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Abstract— A major challenge in robotics is to design robust
policies which enable complex and agile behaviors in the
real world. On one end of the spectrum, we have model-free
reinforcement learning (MFRL), which is incredibly flexible and
general but often results in brittle policies. In contrast, model
predictive control (MPC) continually re-plans at each time step to
remain robust to perturbations and model inaccuracies. However,
despite its real-world successes, MPC often under-performs
the optimal strategy. This is due to model quality, myopic
behavior from short planning horizons, and approximations
due to computational constraints. And even with a perfect
model and enough compute, MPC can get stuck in bad local
optima, depending heavily on the quality of the optimization
algorithm. To this end, we propose Deep Model Predictive
Optimization (DMPO), which learns the inner-loop of an MPC
optimization algorithm directly via experience, specifically
tailored to the needs of the control problem. We evaluate DMPO
on a real quadrotor agile trajectory tracking task, on which
it improves performance over a baseline MPC algorithm for a
given computational budget. It can outperform the best MPC
algorithm by up to 27% with fewer samples and an end-to-end
policy trained with MFRL by 19%. Moreover, because DMPO
requires fewer samples, it can also achieve these benefits with
4.3× less memory. When we subject the quadrotor to turbulent
wind fields with an attached drag plate, DMPO can adapt zero-
shot while still outperforming all baselines. Additional results
can be found at https://tinyurl.com/mr2ywmnw.

I. INTRODUCTION

For robots to perform complex and agile behaviors in the
real world, it is crucial to design control policies that remain
robust while pushing the limits of the system. Model-free
reinforcement learning (MFRL) is a general approach that
makes minimal assumptions on the problem and has been
successfully deployed in the real world [1]–[3]. However,
policies trained with these methods are often brittle and do
not generalize to out-of-distribution disturbances. For instance,
consider an uninhabited aerial vehicle (UAV) following
an aggressive trajectory in uncertain environments [4, 5].
If the UAV encounters unknown wind gusts that were
not experienced in training, the policy will likely not be
able to account for the change in dynamics and lead to a
crash. Furthermore, due to the sample inefficiency of MFRL
methods, they often train policies in simulation. This can
create a sim-to-real gap due to the mismatch between the
simulator and the true system. Even if the policies succeed in
simulation, they often fail in the real world. We can partially
remedy this issue using domain randomization (DR) [6]–
[8]. However, its efficacy is dependant on the parameter
distributions we select and the nature of the problem.
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Alternatively, model predictive control (MPC) is a powerful
framework which leverages a model to iteratively re-plan a
finite-horizon control sequence at each time step [9]–[11]. The
first control from this plan is applied to the system and the
process repeats. Although the planned sequence is often open-
loop, because we are updating it using the current state, MPC
effectively yields a state-feedback policy. By re-solving this
optimization problem online, we can improve the robustness
of MPC to perturbations and model inaccuracies. However,
this also leads to increased computational demands compared
to MFRL. In practice, we approximate the solution at each
time step to run in real time. This involves warm-starting with
the solution from the previous time step, which works well
when the two problems are similar [12]. But if our system
encounters a large perturbation, this warm-starting procedure
can bias us towards a poor solution [13]. The performance
of MPC also depends on the model quality and prediction
horizon length [11, 14]–[16]. And even with a perfect model
and enough computation, the optimization algorithm may get
stuck in bad local optima [17]. Altogether, these issues often
lead to MPC under-performing the optimal policy.

