
Neural Potential Field for Obstacle-Aware Local Motion Planning

Muhammad Alhaddad1, Konstantin Mironov1,2, Aleksey Staroverov2,3, and Aleksandr Panov1,2,3

Abstract— Model predictive control (MPC) may provide local
motion planning for mobile robotic platforms. The challenging
aspect is the analytic representation of collision cost for the case
when both the obstacle map and robot footprint are arbitrary.
We propose a Neural Potential Field: a neural network model
that returns a differentiable collision cost based on robot pose,
obstacle map, and robot footprint. The differentiability of our
model allows its usage within the MPC solver. It is computa-
tionally hard to solve problems with a very high number of
parameters. Therefore, our architecture includes neural image
encoders, which transform obstacle maps and robot footprints
into embeddings, which reduce problem dimensionality by two
orders of magnitude. The reference data for network training
are generated based on algorithmic calculation of a signed
distance function. Comparative experiments showed that the
proposed approach is comparable with existing local planners:
it provides trajectories with outperforming smoothness, com-
parable path length, and safe distance from obstacles.

I. INTRODUCTION

Obstacle-aware motion planning is essential for au-
tonomous mobile robots. Various methods may solve this
task, including numerical optimization, especially nonlinear
Model Predictive Control (MPC) [1–7]. Optimization allows
the planner to transform a rough global path into a smooth
trajectory, taking into account obstacles and kinodynamic
constraints of the robot.

Obstacle avoidance may be inserted into trajectory opti-
mization as a penalty term in the cost function (e.g., [4, 8]).
The penalty function forms a repulsive Artificial Potential
Field (APF); its gradient directs toward the safer solution
[9]. This allows the controller to find a proper balance
between the safety of the trajectory and its similarity to
the reference path. Therefore, the function which forms
the repulsive APF should be differentiable. The values of
the repulsive APF may be easily computed based on the
signed distance function (SDF) from the robot to the nearest
obstacle point on the map. However, SDF is computed by
specific algorithms. It is not a differentiable function for
the general case. It is easy to define it analytically when
two requirements are satisfied: first, the robot is pointwise
or circular, and second, the obstacles have known simple
geometric shapes. If both the robot footprint and obstacle
map are arbitrary, finding a differentiable approximation of
the SDF [8, 10] is hard.

1Muhammad Alhaddad, Konstantin Mironov, and Aleksandr Panov are
with Center of Cognitive Modeling, Moscow Institute of Physics and
Technology, Dolgoprudny, 141701, Russia mironov.kv@mipt.ru

2Konstantin Mironov, Aleksey Staroverov and Aleksandr Panov are also
with the Artificial Intelligence Research Institute, Moscow, 105064, Russia

3Aleksey Staroverov and Aleksandr Panov is also with the Federal
Research Center “Computer Science and Control,” Moscow, 117312, Russia

Fig. 1. Common scheme of the proposed approach. Our controller (bottom
half of the figure) consists of a parameter definition module and an MPC
solver, which optimize the trajectory for a defined set of parameters. Our
common neural architecture (NPField, top half of the figure) consists of
image encoders and a neural potential function (NPFunction). We train
NPFunction to predict the obstacle-repulsive potential for a given robot
pose and given embeddings of the obstacle map and the robot footprint.
The trained neural potential function is used for trajectory optimization
within the MPC solver. Map and footprint encoders are removed from the
optimization loop to decrease the dimensionality of the MPC problem. They
are used for data preparation as both map and footprint are considered
constant within the prediction horizon. More precise schemes of this
architecture are given in figures 2 (Controller) and 3 (Network).

We propose a Neural Potential Field (NPField) – a neu-
ral network for calculating artificial potential. Our idea is
conceptually inspired by the NeRF (Neural Radiance Field)
model [11], which takes the position and orientation of the
camera as an input and returns image intensity as an output.
Our model takes the position and orientation of the robot
together with the obstacle map and robot footprint as input
and returns the value of repulsive potential as an output.
We aim not to obtain this values themselves but to use
the trained model within the optimization loop. There are
several works where neural networks provide discretized
costmaps in which values are used for search-based [12]
or sampling-based planning [13, 14]. Our goal instead is to
provide continuously differentiable function, which gradient
is helpful for optimization. The key conceptual scheme of
our approach is shown in Fig. 1.

MPC solvers are sensitive to the number of input parame-
ters: a high value leads to a drastic increase in computational
expenses. We use image encoding within our architecture

2024 IEEE International Conference on Robotics and Automation (ICRA 2024)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 9313



to reduce the number of parameters by replacing maps and
footprints with their more compact embeddings. The top part
of the fig. 1 presents our neural network architecture, while
the bottom part shows the data flow of our controller. The
neural network consists of two main parts: encoder block
and Neural Potential Function (NPFunction) – a subnetwork
that calculates the potential for a single robot configuration.
Our controller consists of two high-level blocks. The first
block includes the algorithms, which define parameters for
the MPC problem based on actual sensor data. Such a
definition is made once per each iteration of the control
loop. The second block includes a numerical solver for the
control problem, which iteratively optimizes the trajectory
based on the pre-defined parameters. NPField is trained as a
single architecture and then divided into two parts. Image
encoders are inserted into the parameter definition block,
while NPFunction is integrated into the numerical MPC
solver. For each controller step, encoders are called once,
while NPFunction is called and differentiated multiple times
within the optimization procedure.

