
Reinforcement Learning in a Safety-Embedded MDP with Trajectory
Optimization

Fan Yang1, Wenxuan Zhou1, Zuxin Liu1, Ding Zhao1, David Held1

Abstract— Safe Reinforcement Learning (RL) plays an im-
portant role in applying RL algorithms to safety-critical real-
world applications, addressing the trade-off between maximiz-
ing rewards and adhering to safety constraints. This work
introduces a novel approach that combines RL with trajectory
optimization to manage this trade-off effectively. Our approach
embeds safety constraints within the action space of a modified
Markov Decision Process (MDP). The RL agent produces a
sequence of actions that are transformed into safe trajectories
by a trajectory optimizer, thereby effectively ensuring safety
and increasing training stability. This novel approach excels in
its performance on challenging Safety Gym tasks, achieving
significantly higher rewards and near-zero safety violations
during inference. The method’s real-world applicability is
demonstrated through a safe and effective deployment in a real
robot task of box-pushing around obstacles. Further insights
are available from the videos and appendix on our website:
https://sites.google.com/view/safemdp.

I. INTRODUCTION

Reinforcement Learning (RL) has seen tremendous suc-
cess in solving sequential decision-making problems [1], [2],
[3], [4], [5], [6]. However, deploying these algorithms in
real-world robotic systems raises safety concerns, particu-
larly in safety-critical applications like obstacle avoidance,
autonomous driving, and human-robot interactions. A com-
mon approach to tackle safety in RL is to define the task
under the Constrained Markov Decision Process (CMDP)
framework, which defines a constrained optimization in
which the agent must maximize the reward while satisfying
safety constraints [7], [8], [9], [10]. Unfortunately, most
constrained optimization-based methods struggle with the
delicate balance between reward maximization and con-
straint satisfaction during the learning process [9], [11],
often leading to unstable training. Underestimates of safety
cost values can lead to the convergence of unsafe policies.
Conversely, overestimates of the safety cost values may result
in conservative exploration and suboptimal task performance.

To address this challenge, we propose a novel approach
that incorporates trajectory optimization within an RL frame-
work, providing a powerful tool for handling safety con-
straints defined around obstacle avoidance. The RL agent
operates in a modified MDP, embedded with a trajectory
optimization algorithm to ensure safety. Specifically, the RL
agent outputs actions in a high-level action space, which

1All authors are with Carnegie Mellon University, Pittsburgh, PA 15213,
USA. fanyangr@umich.edu

This material is based upon work supported by the National Science
Foundation under Grant No. IIS-1849154 and the United States Air Force
and DARPA under Contract No. FA8750-18-C-0092.

subgoal

reward

Traj
opt action EnvRL

agent

Safety-embedded MDP

cost

action

reward, cost

RL
agent Env

Original MDP

subgoal

Fig. 1: Compared to previous methods, in which the RL agent
optimizes the reward and safety constraints simultaneously
(left), our method operates in a modified MDP (right). The
modified MDP is embedded with a trajectory optimizer to
ensure constraint satisfaction. The RL agent outputs a sub-
goal for the safe trajectory optimizer and hence the RL agent
only needs to optimize explicitly for the reward, leading to
much better performance with fewer safety violations.

are transformed into low-level actions via a trajectory op-
timizer which is restricted to generating safe trajectories.
The trajectory optimizer is treated as part of the transition
dynamics of the modified MDP. This approach allows the RL
agent to optimize an unconstrained objective in the modified
MDP, leading to faster and more stable training, improved
performance, and better safety constraint satisfaction. The
framework of our method is shown in Fig. 1.

We demonstrate the efficacy of our method through com-
prehensive experimentation, greatly outperforming previous
approaches in terms of both reward maximization and safety
constraint satisfaction in complex contact-rich simulated and
real-world settings. We focus on the very challenging block-
pushing task from Safety Gym [9], in which the goal is to
train an agent to push a block to a goal while avoiding
obstacles. Previous safe RL methods have failed to make
reasonable progress on this task; this work represents the
first safe RL method to achieve a high level of task success
and constraint satisfaction at this difficult task which involves
both long-horizon reasoning as well as reasoning about both
contacts and obstacle avoidance.