To improve the performance of MPC while retaining
its robustness, we propose Deep Model Predictive Opti-
mization (DMPO), which learns an optimizer and warm-
starting procedure directly via experience. That is, DMPO
learns how to perform model-based planning more effectively
while considering the computational demands for real-time
deployment. Our key contributions are:

1) We develop DMPO, a general approach for learning the
inner-loop of the MPC optimizer and warm-starting
procedure via reinforcement learning by viewing MPC
as a structured recurrent policy class;

2) On a real quadrotor platform (Crazyflie 2.1 with up-
graded motors) tracking infeasible zig-zag trajectories,
we show that DMPO can outperform an end-to-end
(E2E) policy trained with MFRL by 19%;

3) Tracking zig-zag trajectories with alternating 180o flips
in the desired yaw, DMPO can improve error over a
baseline MPC algorithm by up to 27% with 16× fewer
samples, saving 4.3× memory requirements;

4) By exposing the quadrotor to turbulent wind fields with
an attached cardboard drag plate, we show that DMPO
can adapt zero-shot, matching the performance of the
MPC baseline and outperforming E2E by 14%.

II. PRELIMINARIES

A. Reinforcement Learning
We consider controlling a discrete-time stochastic dynami-

cal system as an infinite-horizon discounted Markov decision
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process (MDP) defined by the tuple M = (X ,U , P, r, ρ0, γ),
where X is the state space, U is the control space, xt+1 ∼
P (·|xt, ut) is the transition dynamics, r(x, u) is the reward
function, ρ0(x0) is the initial state distribution, and γ ∈ (0, 1)
is the discount factor. Given a closed-loop policy, u ∼ π(·|x),
its value function is defined as

V π(x) = EP,π

[ ∞∑
t=0

γtr(xt, ut)
∣∣∣x0 = x

]
. (1)

The goal of reinforcement learning (RL) is to find a policy
which maximizes the expected discounted reward, which is
equivalent to maximizing the value function:

π∗ = argmax
π

Ex0∼ρ0

[
V π(x0)

]
. (2)

A common approach is to directly find π with policy gradient
methods, which perform gradient descent with a zeroth-
order approximation of the gradient using a finite number
of samples. State-of-the-art approaches include actor-critic
algorithms [18, 19], which in addition to learning π (actor),
learn an estimate of Vπ (critic) and use it as a baseline to
reduce the gradient estimator variance. If we wish to train our
policy over a range of tasks, we can additionally condition
both π and Vπ on task parameters, such as a goal state.

B. Sampling-based Model Predictive Control

Rather than find a single, globally optimal policy, MPC
re-optimizes a local policy at each time step. It accomplishes
this by predicting the system’s behavior over a finite horizon
H using an approximate model P̂ . In sampling-based MPC,
this local policy is often a distribution over open-loop control
sequences, ût ∼ πθt

(·), where ût ≜ (ût, ût+1, . . . , ût+H−1)
and θt ∈ Θ are some set of feasible parameters. At each time
step, we solve θt ← argminθ∈Θ Ĵ(θ;xt), where Ĵ(θ;xt) is
a statistic defined on C(x̂t, ût), the total cost of our predicted
trajectory over the finite horizon H . After finding the solution,
we sample a control sequence from our new policy and apply
the first control, ut = ût. Despite the plan being open-loop,
the MPC procedure can be thought of as outlining a state-
feedback policy. This is because we are updating the open-
loop sequence using information about the current state.

A popular sampling-based approach to MPC is Model
Predictive Path Integral (MPPI) control [10, 20], which
assumes that our policy is a factorized Gaussian of the form

πθ(û) =

H−1∏
h=0

πθh(ût+h) =

H−1∏
h=0

N (ût+h;µt+h,Σt+h). (3)

MPPI also assumes that we optimize the exponential utility
of our cost function, defined as:

Ĵ(θ;xt) = − logEπθ,P̂

[
exp

(
− 1

β
C(x̂t, ût)

)]
, (4)

where β > 0 is a scaling parameter, known as the temperature.
We can approximate the gradient of this objective with

samples and compute an update via dynamic mirror descent
(DMD) [12] to arrive at the MPPI update rule:

µt+h = (1− γµ
t )µ̃t+h + γµ

t

N∑
i=1

wiû
(i)
t+h, (5)