This work mainly contributes in the following aspects:
• Novel architecture for MPC local planner, where the

neural model estimates collision cost.
• Novel neural architecture for calculating APF based on

the obstacle map, robot pose, and footprint.
• An approach for generating the dataset for training the

neural model.
The last subsection of the next section provides a discussion
on the place of our approach among the others.

II. RELATED WORKS

A. Planning

Planning task may be solved by various methods, which
could be categorized into the following main groups (see
review [15]): search-based planning (most of these methods
are based on A* graph search algorithm [16, 17]), sampling-
based planning (most of these methods are based either
on Rapidly-exploring Random Trees [18] or on Proba-
bilistic RoadMaps [19]), motion primitives [20], reinforce-
ment learning [21] and trajectory optimization. We consider
optimization-based planning in this letter.

We can define two statements of planning tasks – global
path planning (define a reference of intermediate robot
configurations based on given initial and destination con-
figurations) and local motion planning (define a smooth
and safe trajectory based on a given part of the global
plan). The artificial potential field was initially proposed
[9] for global planning: the robot’s path is obtained as a
trajectory of the gradient descent in the potential field from
the starting point towards the destination point. This planning
approach can easily stuck in the local minimum. Therefore,
it is less popular than A*, RRT, or PRM. However, it is
still useful [22–24]. To avoid stucking in a local minimum,
trajectory optimization is often done locally together with
global planners [1, 7]. Global planner generates a rough
suboptimal path, which is then optimized.

B. Obstacle models for trajectory optimization

Collision detection itself is considered in many works, e.g.,
[25–27]; we are now interested in analytical models suitable
for trajectory optimization. The safe path may be guaranteed
using convex approximations of the free space [1, 10]. The
disadvantage of such an approximation is that the free space
outside the approximated region is prohibited. Alternatively,
obstacles may be approximated instead of free space [4–7].
Interception of the trajectory with the borderlines of the
approximated regions may be modeled within the MPC
solver. The approaches above require modeling either free
space or obstacles as simple geometric shapes, such as
points [4], circles [1, 5], polygons [6, 7], or polylines [28].
The question of how to obtain this representation from the
common obstacle map is often not considered.

In the case when it is impossible or too complicated to
provide differentiable collision models, one can use less
stable techniques based on numerical gradients [8], stochastic
gradients [29] or gradient-free sampling-based optimization
[30, 31]. We consider another option, where a neural model
approximates the repulsive potential. A number of works
exist [32] on learning Control Barrier Functions for ensuring
the safety of mobile systems such as drones [33] and cars
[34] within the controller. The work [35] provides differ-
entiable collision distance estimation for a 2D manipulator
based on a graph neural network. [36] use the loss function of
the network as a collision penalty: the trajectory is optimized
during the network training for the fixed obstacle map.

C. Neural Models within MPC Optimization

Integration of neural models into the MPC control loop
was considered in a number of tasks. The challenging aspect
here is the high computational cost of deep neural models.
Accurate deep models by [37, 38] were not real-time and
were presented as a proof of concept. Real-time inference
may be achieved by significantly reducing model capacity
[38]. Approaches [39–41] insert lightweight network into
realtime MPC control loop. [42] achieve use of the relatively
large neural model within real-time Acados MPC solver [43]
by introducing ML-CasADI framework [44]. Experiments
by [42] showed that direct insertion of the neural model
into MPC-solver is effective for the networks with up to
50,000 parameters. Most works above use neural networks
for approximating process dynamics. On the contrary, we
are interested in approximating obstacle-related cost terms
and control barrier functions [32–34]. In [45], a neural
network was used to update a cost function for manipulator
visual servoing. Its architecture includes a neural encoder
for camera images and a cost-update network for quadratic
programming. There is also a set of works where a neural
network was applied for choosing weighting factors for
various terms of the cost function, e.g., [46, 47].

D. Place of our approach among the others

We propose a neural model for estimating repulsive po-
tential, which has the set of properties listed in table I. This
table also include some related works, which partly satisfy

9314



these properties. Other mentioned works satisfy less number
of properties. Unique additional property of our approach is
encoding the footprint of the mobile robot. It allows one to
use a single model for mobile robots with different shapes.

TABLE I
COMPARISON OF OUR APPROACH WITH MOST SIMILAR EXISTING WORKS

Property [36] [45] [33] [34] Ours
Provide obstacle avoidance for mo-
bile robot ✓ ✓ ✓ ✓

Provide differentiable potential
function ✓ ✓ ✓ ✓

Exploit the capacity of deep neural
models with 50K+ parameters ✓ ✓ ✓ ✓

Reproduces obstacle maps with
complicated, non-convex structures
and allows for optimization of long
trajectories within this map

✓ ✓ ✓

Work within realtime MPC Planner ✓ ✓ ✓
Single model for multiple maps ✓ ✓

Note that in this work, we only prove a concept of footprint
encoding: our training set consists of samples with two
various footprints, and we show that the networks learn their
collision model. We consider the deeper study of footprint
learning (including footprint generalization) to be a part of
future work.

