

[12] G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T. K. S. Kumar, S. Koenig,
and H. Choset, “PRIMAL: pathfinding via reinforcement and imitation
multi-agent learning,” IEEE Robotics Autom. Lett., vol. 4, no. 3, pp.
2378–2385, 2019.

[13] Z. Ma, Y. Luo, and H. Ma, “Distributed heuristic multi-agent path
finding with communication,” in IEEE International Conference on
Robotics and Automation, ICRA 2021, Xi’an, China, May 30 - June
5, 2021. IEEE, 2021, pp. 8699–8705.

[14] E. Boyarski, A. Felner, R. Stern, G. Sharon, D. Tolpin, O. Betzalel,
and S. E. Shimony, “ICBS: improved conflict-based search algorithm
for multi-agent pathfinding,” in Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015, Q. Yang and M. J.
Wooldridge, Eds. AAAI Press, 2015, pp. 740–746.

[15] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants
of the conflict-based search algorithm for the multi-agent pathfind-
ing problem,” in ECAI 2014 - 21st European Conference on Ar-
tificial Intelligence, 18-22 August 2014, Prague, Czech Republic -
Including Prestigious Applications of Intelligent Systems (PAIS 2014),
ser. Frontiers in Artificial Intelligence and Applications, T. Schaub,
G. Friedrich, and B. O’Sullivan, Eds., vol. 263. IOS Press, 2014, pp.
961–962.

[16] D. Silver, “Cooperative pathfinding,” in Proceedings of the First Ar-
tificial Intelligence and Interactive Digital Entertainment Conference,
June 1-5, 2005, Marina del Rey, California, USA, R. M. Young and
J. E. Laird, Eds. AAAI Press, 2005, pp. 117–122.

[17] B. Wang, Z. Liu, Q. Li, and A. Prorok, “Mobile robot path plan-
ning in dynamic environments through globally guided reinforcement
learning,” IEEE Robotics Autom. Lett., vol. 5, no. 4, pp. 6932–6939,
2020.

[18] Q. Lin and H. Ma, “SACHA: soft actor-critic with heuristic-based
attention for partially observable multi-agent path finding,” IEEE
Robotics Autom. Lett., vol. 8, no. 8, pp. 5100–5107, 2023.

[19] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Trans. Syst.
Sci. Cybern., vol. 4, no. 2, pp. 100–107, 1968.

[20] R. Stern, N. R. Sturtevant, A. Felner, S. Koenig, H. Ma, T. T.
Walker, J. Li, D. Atzmon, L. Cohen, T. K. S. Kumar, R. Barták,
and E. Boyarski, “Multi-agent pathfinding: Definitions, variants, and
benchmarks,” in Proceedings of the Twelfth International Symposium
on Combinatorial Search, SOCS 2019, Napa, California, 16-17 July
2019, P. Surynek and W. Yeoh, Eds. AAAI Press, 2019, pp. 151–159.

14554