Σt+h = (1− γσ
t )Σ̃t+h + γσ

t

N∑
i=1

wim
(i)
t+hm

(i)T

t+h , (6)

where µ̃t+h and Σ̃t+h are the current mean and covariance
matrix for each time step, mt+h = ut+h − µt+h, γµ

t and γσ
t

are the corresponding step sizes, and the weights are:

wi =
e−

1
βC(x̂

(i)
t ,û

(i)
t )∑N

j=1 e
− 1

βC(x̂
(j)
t ,û

(j)
t )

. (7)

Despite its robustness, MPC often requires a large num-
ber of sampled trajectories or multiple update iterations,
which is infeasible due to real-time constraints. To improve
convergence, we can initialize the current parameters of
the optimization problem as a function of the previous
approximate solution, θ̃t+1 = Φ(θt), where Φ is called the
shift model. A common choice is to shift the parameter
sequence forward by one time step. For instance, due to
Equation (3), θt = (θt, θt+1, . . . , θt+H−1) and θ̃t+1 =
(θt+1, θt+2, . . . , θt+H−1, θ̄), where θ̄ is a hyperparameter.

C. Learned Optimization for MPC

Given these approximations, the performance of MPC
algorithms depends heavily on the computational budget
available. And even with sufficient resources, MPC can be
sub-optimal relative to a globally optimal policy due to how
we optimize our policy at each time step. The update rule in
Equation (5) and Equation (6) does not optimality make use
of the information from the sampled trajectories. One reason
is that the update at each time step and for each control input
is independent and are only coupled together via the weights
from Equation (7). Moreover, taking a weighted sum of the
samples is a fairly simple operation and may potentially throw
away useful information. The choice of a static step size may
also be limiting, and how much we update our policy may
be better treated in an adaptive way.

In general, there is structure in the problem which we
can leverage to construct a better update rule. Rather than
hand-design the optimization algorithm, we can learn it via
experience by parameterizing the update rule. In the context
of MPC, Sacks et al. [21] proposed an update of the form

θt = mϕ(θ̃t, C
(1:N)
t ), (8)

where C
(i)
t = C(x̂

(i)
t , û

(i)
t ) and ϕ are the network parameters.

Unlike the MPPI update, Equation (8) jointly optimizes all
parameters across controls and time step. For this to work,
they generate samples from a standard Gaussian and keep
them fixed. They then use the reparameterization trick to shift
and scale these samples by the current mean and standard
deviation, respectively. This makes all samples a deterministic
function of our current policy parameters, which is already
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Fig. 1: The DMPO architecture consists of two learnable modules, the shift model and optimizer. The fixed rollout model
module performs rollouts of the sampled control sequences.

provided to the network. This means we can remove the
samples from the update altogether.

III. DEEP MODEL PREDICTIVE OPTIMIZATION

A. Problem Formulation

In DMPO, we learn an update rule of the form in Equa-
tion (8) with RL, treating MPC as a structured policy class.
However, the common shift-forward operation used to warm-
start the optimization only works well when problems at
adjacent time steps are similar, which may not be true if
there are substantial perturbations. This choice of warm-start
is also independent of the value of each decision variable.
Therefore, DMPO additionally learns a shift model of the form

θ̃t+1 = Φϕ(θt). (9)

Such a shift model is joint across time steps and control
dimensions. It also provides us with a parameter-dependent
shift operation, which can take advantage of structure and
the types of perturbations known to effect the system.

To learn these components with RL, we need to actually
consider two different policies. There is the local policy output
by MPC at each time step, ût ∼ πMPC

θt
(·), which we call the

optimizee. Additionally, the optimizer defines a policy over
the parameters of the optimizee, θt ∼ πϕ(θ̃t, C

(1:N)
t ). From

the perspective of RL, πϕ is the policy we wish to learn, while
πMPC
θt

is part of the environment dynamics. This means we
have to consider both the state of the system and optimizer,
forming an auxiliary MDP M̂ = (H,Θ, P̂ , r, ρ̂0, γ). We
have auxiliary states h ∈ H, where ht = (xt,θt−1), actions
θt ∈ Θ, which are the optimizer outputs, and dynamics

ht+1 =

[
xt+1

θt

]
∼ P̂ (·|ht,θt) =

[
P (·|xt, ut)