III. CONTROL APPROACH

This section discuss a model predictive controller for local
planning. Neural networks are considered to be black boxes,
which take inputs and provide outputs within the control
architecture. Their internal content is discussed in a further
section. We first describe the formal statement of a local
optimization problem and then discuss the controller that
solves this statement.

A. MPC Statement

Local trajectory optimization may be formulated as a
nonlinear model predictive control problem with continuous
dynamics and discrete control:

{xopt [i],uopt [i]}k+m
i=k = argmin

k+m

∑
i=k

J(x[i],u[i],p[i]), (1a)

s.t.
dx1[i]

dt
= f1(x[i],u[i],p[i]),

dx2[i]
dt

= f2(x[i],u[i],p[i]),

. . .

dxµ [i]
dt

= fµ(x[i],u[i],p[i]),

(1b)

h1(x[i],u[i],p[i])≤ 0,
h2(x[i],u[i],p[i])≤ 0,

. . .

hχ(x[i],u[i],p[i])≤ 0.

(1c)

Here p is prediction horizon, x[i] is µ-size state vector
(at the beginning of step [i]), u[i] is ν-size control vector

(constant within step i) p[i] is κ-vector of process parameters
(relevant for the step i). (1a) specify the cost function J: a
sum of functions J[i], which are calculated for each node.
(1b) define continuous dynamics of the process. (1c) is a
set of inequality constraints which must be satisfied within
the whole process. Optimization procedure aims to find the
reference of {xopt [i],uopt [i]}k+m

i=k that provide minimum J.
The view of the equation (1b) depend on the construction

of the mobile robot. In this work we consider a differential
drive model and a bicycle model (used in numerical experi-
ments). Differential drive model is specified as follows:

dx
dt

= vcosθ ,

dy
dt

= vsinθ ,

dv
dt

= a,

dθ

dt
= ω.

(2)

State vector x = (x,y,v,θ)T include Cartesian position of
the robot x,y , its linear velocity v, and its orientation θ .
Control vector u = (a,ω)T include linear acceleration a and
angular velocity ω . For bicycle model u= (a,δ )T where δ is
steering angle. Derivative of θ is calculated as dθ/dt = v/L∗
tanθ where L is base length of the robot. Other derivatives
are defined like in (2).

For the optimal control problem of this model, the follow-
ing cost function is introduced:

J[i] = Js(x[i],u[i],xr[i])+ Jo(x[i],po[i]). (3)

Js term enforce the trajectory to follow the reference
values xr from the global plan, while Jo term push the
trajectory farther from obstacles. po[i] is a vector of obstacle-
related parameters. Whole parameter vector for the system
(1) is p[i] = ((xr[i])T ,(po[i])T )T . In our approach, the neural
network is applied to compute Jo while Js is calculated as
follows:

Js[i] =
µ

∑
j=1

wx j(x j[i]− x j(re f )[i])
2 +

ν

∑
k=1

wuku2
k [i] (4)

Here wx j,wuk are the weights of the respective terms,
x j(re f )[i] is a reference value of the respective state (taken
from the global plan).

Constraint equation (1c) include only constraints on min-
imum and maximum values of the separate variables.

B. Control architecture

An architecture of our controller is shown in Fig. 2.So-
lution of the problem (1) is obtained iteratively using Se-
quential Quadratic Programming (optimization loop in Fig.
2). MPC controller uses the solution to update the trajec-
tory online (control loop in Fig. 2). At the timestep k it
optimizes the trajectory for the next m steps, and then the
first optimized control input uk is sent to the robot. After that
optimization is repeated for the steps from k+1 to k+m+1.

9315



MPC-solver is intended to provide solution of the problem
(1) with (4) as (1a) and (2) as (1b). During optimization, it
communicates with integrated NPFunction, which provides
values and gradients of Jobst .

The objective of the neural network is to project the robot’s
footprint, obstacle map, and robot poses onto a differentiable
obstacle-repulsive potential surface. Consequently, for each
coordinate within the range of the map, the neural network
outputs a corresponding potential value. To ensure compu-
tational feasibility, we partitioned the neural network into
two blocks: first, encoders, and, second, potential predictor.
Encoders compress high-dimensional maps into a compact
representation, thereby enabling the computation of Jacobian
and Hessian matrices of the control problem within the
solver.

Fig. 2. Proposed architecture of the controller. Image encoders work
outside the optimization loop and we just need to run them once before
each optimization procedure. NPFunction works within the optimization
loop and the solver uses its gradients to find a safer trajectory.

Encoders work outside the optimization loop: provided
embeddings Emap and E f p are sent to the solver as obstacle-
related problem parameters po. We assume the local map
and robot footprint to be fixed within the prediction horizon.
While the robot is following the global plan, the local map
slides according to its current position.