Notably, our method achieves over 50% success rate in
challenging PointPush2 and CarPush2 tasks, which is about
20 times higher than the strongest baselines with a similar

2024 IEEE International Conference on Robotics and Automation (ICRA 2024)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 2845

safety performance, while maintaining very low levels of cost
violation.

II. RELATED WORK

Safe Reinforcement Learning: Safe reinforcement learn-
ing (RL) methods can be generally categorized into model-
based and constrained optimization approaches. The former,
including methods proposed by Pham et al. [12] and Dalal
et al. [13], employ a combination of model-free methods
with safety checks to achieve constrained exploration. Other
methods reframe safety constraints by shielding functions
to monitor and correct policy action output [14], [15].
However, these often require substantial domain knowledge
which creates difficulties in scaling with the number of tasks
that we want robots to perform [16], [17].

Another approach is to use constrained optimization meth-
ods like primal-dual approaches [18], [19], [9], [10] alternat-
ing between policy parameter optimization and dual variable
updating. Despite their intuitiveness, these techniques suffer
from training instabilities [20], [21]. Attempts to improve
these, such as introducing a KL-regularized policy improve-
ment mechanism, often lead to high sample complexity or
poor constraint satisfaction performance [8], [22], [11]. Our
method attempts to address these challenges by utilizing
trajectory optimization in the modified MDP to enhance
performance and safety during both training and deployment.

Trajectory Optimization: In our method, the trajectory
optimizer is used to solve a path-planning problem with
obstacle avoidance. Path planning with obstacle avoidance
is a canonical problem in motion planning [23], [24], [25].

When it comes to object interactions, such as pushing a
box, the nonlinear dynamics involved in such interactions
make trajectory optimization more challenging, although
some trajectory optimization methods based on Model Pre-
dictive Control (MPC) can be applied to contact-rich tasks
as well [26], [27], [28]. However, when it comes to long-
horizon tasks, significant time and computing resources are
usually needed to compute effective solutions.

Combining Learning with Trajectory Optimization:
Trajectory optimization has been combined with learning
in various ways. For example, previous work has proposed
to use imitation learning to learn the hyperparameters for
a motion planner [29], [30], [31] . Vlastelica et al. [32]
combine motion planning and RL to differentiate epistemic
and aleatoric uncertainty in a probabilistic setting with safety
constraints. Schrum et al. [33] combine meta-learning into
trajectory optimization to increase its adaptability. Several
other works have proposed to combine RL and motion
planning similar to our work [34], [35]. In contrast to
these approaches, our method combines RL and trajectory
optimization for safety-critical tasks by separating the CMDP
objectives into a hierarchical structure.

III. BACKGROUND: CONSTRAINED MARKOV DECISION
PROCESS

A Constrained Markov Decision Process (CMDP) [7] is
formulated as a tuple (S,A, P, r, �, c), which includes states

s 2 S, actions a 2 A, transition function p(s0, a, s) 2 P :
S ⇥A⇥ S ! [0, 1], reward functions r, the discount factor
�, and the cost function c that defines the safety constraint.
The training objective of a CMDP is defined as

max
✓

Jr(⇡✓) := E⌧⇠⇡✓ [
1X

t=0

�tr(st,at)]

s.t. Jc(⇡✓) := E⌧⇠⇡✓ [
1X

t=0

�tc(st,at)] C,

(1)

where C is a cost threshold, ⇡✓ is the policy with parameters
✓, and ⌧ denotes a trajectory.

IV. PROBLEM STATEMENT AND ASSUMPTIONS

In this work, we focus on the specific problem in which
the safety constraints are defined by obstacles that we want
to avoid. Specifically, all constraints are of the form:

||st,x � xobs
j || > ✏ 8t, j (2)

where st,x is the location of the robot at the tth time step,
xobs
j is the location of the jth obstacle, and ✏ is a safety

margin that determines how far the robot needs to stay
away from the obstacles. We also assume access to a sensor
that allows us to obtain noisy measurements of the location
of the obstacles xobs

j . Additionally, in our environments,
some objects might be acceptable to interact with (such
as a box that we want the robot to push) and others will
occur a collision cost c(st,at); we assume that the robot
knows the type of each object and whether there will be a
collision cost for interacting with that object. In addition, we
assume that the obstacles are static; we leave the extension
of our framework to dynamic obstacles for future work.
Despite these assumptions, solving such a CMDP is still a
challenging task because of the difficulty in balancing the
objective with the constraints, the difficulty of long-horizon
reasoning, and the difficulty of reasoning about contacts such
as safely pushing a box to a goal while avoiding obstacles.