δ(θt)

]
, (10)

where the control of the original system, ut, is a function of
the auxiliary action, θt, via

ut = ût, ût ∼ πθt(·). (11)

From the perspective of the original MDP, the current
parameters of the MPC policy actually form a recurrent state.
Therefore, even if DMPO is parameterized with feedforward
networks, we are still effectively forming a recurrent policy.
The initial state distribution ρ̂0 now samples both an initial
system state and set of optimizer parameters. And the reward
function is still defined on the original state-control space,

r(xt, ut), but now ut is a function of the optimizer action
θt due to Equation (11). Finally, in actor-critic algorithms,
we also simultaneously learn the value function of the policy,
which in this case is the optimizer, πϕ. This means the critic
should be defined on the auxiliary state, V π(ht), making it a
function of both the state of the system and optimizer. Note
that the optimizer never directly receives the system state xt.
While we could condition on state as well, we found that
this actually hurts generalization performance, especially for
sim-to-real transfer. Intuitively, there may be multiple states
for which we have the same cost distribution. This means
that the optimizer may encounter out-of-distribution states
during testing which have in-distribution trajectory costs.

B. Algorithm Overview

A valid instantiation of DMPO is to learn both the optimizer
and shift model from scratch. Instead, we learn residuals
on the MPPI update and shift-forward operation. While the
closed-form MPPI update may be sub-optimal, it still can
be fairly robust and generalize well to different tasks. By
learning each component as a residual operation, it can alter
the reward landscape in a way that can simplify exploration. If
the MPPI controller is already good, it allows us to potentially
inherit its robustness and generalization capabilities, with the
residual providing small corrections. But even if the proposed
MPPI update is far from optimal, such as in the case when
the controller has access to few samples, it can still provide
a hint about a good direction to search. We illustrate each
module of DMPO in Figure 1, which we describe below:

Shift Model. Let us define θ̃t = (µ̃t, Σ̃t) as the shifted
parameters of our optimizee policy. Then we implement the
shift model, Φϕ, as a residual update:

µ̂t, Σ̂t = Φϕ(θt)

µ̃t = µSHIFT
t + µ̂t, Σ̃t = ΣSHIFT

t ⊙ Σ̂t,
(12)

where µSHIFT
t and ΣSHIFT

t are the mean and covariance
following the normal shift forward operation and ⊙ is the
Hadamard product. While both updates could be additive,
we found that the multiplicative update for the covariance
worked better in practice.

Rollout Model. We use fixed samples from a standard
Gaussian, scaling and shifting them by Σ̃t and µ̃t, respec-
tively, to get û

(1:N)
t . Additionally, we always include the
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current mean as one of the samples. After this reparameter-
ization, we roll out the open-loop control sequences with
our dynamics model to get a set of N scalar total trajectory
costs concatenated into a vector C(1:N). Since we also run
the MPPI update, we compute weights using Equation (7).
Importantly, this is the only module which makes use of the
current system state xt.

Optimizer. We compute the normal MPPI update us-
ing Equation (5) and Equation (6) to get θMPC

t =
(µMPC

t ,ΣMPC
t ). The DMPO update for the mean is then

µ̂t, gt,σ
µ
t = mµ

ϕ(θ̃t, C
1:N
t )

µt = (1− gt)⊙ µMPC
t + gt ⊙ µ̂t,

(13)

where gt is a gating term, which has the same dimension
as the mean and is passed through a sigmoid to ensure it
is between zero and one. It allows the network to modulate
how much it relies on MPC versus the network output. Since
we are using PPO [18] to train the components of DMPO,
we actually need a distribution over proposed mean and
covariance updates. Therefore, the network also outputs a
standard deviation σµ

t , which then defines our optimizer
policy for the mean, πµ

ϕ = N (µt,σ
µ
t ). During training, we

sample the mean update from this policy, but simply use the
mean at test time. Similarly, for the covariance matrix:

Σ̂t,σ
Σ
t = mΣ

ϕ (θ̃t, C
1:N
t ), Σt = ΣMPC

t ⊙ Σ̂t, (14)

where the optimizer scales the covariance matrix proposed
by MPC. Our optimizer policy for the covariance is then
πΣ
ϕ = N (Σt,σ

Σ
t ). It is also important to note that these

mean and covariance updates jointly depend on all the current
parameters values, θ̃t. This means that we consider the current
covariance while updating the mean, and vice versa.