IV. NEURAL POTENTIAL FIELD

A. Network architecture

Proposed neural architecture Fig. 3 consists of three
primary components: a ResNet Encoder, a Spatial Trans-
former, and a ResNet Decoder. ResNet blocks are used
with the objective of extracting local features from the
obstacle map which contains a lot of corners and narrow
passages. The Spatial Transformer utilizes the self-attention
mechanism [48] to establish global relations among these
features, assessing the significance of one feature in relation
to others. Consequently, we employ the positional embedding
technique from Visual Transformers [49]. Lastly, the ResNet
Decoder processes the transformed feature maps to generate
the final output. To mitigate the model’s tendency to truncate

critical details of the obstacle map necessary for navigation,
we incorporated a map reconstruction loss based on Cross-
Entropy. For the predictions of potential points, we employed
the Mean Squared Error (MSE) loss.

Model output

DatasetInput
Map

256 x 256

R
es

N
et

Tr
an

sf
or

m
er

Bl
oc

k

R
es

N
et

R
esN

et R
es

N
et

+ 
Po

si
tio

na
l

Em
be

dd
in

gs

+ 
Po

si
tio

na
l

Em
be

dd
in

gs R
esN

et

X
Y

sin(Theta)
cos(Theta)

MLP
MLP

MLP
MLP

M
LP

Point Potential

MSE loss

Cross
Entropy

loss R
es

N
et

Footprint
 256 x 256

Fig. 3. Proposed architecture of the neural network. The green component
represents the robot footprint and map encoder, which generates embeddings
that are consistent for all coordinates within the map. The red component
signifies the final coordinate potential predictor, which contains an order of
magnitude fewer parameters.

B. Training data

One unit of the training set include {Imap, I f p,x,y,θ ,Jo},
where Imap and I f p are 2D images of the obstacle map and the
robot footprint. The dataset should include various samples
of robot positions from various maps. The maps are cropped
from the MovingAI planning dataset [50]. For each map, we
generate a set of random robot poses and calculate reference
values for them using the following algorithm.

1) Obstacle map is transformed into a costmap:
a) Signed distance function (SDF) is calculated al-

gorithmically for each cell on the map. SDF is
equal to the distance from the current cell to
the nearest obstacle border. It is positive for free
space cells and negative for obstacle cells.

b) Repulsive potential is calculated for each cell:
Jo = w1(π/2+ arctan(w2 −w2SDF)). This is a
sigmoid function, which is low far from obsta-
cles, asymptotically strives to w1 inside obstacles,
and has maximum derivative on the obstacle
border.

2) Repulsive potential is calculated for each random pose
of the robot within the submap. For this purpose robot’s
footprint is projected onto the map according to the
pose. The maximum potential among the footprint-
covered cells is chosen as a repulsive potential.

A pivotal aspect of the training process was the dataset
sampling strategy. Utilizing a random sampling strategy
across the map led to the network overfitting to larger values
and disregarding narrow passages. This is because of the
walls, which are statistically overwhelming compared to free
space, but are irrelevant for navigation as we explicitly avoid
planning through obstacles. To address this, we modified the

9316



sampling strategy such that 80% of points are sampled with
intermediate potential values.

V. IMPLEMENTATION AND EXPERIMENTS

A. Implementation and performance

We implement our MPC solver with Acados framework
[43], which relies on a more low-level CasADi framework
[51]. We use the L4CasADi library [52] to provide optimiza-
tion over NPFunction. Our local planner works together with
Theta* [53] global planner, which generates global plans as
polylines. Note that Theta* uses a simplified version of the
robot footprint (a circle with a diameter equal to the robot
width) as it fails to provide a safe path with a complete
footprint model. This simplified model does not guarantee
the safety of the global plan, therefore the safety of the
trajectory is provided by our local planner.

We consider obstacle maps to have a 256×256 resolution,
where each pixel corresponds to 2×2 centimeters of the real
environments (i.e. size of the map is 5.12×5.12 meters). We
collected a dataset based on the MovingAI [50] city maps.
It includes 4,000,000 samples taken from 200 maps with 2
footprints. Both footprints correspond to a real Husky UGV
mobile manipulator with a UR5 robotic arm. The first one
is with a folded arm, the second one is with an outstretched
arm. 10,000 random poses of the robot were generated for
each map with each footprint. Weighting coefficients for
reference potential were set to w1 = 15 and w2 = 10, while
the prediction horizon was set to p = 30. Dataset generation
took 40 hours on the Intel Core i5-10400F CPU.

Our neural network consists of 5 million parameters, with
500,000 allocated to ResNet encoders. Encoders project each
(256×256) map and robot footprint into (1×4352) embed-
dings. The robot’s pose, represented as X ,Y,sin(θ),cos(θ), is
transformed into (1,32) embeddings. The model was trained
over a span of 24 hours on a server equipped with a single
Nvidia Tesla V100 card with 32GB of memory.

One optimization procedure in our implementation take
60-70 ms, where data encoding take around 10 ms, while
Acados solution take the rest 50-60 ms. Note that Acados
solver need to warmup before reatime use: first execution of
the optimization procedure may take about one second; after
that the solver work faster.

B. Numerical Experiments

All experiments reported in this section were 1) conducted
with the bicycle model of process dynamics, and 2) con-
ducted on the maps from the MovingAI dataset [50], which
were not used for network training.