V. METHOD: REINFORCEMENT LEARNING WITH
SAFETY-EMBEDDED MDP

Overview: We propose a method that combines reinforce-
ment learning and trajectory optimization in a hierarchical
structure. Instead of training an RL policy in the original
action space, we propose to learn the policy in a modified ac-
tion space defined by the parameters of a trajectory optimizer.
Using the parameters from the policy output, the trajectory
optimizer will plan a path for the agent while taking into
account the safety constraints. The optimized trajectory will
then be sent to a trajectory-following module that chooses
robot actions to follow the path.

Our method consists of three layers: A high-level RL
agent that outputs parameters for the trajectory optimizer, a
mid-level trajectory optimizer that outputs a safe trajectory,
and a low-level trajectory-following module that executes the
trajectory. A summary of our method is shown in Fig. 2 and
the pseudo-code is shown in Alg. 1 in Appendix. K. We will
explain below how this approach significantly reduces safety

2846

Trajectory
Optimizer

…
Subgoal

(x,y)
Trajectory

Raw
obs

RL policy Traj-following
module

Robot
action

Start End

Fig. 2: An illustration of our method: in the Safety Gym
Push task, the objective of the agent (red) is to push the
box (yellow) to a goal (green) while avoiding obstacles
(purple). Our method embeds safety constraints into the low-
level trajectory optimizer to generate a safe trajectory (the
dark green dots) leading toward the subgoal. The high-level
RL policy outputs a subgoal (the red flag). The RL policy
continually updates the subgoal output to achieve the task.

violations while also enabling our agent to learn contact-rich
policies.

A. Safety-Embedded Markov Decision Process
In order to optimize the CMDP (Section III), we propose

to train an RL policy over a “Safety-Embedded Markov
Decision Process” (SEMDP). In the SEMDP, the state space
S remains the same as in the original MDP. We define a
modified action space A0 to be a set of parameters that will
be input into the trajectory optimizer. Specifically, we use a
subgoal position for the agent as the action space of the RL
agent in our experiments, which is the desired location of the
“root node” of the agent (see Appendix L for the definition of
the “root node”). The trajectory optimizer (described below)
will then find a safe trajectory for the agent to reach the
subgoal.

Based on this new RL action space A0 (defined as a
subgoal or parameters of the trajectory optimizer), we define
a new transition function P 0 : S ⇥ A0 ⇥ S ! [0, 1]
which depends on the trajectory optimizer and the trajectory
following module. Given the current state st and action
a0t 2 A0, the trajectory optimizer (details below) will plan a
safe trajectory to reach the subgoal. The trajectory-following
module will then take k actions in the original MDP to follow
the trajectory. Thus, the state st+1 that is reached after taking
action a0t depends on the operation of the trajectory optimizer
and the trajectory-following module. From the perspective
of the RL agent, this transition is recorded as the tuple
(st,a0t, st+1). Because the SEMDP is operating over k time
steps in the original MDP, the reward function r0(st,at) is
modified to be the accumulated reward over k steps.

Importantly, the SEMDP does not need to be a CMDP,
e.g. it does not include an explicit cost constraint. This is
because the cost is accounted for in the modified transition
function, which uses a trajectory optimizer to find a safe

trajectory to reach the subgoal. If the trajectory optimizer
finds a safe trajectory and if the trajectory-following module
correctly follows the trajectory, then all states visited by
the agent will be safe (i.e. they will have 0 costs). As we
will see, this change makes the RL optimization significantly
easier. Because the SEMDP does not need an explicit cost
constraint, we train the RL agent in the SEMDP with a
standard method for model-free reinforcement learning, i.e.
SAC [36] (details in Appendix J)

B. Trajectory Optimizer
The goal of the trajectory optimizer is to find a safe and

feasible trajectory to reach the subgoal a0t. In this work,
we discretize the trajectory into N waypoints, denoted as
X := {x1,x2, ...,xN}, in which xi defines the position of
the “root node” of the agent. We also define the velocity at
each waypoint as V := {v1,v1, ...,vN}.