IV. RELATED WORK

Learned Optimization. There is a large body of work
on L2O in the context of training neural networks [22]–[34].
Another thrust learns how to perform reinforcement learning
more efficiently [35, 36, 36]–[40]. These approaches still
ultimately use standard stochastic gradient descent optimizers
to update the policy and value functions.

Combining MPC with Learning. Common strategies
to boosting the performance of MPC involve learning a
dynamics model [10, 41]–[53], terminal value functions [54]–
[58], cost-shaping terms [15], the entire controller end-to-end
[15, 59]–[64], or improving the sampling distribution [65]–
[74]. However, these methods all leverage the structure of
the optimization solver, learning components of the model
or objective, rather than training a new update rule. Sacks et
al. [21] explored learned optimization in the context of MPC.
However, they do not learn a shift model or a residual, and
their optimizer is trained with imitation learning. This limits
their performance to the quality of the expert, which was an
MPC controller with many samples.

Residual Policy Learning. Prior work has explored
learning residual policies on a hand-designed controller with
RL [75]–[79]. However, unlike DMPO, these methods do not

leverage structure in the policy class. Additionally, there is
nothing specific in DMPO necessitating a residual update.

MPC and RL for Quadrotor Control. Researchers have
successfully deployed sampling-based [2, 80, 81] and gradient-
based [82]–[85] MPC on quadrotors. A growing body of
literature has applied RL for quadrotor stabilization [86]–
[88], trajectory tracking [2, 89], and high-speed drone racing
[3]. More closely related to our work, Romero et al. [90]
embed differentiable MPC [62] into an actor-critic pipeline.
Song et al. [91] use RL to tune the hyperparameters of MPC
in an adaptive, state-dependent fashion. However, both treat
the MPC optimizer as a fixed component, instead learning
how to tweak its hyperparameters and objective.

V. EXPERIMENTS

A. Task and Implementation Details.

Quadrotor Trajectory Tracking. We perform all evalu-
ations on a quadrotor trajectory tracking problem in which
the desired trajectories are infeasible zig-zags with and
without yaw flips. These zig-zags linearly connect a series
of random waypoints, while the yaw flips are a 180o change
to the desired yaw at each waypoint. For the real hardware
experiments, we use the Bitcraze Crazyflie 2.1 equipped with
the longer 20 mm motors from the thrust upgrade bundle.
State estimation for position and velocity is provided by an
OptiTrack motion capture system, while the Crazyflie provides
orientation estimates via a 2.4 GHz radio. An offboard
computer receives the state estimates and runs all controllers
at a rate of 50 Hz. All controllers operate on desired body
thrust fdes and angular velocity ωdes commands. We convert
these commands to motor thrusts using a low-level controller.

For training and the MPC dynamics model, we use the
following dynamics with a dt = 0.02:

ṗ = v, mv̇ = mg +Re3f, Ṙ = RS(ω), (15)

where p,v, g ∈ R3 are the position, velocity, and gravity
vectors in the world frame, R ∈ SO(3) is the attitude rotation
matrix, ω ∈ R3 is the angular velocity in the body frame,
S(·) : R3 → so(3) maps a vector to its skew-symmetric
matrix form, e3 is a unit vector in the Z direction, and m is the
mass. The state of the system is then x = (p,v, q,ω), where
q is the quaternion representation of R, and u = (fdes,ωdes).
Rather than explicitly model the angular velocity dynamics
and low-level controller, we convert u to the actual thrust f
and angular velocity ω using a first-order time delay model:

ωt = ωt−1 + k(ωdes − ωt−1)

ft = ft−1 + k(fdes − ft−1).
(16)

The cost function includes terms defined on position and
orientation tracking performance. Additionally, a control
penalty was necessary for sim-to-real transfer. Without it,
DMPO would exploit the simulator and learn aggressive
commands which are difficult to perform on the real system.