1) Illustrative example and comparison with trajectory
optimizers: An example of the trajectory generated with our
planner is shown in Fig. 4 on the left. A global plan in the
form of a polyline is turned into a smooth and safe trajectory.
Initially, the robot turns from the obstacle and deviates from
the global path, then smoothly returns to it, reaching the goal
position. As a proof of concept for footprint encoding, we
provide the following experiment. Consider the global plan,
where the robot first moves towards the flat wall, then turns

Fig. 4. Example scenario for local planning. Left: NPField trajectory.
Right: CIAO trajectory. Bottom: trajectory curves for different footprints.

and moves parallel to the wall. In this case, a robot with
a folded arm turns a little later than the one with a folded
arm. Such a behavior may be seen in Fig. 4, bottom. The
yellow curve relates to the outstretched arm, while the green
curve relates to the folded arm. This behavior shows that the
model learns different properties of two footprints, which are
useful for safer trajectory planning. We compared NPField
trajectories with CIAO [1] trajectory optimizer, which is
based on convex approximation of the free space around the
robot. The CIAO-generated trajectory is shown in Fig. 4 on
the right. It may be seen that it keeps the robot near obstacles,
nearly touching their edges. When testing on more diverse
scenarios, CIAO could not find the feasible path in nearly
half of the cases. It may be connected with the fact that
CIAO implements collision avoidance as a set of inequality
constraints, which are not differentiated during optimization.
Therefore, it only checks the fact of the collision and does
not balance between safety and path deviation in the cost
function.

2) Comparison on BenchMR: We compare our algorithm
with the baselines on 20 scenarios using BenchMR [54]
framework. The tasks include moving through the narrow
passages similar to those shown in Fig. 4. We compare
standard metrics: planning time, path length, smoothness,
and angle-over-length (for all, lower value is better). We also
introduce our custom metric, ”safety distance” (minimum
value of the SDF). The idea of smoothness metric is to
look at the triangles formed by consecutive path segments
and compute the angle between those segments. Then, the
outside angle for the computed angle is normalized by the
path segments and contributes to the path smoothness.

Smoothness =
n−1

∑
i=2

2
(

π − arccos
(

a2
i +b2

i −c2
i

2aibi

))
ai +bi


2

, (5)

9317



where ai = dist(si−2,si−1), bi = dist(si−1,si),
ci = dist(si−2,si), si is the ith state along the path and
dist(si,s j) gives the distance between two states. AOL is an
alternative measure of smoothness which divides the total
heading change by the path length[54].

AOL =
1
l

n−1

∑
i=1

(|θi+1 −θi|), (6)

where θi is the heading angle of the ith path segment, l is
the total lenghth of the path.

The results are given in table II. We compare our stack
(Theta* + NPField) with state of the art planners: RRT [18],
RRT* [55], Informed RRT [56], SBL [57] and RRT with
GRIPS [58] smoothing. We do not provide the results for
PRM[19], Theta* with CIAO [1] optimization, and Theta*
with CHOMP [8] optimization as they were able to generate
a successful plan for less than a half of tasks. This result
is particularly important for Theta* + CIAO and Theta*
+ CHOMP, as they are optimization-based planers similar
to our approach and use the same global plans. However,
they could not handle considered scenarios due to collisions
(CHOMP) or failure to find a result (CIAO).

TABLE II
COMPARATIVE STUDIES ON BENCHMR SCENARIOS

Planner Time, s Length,
m

Smooth-
ness AOL

Safety
distance,
m

RRT* 11 2.27 0.008 0.005 0.048
RRT 0.013 2.72 0.012 0.010 0.148
InformedRRT 11 2.27 0.006 0.004 0.041
SBL 0.062 4.99 0.055 0.042 0.049
RRT+GRIPS 0.013 2.44 0.009 0.004 0.151
θ∗+NPField
(ours) 0.063 2.33 0.002 0.006 0.116

Results in the table show that our stack is generally
comparable to other planners. It provides nearly the shortest
path length, the best smoothness, a good AOL, a good
computation time, and a good safety distance. We cannot
specify an approach, which is definitely better than ours
(RRT with GRIPS is fast and safe but provides less smooth
trajectories).

C. Real Robot Experiments

We deploy our approach on a real Husky UGV mobile
manipulator as a ROS module for MPC local planning
and control, which works with Theta* global planner. The
testing scenario includes hat transportation through a twisty
corridor. NPField model is able to reconstruct the repus-
live potential of the actual obstacles on the map (see Fig.
5). The manipulator is holding the hat in an outstretched
configuration (see Fig. 6). Therefore, a more complicated
concave footprint is valid. Scenario execution may be seen
in the accompanying video. During our experiment the robot
succesfully completed a 15 meters path, which included three
twists and one narrow passage.

Fig. 5. Visualization of the potential field for the map of the real
environment. Left: groundtruth map (obstacles marked with yellow); middle:
predicted neural potential field for the vertical orientation of the robot;
right: visualization of the algorithmically-calculated SDF for the veritcal
orientation of the robot.

Fig. 6. Husky mobile manipulator transporting a hat. A footprint with an
outstretched manipulator is valid for this task.