Mathematically, we define the following constrained opti-
mization problem for the trajectory optimizer:

min
X,V

fgoal(X,a0t) s.t. hinit(X, st,x) �init

hsmooth(X,V) �smoothX

i,j

hcost(xi,x
obs
j) 0,

(3)

in which st,x is the position of the root node of the agent at
time step t and �init and �smooth are constants that define
the constraint limits. We define each component of this
optimization problem below:

Subgoal-reaching Objective: The optimization objective
encourages the final waypoint of the trajectory to align with
the subgoal location a0t that was output by the RL policy:
fgoal(X,a0t) := ||xN � a0t||2 in which || · || denotes the
L2 distance. Note that subgoal reaching is in the objective
of this optimization but is not enforced as a constraint.
Thus, occasionally the trajectory optimizer will fail to find a
trajectory that reaches the subgoal a0t in order to satisfy the
safety constraints.

Initial position Constraint: The first constraint enforces
that the initial waypoint needs to be located at the current
position of the root node of the robot, st,x. The corresponding
cost function is defined as: hinit(X, st,x) := ||x1 � st,x||2.

Smoothness Constraint: The second constraint enforces
that the trajectory must be smooth. We assume that a
sufficiently smooth trajectory can be followed by the robot;
we leave for future work to incorporate a robot-specific feasi-
bility function based on the robot dynamics. We optimize for
the location of the waypoints and the corresponding velocity
at these waypoints. Non-smooth locations and changes in the
velocities are penalized. The smoothness cost is defined as:

hsmooth(X,V) :=
PN�1

i=1

����
xi+1 � xi � vi�t

vi+1 � vi

����
2

K

in

which || · ||K is the Mahalanobis distance with a metric
given by K and �t is the time interval between two adjacent
waypoints; this smoothness cost is derived from a constant
velocity GP prior with an identity cost-weight; see prior
work [37], [38] for details.

2847

Collision-avoidance Constraint: The last set of con-
straints enforces that the trajectory needs to avoid collisions
with obstacles. The cost of the ith waypoint with the jth
obstacle is defined as:

hcost(xi,x
obs
j) :=

⇢
0 if di,j > ✏0

(✏0 � di,j)2 otherwise , (4)

in which xobs
j denotes the location of the jth obstacle, di,j :=

||xi � xobs
j || denotes the distance between the ith waypoint

and the jth obstacle, and ✏0 denotes a distance threshold.
We choose ✏0 such that ✏0 � ✏, in which ✏ is the distance
threshold specified by the problem definition in Equation 2,
to account for perception noise and errors in the trajectory-
following module.

We solve the constrained optimization problem in Equa-
tion 3 using the method of dual descent:

max
��0

min
X,V

fgoal(X,a0t)+�T

0

@
hinit(X, st,x)� �init

hsmooth(X,V)� �smoothP
i,j hcost(xi,xobs

j)

1

A .

(5)
The inner loop is optimized using a trajectory optimizer;
in practice, we use the Levenberg-Marquardt algorithm [39]
implemented in Theseus [40]. The outer loop is optimized
using gradient descent on �. Please see Appendix O for more
implementation details about the trajectory optimizer.

C. Trajectory-Following Module
The trajectory optimizer outputs a set of waypoint lo-

cations; we ignore the velocities output by the trajectory
optimizer in the trajectory-following module, since their pur-
pose was only to define the smoothness cost hsmooth(X,V).
Next, we use a trajectory-following module that operates
in the original robot action space to track the waypoints.
Given the trajectory X := {x1,x2, ...,xN}, the trajectory-
following module selects the next waypoint xi and inputs the
waypoint to the goal-following agent to generate low-level
robot actions at = ⇡�(st,xi).