Hyperparameters and Training. The optimizer, shift
model, and value function were all parameterized with multi-
layer perceptrons (MLPs) with a single hidden layer of 256
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Fig. 2: Position tracking error of DMPO versus MPPI and E2E on tracking random infeasible zig-zag trajectories without any
environmental disturbances (left) and with an attached plate and wind (middle), with the setup shown on the right.

Z

X
X axis orientation of quadrotor Desired trajectory

MPPI 
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Fig. 3: Example zig-zag trajectory with a 180o yaw flip performed by MPPI (8192 samples) and DMPO (512 samples).

and ReLU activation functions implemented in PyTorch [92].
Since the value function operates on the full auxiliary state, we
needed to make it aware of the reference trajectory. Therefore,
we give it the desired trajectory for the next 32 time steps
with a stride of 4, forming a 56-dimensional conditioning
vector. However, we note that this is not necessary for the
optimizer or shift model, as they do not operate on states. For
the network initialization, we set the last layer of each MLP
to have a weight distribution of N (0, 0.001). This made each
residual term effectively zero, allowing us to start with the
MPPI update and shift-forward operation for warm-starting.

We trained the optimizers with PPO [18] and Generalized
Advantage Estimation (GAE) [93] on an NVIDIA RTX 3080
GPU with a γ = 0.99 and λ = 0.95. To update DMPO, we
used Adam [94] with a learning rate of 10−6 and 10−4 for
the actor and critic, respectively. Learning the DMPO residual
optimizers only took up to 1000 iterations of PPO to achieve
good performance. To improve performance, we used domain
randomization (DR) [6]–[8] on the mass, randomly scaling
it by a factor in [0.7×, 1.3×], and the delay coefficient k,
selecting it in [0.2, 0.6]. We also applied a constant force
perturbation with a randomized direction and magnitude at
the beginning of each episode in [−3.5 N, 3.5 N ].

Baselines. Our two baselines are MPPI and an end-to-end
(E2E) 3-layer MLP policy operating on states, conditioned
on desired trajectories. The desired trajectories consist of the
10 desired positions up to 0.6 seconds in the future, evenly
spaced in time. E2E was also trained with PPO using DR,
but with a learning rate of 3 × 10−4 and took about 107

iterations to converge. We used a custom implementation of
MPPI in PyTorch [92], which used Halton sequences [95] for
generating the fixed samples from a standard Gaussian. We
tune all hyperparameters of the MPPI controller using a grid

search in simulation on a fixed set of desired trajectories.

B. Tracking Performance on Infeasible Zig-Zags

We begin by evaluating the performance of DMPO compared
to MPPI and E2E on random zig-zag trajectories without the
presence of additional disturbances. For each controller, we
evaluate the performance across 5 different fixed trajectory
seeds. Figure 2 (left) reports the position tracking error of
each controller, varying the number of samples for DMPO
and MPPI. The box plots represent the median and quartiles
of the total episode costs. Given 512 or less samples, MPPI
would consistently crash, while DMPO is able to successfully
complete the task with as few as 64 samples. We found
that increasing the number of samples for MPPI only helps
to a point, after which performance can suffer. However,
increasing the number of samples generally improves the
median performance of DMPO. And DMPO with 1024 samples
outperforms the best MPPI controller (with 4096 samples)
by 7% and E2E by 19% in terms of the median error.