VI. CONCLUSIONS

We propose a novel approach to local trajectory planning,
where a Model Predictive Controller uses the neural model
to estimate collision danger as a differentiable function.
Our NPField neural architecture consists of encoders and
NPFunction blocks. Encoders provide a compact represen-
tation of the obstacle map and robot footprint; this com-
pact representation is sent to the MPC solver as a vector
of problem parameters. NPFunction is integrated into the
optimization loop, and its gradients are used for trajectory
correction. We implement our controller using Acados MPC
framework and L4CasADi tool for integrating deep neural
models into MPC loop. Our approach allows the robot with
a complicated footprint to successfully navigate among the
obstacles in real time. A planning stack Theta* + NPField
showed comparable results with sample-based planners on
the BenchMR testing framework.

We consider our work a starting point for further research
on neural potential estimation for kinodynamic planning for
various robotic systems in various environments. Trajectory
planning on more complex maps (e.g. elevation maps) is a
promising topic of the future research. Another important
aspect is further research on footprint encoding, which may
be useful for planning the trajectories of the robotic system
with changing footprints (e.g. mobile manipulators under
whole-body control).

9318



REFERENCES

[1] Tobias Schoels et al. “An NMPC Approach using Convex Inner Ap-
proximations for Online Motion Planning with Guaranteed Collision
Avoidance”. In: 2020 IEEE International Conference on Robotics
and Automation (ICRA). 2020, pp. 3574–3580. DOI: 10.1109/
ICRA40945.2020.9197206.

[2] Damir Bojadžić et al. “Non-holonomic RRT & MPC: Path and
trajectory planning for an autonomous cycle rickshaw”. In: arXiv
preprint arXiv:2103.06141 (2021).

[3] Zhiqiang Zuo et al. “MPC-based cooperative control strategy of path
planning and trajectory tracking for intelligent vehicles”. In: IEEE
Transactions on Intelligent Vehicles 6.3 (2020), pp. 513–522.

[4] Jie Ji et al. “Path planning and tracking for vehicle collision avoid-
ance based on model predictive control with multiconstraints”. In:
IEEE Transactions on Vehicular Technology 66.2 (2016), pp. 952–
964.

[5] Jun Zeng, Bike Zhang, and Koushil Sreenath. “Safety-critical model
predictive control with discrete-time control barrier function”. In:
2021 American Control Conference (ACC). IEEE. 2021, pp. 3882–
3889.

[6] Lars Blackmore, Masahiro Ono, and Brian C Williams. “Chance-
constrained optimal path planning with obstacles”. In: IEEE Trans-
actions on Robotics 27.6 (2011), pp. 1080–1094.

[7] Akshay Thirugnanam, Jun Zeng, and Koushil Sreenath. “Safety-
Critical Control and Planning for Obstacle Avoidance between
Polytopes with Control Barrier Functions”. In: 2022 International
Conference on Robotics and Automation (ICRA). 2022, pp. 286–292.
DOI: 10.1109/ICRA46639.2022.9812334.

[8] John Schulman et al. “Motion planning with sequential convex
optimization and convex collision checking”. In: The International
Journal of Robotics Research 33 (2014), pp. 1251–1270.

[9] O. Khatib. “Real-time obstacle avoidance for manipulators and mo-
bile robots”. In: Proceedings. 1985 IEEE International Conference
on Robotics and Automation. Vol. 2. 1985, pp. 500–505. DOI: 10.
1109/ROBOT.1985.1087247.

[10] Tobias Schoels et al. “CIAO*: MPC-based Safe Motion Planning in
Predictable Dynamic Environments”. In: IFAC-PapersOnLine 53.2
(2020). 21st IFAC World Congress, pp. 6555–6562. ISSN: 2405-
8963. DOI: https : / / doi . org / 10 . 1016 / j . ifacol .
2020.12.072. URL: https://www.sciencedirect.com/
science/article/pii/S2405896320303281.

[11] Ben Mildenhall et al. NeRF: Representing Scenes as Neural Ra-
diance Fields for View Synthesis. 2020. arXiv: 2003 . 08934
[cs.CV].

[12] Daniil Kirilenko et al. “TransPath: Learning Heuristics for Grid-
Based Pathfinding via Transformers”. In: Proceedings of the AAAI
Conference on Artificial Intelligence 37.10 (June 2023), pp. 12436–
12443. DOI: 10.1609/aaai.v37i10.26465. URL: https:
//ojs.aaai.org/index.php/AAAI/article/view/
26465.

[13] Samuel Triest et al. “Learning Risk-Aware Costmaps via Inverse Re-
inforcement Learning for Off-Road Navigation”. In: arXiv preprint
arXiv:2302.00134 (2023).

[14] Mateo Guaman Castro et al. “How does it feel? self-supervised
costmap learning for off-road vehicle traversability”. In: 2023 IEEE
International Conference on Robotics and Automation (ICRA). IEEE.
2023, pp. 931–938.

[15] David González et al. “A Review of Motion Planning Techniques for
Automated Vehicles”. In: IEEE Transactions on Intelligent Trans-
portation Systems 17.4 (2016), pp. 1135–1145. DOI: 10.1109/
TITS.2015.2498841.

[16] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A Formal
Basis for the Heuristic Determination of Minimum Cost Paths”. In:
IEEE Transactions on Systems Science and Cybernetics 4.2 (1968),
pp. 100–107. DOI: 10.1109/TSSC.1968.300136.

[17] Zain Alabedeen Ali and Konstantin Yakovlev. “Safe interval path
planning with kinodynamic constraints”. In: Proceedings of the
37th AAAI Conference on Artificial Intelligence (AAAI 2023). 2023,
pp. 12330–12337.

[18] Steven M. LaValle and Jr. James J. Kuffner. “Randomized Kin-
odynamic Planning”. In: The International Journal of Robotics
Research 20.5 (2001), pp. 378–400. DOI: 10 . 1177 /
02783640122067453.

[19] L.E. Kavraki et al. “Probabilistic roadmaps for path planning in
high-dimensional configuration spaces”. In: IEEE Transactions on

Robotics and Automation 12.4 (1996), pp. 566–580. DOI: 10 .
1109/70.508439.

[20] Brian Angulo, Aleksandr Panov, and Konstantin Yakovlev. “Policy
Optimization to Learn Adaptive Motion Primitives in Path Planning
With Dynamic Obstacles”. In: IEEE Robotics and Automation Letters
8.2 (2023), pp. 824–831. ISSN: 2377-3766. DOI: 10.1109/LRA.
2022.3233261. URL: https://ieeexplore.ieee.org/
document/10003648/.

[21] Alexey Skrynnik et al. “Pathfinding in stochastic environments:
learning vs planning”. In: PeerJ Computer Science 8 (2022), e1056.
ISSN: 2376-5992. DOI: 10 . 7717 / peerj - cs . 1056. URL:
https://peerj.com/articles/cs-1056.

[22] Dong Hun Kim and Seiichi Shin. “Local path planning using a
new artificial potential function composition and its analytical design
guidelines”. In: Advanced Robotics 20 (2006), pp. 115–135.

[23] Jing Ren, K.A. McIsaac, and R.V. Patel. “Modified Newton’s method
applied to potential field-based navigation for mobile robots”. In:
IEEE Transactions on Robotics 22.2 (2006), pp. 384–391. DOI: 10.
1109/TRO.2006.870668.

[24] Rafal Szczepanski, Tomasz Tarczewski, and Krystian Erwinski. “En-
ergy Efficient Local Path Planning Algorithm Based on Predictive
Artificial Potential Field”. In: IEEE Access 10 (2022), pp. 39729–
39742. DOI: 10.1109/ACCESS.2022.3166632.

[25] Elmer G Gilbert, Daniel W Johnson, and S Sathiya Keerthi. “A
fast procedure for computing the distance between complex objects
in three-dimensional space”. In: IEEE Journal on Robotics and
Automation 4.2 (1988), pp. 193–203.

[26] Simon Zimmermann et al. “Differentiable collision avoidance using
collision primitives”. In: 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2022, pp. 8086–8093.

[27] Zeqing Zhang et al. “A generalized continuous collision detection
framework of polynomial trajectory for mobile robots in cluttered
environments”. In: IEEE Robotics and Automation Letters 7.4 (2022),
pp. 9810–9817.

[28] Julius Ziegler et al. “Trajectory planning for Bertha — A local,
continuous method”. In: 2014 IEEE Intelligent Vehicles Symposium
Proceedings. 2014, pp. 450–457. DOI: 10.1109/IVS.2014.
6856581.

[29] Mrinal Kalakrishnan et al. “STOMP: Stochastic trajectory optimiza-
tion for motion planning”. In: May 2011, pp. 4569–4574. DOI: 10.
1109/ICRA.2011.5980280.

[30] Grady Williams et al. “Aggressive driving with model predictive
path integral control”. In: 2016 IEEE International Conference on
Robotics and Automation (ICRA). 2016, pp. 1433–1440.

[31] Grady Williams et al. “Information theoretic MPC for model-based
reinforcement learning”. In: 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2017, pp. 1714–1721.

[32] Charles Dawson, Sicun Gao, and Chuchu Fan. “Safe control with
learned certificates: A survey of neural lyapunov, barrier, and con-
traction methods for robotics and control”. In: IEEE Transactions on
Robotics (2023).

[33] Michal Adamkiewicz et al. “Vision-Only Robot Navigation in a Neu-
ral Radiance World”. In: IEEE Robotics and Automation Letters 7.2
(2022), pp. 4606–4613. DOI: 10.1109/LRA.2022.3150497.

[34] Hossein Abdi, Golnaz Raja, and Reza Ghabcheloo. “Safe Control
using Vision-based Control Barrier Function (V-CBF)”. In: 2023
IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2023, pp. 782–788.

[35] Yeseung Kim, Jinwoo Kim, and Daehyung Park. “GraphDistNet:
A Graph-Based Collision-Distance Estimator for Gradient-Based
Trajectory Optimization”. In: IEEE Robotics and Automation Letters
7.4 (2022), pp. 11118–11125.