In order to gauge whether DMPO retains the robustness of
MPC, we test the Crazyflie in a scenario with an unknown
wind field generated by three fans. Additionally, we attached a
soft cardboard plate hanging below the chassis, which creates
drag and adds additional mass (see the right of Figure 2).
The combination of the fans and cardboard plate creates
highly dynamic and state-dependent disturbances which are
not encountered during training. We report the results of these
perturbations on the right of Figure 2. The performance of all
three controllers got worse, although DMPO can still remain in
the air with as few as 64 samples. DMPO with 1024 samples
nearly matches the performance of the best MPPI controller
with 8192 samples. And it still surpasses the performance of
E2E by 14%, with the improvement growing with samples.
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Fig. 4: Total cost (left), position error in meters (middle), and orientation error (right) of DMPO versus MPPI on tracking
random yaw flip trajectories without any environmental disturbances (top) and with an attached plate and wind (bottom).

TABLE I: Relative memory usage between MPPI with 4096
samples and DMPO.

# DMPO Samples 256 512 1024 2048
Memory Reduction 4.3× 3.1× 1.9× 1.1×

C. Tracking Performance on Yaw Flips

Next, we evaluate performance on zig-zags with yaw flips.
The E2E baseline could not successfully transfer to the real
system on this task. The top row of Figure 4 reports the
performance of DMPO and MPPI without the presence of
additional disturbances. Again, with 512 samples or fewer,
MPPI would consistently crash, while DMPO with as few as
128 can successfully stay in the air. At 256 samples, DMPO
outperforms the best MPPI controller with 4096 samples by
over 27%. And in this much harder scenario, DMPO with 4096
samples is 64% better than MPPI. Breaking down the cost,
we see that DMPO with 256 or more samples does a much
better job in tracking both desired position and orientation.
Figure 3 illustrates an example trajectory and how DMPO has
much better position tracking (especially in the Z direction)
and rotates more rapidly to improving orientation tracking.

We report the perturbation results in the bottom row of
Figure 4. In this scenario, MPPI needed 8192 samples to
avoid crashing, while DMPO remained robust at 512 samples,
outperforming MPPI by 7%. And given 4096 samples, DMPO
is over 57% better than MPPI. We again see that position
error is substantially lower for DMPO. In contrast, DMPO at
512 samples was slightly worse than MPPI for orientation
error. Yet, DMPO quickly got better at tracking orientation
with 1024 or more samples. Comparing DMPO in this case
to the unperturbed scenario, we see that its performance is
markedly similar. In fact, it only got worse by about 7% on

average, while MPPI incurred about 11% more cost. The
median position and orientation errors are only slightly larger
with disturbances, except for the 512-sample DMPO. Together,
these results indicate the zero-shot generalization capability
of DMPO in the presence of unknown disturbances. Additional
results can be found at https://tinyurl.com/mr2ywmnw.

D. Compute Requirements

DMPO with 256 samples is 1.2× faster than MPPI with
4096 samples on our offboard computer while outperforming
it on the yaw flip task. And the savings may be even greater
for on-board compute which is more constrained. We report
the memory usage of DMPO for various samples compared
to MPPI with 4096 samples in Table I. With 256 samples,
DMPO requires 4.3× less memory. Altogether, this means that
we can achieve better performance while using less compute
and memory compared to MPPI.

VI. CONCLUSION

We devised DMPO, a method for jointly learning the
optimizer and warm-starting procedure for MPC. By framing
the optimizer as a policy in an auxiliary MDP, we showed
how MPC could be treated as a structured policy class and
learned via MFRL. We evaluated DMPO on a real quadrotor
platform tracking infeasible zig-zag trajectories and showed
it can outperform E2E and MPPI controllers with far fewer
samples. And DMPO is even more robust than MPPI to unseen
disturbances, such as unknown wind fields and an attached
cardboard drag plate. Moreover, since DMPO can accomplish
this level of performance with fewer samples, it can save up
to 4.3× memory and reduce runtime by 1.2× compared to
MPPI. This indicates DMPO is a viable strategy to leverage
the robustness of MPC while improving upon these hand-
designed controllers and better match the optimal policy.
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