[36] Mikhail Kurenkov et al. “NFOMP: Neural Field for Optimal Motion
Planner of Differential Drive Robots With Nonholonomic Con-
straints”. In: IEEE Robotics and Automation Letters 7.4 (2022),
pp. 10991–10998. DOI: 10.1109/LRA.2022.3196886.

[37] Ali Punjani and Pieter Abbeel. “Deep learning helicopter dynamics
models”. In: 2015 IEEE International Conference on Robotics and
Automation (ICRA). 2015, pp. 3223–3230. DOI: 10.1109/ICRA.
2015.7139643.

[38] Alessandro Saviolo, Guanrui Li, and Giuseppe Loianno. “Physics-
Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking”. In: IEEE Robotics and Au-
tomation Letters 7.4 (2022), pp. 10256–10263. DOI: 10.1109/
LRA.2022.3192609.

9319



[39] Nathan A. Spielberg, Matthew Brown, and J. Christian Gerdes. “Neu-
ral Network Model Predictive Motion Control Applied to Automated
Driving With Unknown Friction”. In: IEEE Transactions on Control
Systems Technology 30.5 (2022), pp. 1934–1945. DOI: 10.1109/
TCST.2021.3130225.

[40] Kong Yao Chee, Tom Z. Jiahao, and M. Ani Hsieh. “KNODE-MPC:
A Knowledge-Based Data-Driven Predictive Control Framework for
Aerial Robots”. In: IEEE Robotics and Automation Letters 7.2
(2022), pp. 2819–2826. DOI: 10.1109/LRA.2022.3144787.

[41] Taekyung Kim et al. “TOAST: Trajectory Optimization and Simulta-
neous Tracking Using Shared Neural Network Dynamics”. In: IEEE
Robotics and Automation Letters 7.4 (2022), pp. 9747–9754.

[42] Tim Salzmann et al. “Real-Time Neural MPC: Deep Learning Model
Predictive Control for Quadrotors and Agile Robotic Platforms”. In:
IEEE Robotics and Automation Letters 8.4 (2023), pp. 2397–2404.
DOI: 10.1109/LRA.2023.3246839.

[43] Robin Verschueren et al. Acados: a modular open-source framework
for fast embedded optimal control. 2020. arXiv: 1910 . 13753
[math.OC].

[44] Tim Salzmann. TUM-AAS/ml-casadi: Use PyTorch Models with
CasADi and Acados. 2023. URL: https://github.com/TUM-
AAS/ml-casadi.

[45] Avadesh Meduri et al. “MPC with Sensor-Based Online Cost Adap-
tation”. In: 2023 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2023, pp. 996–1002.

[46] Mateja Novak, Tomislav Dragicevic, and Frede Blaabjerg. “Weight-
ing factor design based on Artificial Neural Network for Finite
Set MPC operated 3L-NPC converter”. In: 2019 IEEE Applied
Power Electronics Conference and Exposition (APEC). IEEE. 2019,
pp. 77–82.

[47] Xin Wang et al. “Neural network based weighting factor selection
of mpc for optimal battery and load management in mea”. In: 2020
23rd International Conference on Electrical Machines and Systems
(ICEMS). IEEE. 2020, pp. 1763–1768.

[48] Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: 1706.
03762 [cs.CL].

[49] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale. 2021. arXiv: 2010.11929
[cs.CV].

[50] N. Sturtevant. “Benchmarks for Grid-Based Pathfinding”. In: Trans-
actions on Computational Intelligence and AI in Games 4.2 (2012),
pp. 144–148. URL: http://web.cs.du.edu/˜sturtevant/
papers/benchmarks.pdf.

[51] Joel A E Andersson et al. “CasADi – A software framework
for nonlinear optimization and optimal control”. In: Mathematical
Programming Computation 11.1 (2019), pp. 1–36. DOI: 10.1007/
s12532-018-0139-4.

[52] Tim Salzmann et al. “Learning for CasADi: Data-driven Models in
Numerical Optimization”. In: (2023). arXiv: 2312.05873.

[53] Alex Nash et al. “Thetaˆ*: Any-angle path planning on grids”. In:
AAAI. Vol. 7. 2007, pp. 1177–1183.

[54] Eric Heiden et al. “Bench-MR: A Motion Planning Benchmark
for Wheeled Mobile Robots”. In: IEEE Robotics and Automation
Letters 6.3 (2021), pp. 4536–4543. DOI: 10.1109/LRA.2021.
3068913.

[55] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms
for optimal motion planning with deterministic µ-calculus specifica-
tions”. In: 2012 American Control Conference (ACC). IEEE. 2012,
pp. 735–742.

[56] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Bar-
foot. “Informed RRT: Optimal sampling-based path planning focused
via direct sampling of an admissible ellipsoidal heuristic”. In: 2014
IEEE/RSJ international conference on intelligent robots and systems.
IEEE. 2014, pp. 2997–3004.

[57] David Hsu, J-C Latombe, and Rajeev Motwani. “Path planning
in expansive configuration spaces”. In: Proceedings of interna-
tional conference on robotics and automation. Vol. 3. IEEE. 1997,
pp. 2719–2726.

[58] Eric Heiden et al. “Gradient-informed path smoothing for wheeled
mobile robots”. In: 2018 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2018, pp. 1710–1717.

9320