Our overall system is agnostic to the form of the goal-
following agent; in our experiments, we train the goal-
following agent using reinforcement learning in an obstacle-
free environment with only the robot and a randomly sam-
pled goal. The goal-following agent is goal-conditioned
⇡�(st,g) and is trained to reach a goal g that is randomly
sampled around the robot. More implementation details
about the trajectory-following module are in Appendix N.

VI. EXPERIMENTS

We evaluate our method on Safety Gym simulation bench-
marks [9]. We also transfer the policy to a real-world task
of pushing a box around obstacles to a goal in Sec. VI-D.

A. Safety Gym Setup
Safety Gym [9] is a set of benchmark environments that

can be used to evaluate methods under a CMDP framework.
In our experiments, we focus on the challenging “Push”
tasks of Safety Gym, in which the robot has to push a
box towards a goal and avoid obstacles. The Push tasks

require reasoning about rich contacts between the robot
and the environment, while also reasoning about safety;
this environment is challenging for previous methods, which
would run into obstacles (high cost) or get stuck and cannot
finish the task (low reward). Previous work on Safety Gym
used a cost threshold of C=25 [9]; in contrast, we use a
stricter cost threshold of C=0 in our experiments for purposes
of evaluation. We evaluate our method with four different
robot morphologies: Point, Car, Mass, and Ant. Please refer
to Appendix R for details.

We compare our method to the state-of-the-art safe RL
methods: CPO [8], PPO-Lagrangian (PPO Lag), TRPO-
Lagrangian [9] (TRPO Lag), Safety Editor [41] (SE) and
Constrained Variational Policy Optimization [11] (CVPO)
using the author-provided code. Additionally, we also com-
pare to a safe exploration method [13], whose results are
shown in Appendix. D. Four seeds are used for each method
during training.

B. Safety Gym Results
The results during training are shown in Fig. 3. The results

in more difficult level 2 tasks PointPush2 and CarPush2 are
shown in Fig. 5 in Appendix. C. We smooth the curves
for better visualization. As shown, our method achieves
a much higher reward than the baselines with very little
incurred cost. We use a fixed � during training to speed
up computation and to encourage exploration, which leads to
some safety violations during training; at test time, we adjust
� to optimize Equation 5, leading to fewer safety violations.

We evaluate the converged policy at the final iteration of
training. Mean actions are chosen instead of sampled actions
from the policy. Each policy is evaluated for 50 episodes
and the average results are shown in Table I. An additional
analysis showing reward rather than success rate as the metric
is shown in Table IV in Appendix. A. The number of safety
errors from our method is reduced compared to training
because we adjust �, unlike in training when � is held fixed.

As noted previously, in prior work on Safety Gym, a cost
threshold of 25 was used [9]; in our experiments, we use a
stricter cost threshold of 0. This leads to significantly worse
performance for the Lagrangian methods, which are unable
to achieve a reasonable reward due to training instability.

C. Ablations and Additional Analysis
We perform additional ablation experiments to understand

the reason behind our method’s strong performance.
How much of our improvement over the baselines is

attributed to using a learned trajectory-following mod-
ule? First, note that we do not train a trajectory-following
module for the Mass agent, since we can directly command
this agent to any local delta position using its low-level
action space. As shown in the “MassPush1” experiments in
Fig. 3 and Table I, our method still significantly outperforms
the baselines. This demonstrates that the benefits of our
method are not from using a learned trajectory-following
module. We believe that the benefits come from training
an RL agent in a Safety-Embedded MDP defined by a safe

2848

Fig. 3: Training curves of our method compared to the baseline methods. The shadow region denotes the standard error of
different seeds. Our method starts from 1e6 steps instead of 0 to denote the training of the goal-reaching policy. In these
experiments, the cost is defined as the total number of time steps for which the agent violates the safety constraints within
an episode. Our method achieves a lower cost than the baselines. It still incurs some cost during training because, during
training time, we are using a fixed Lagrangian parameter for computation reasons and to encourage exploration.

TABLE I: Evaluation results of the final converged policies; see text and Appendix. P for details. Experiments with a cost
exceeding 10 are marked in gray to indicate that they are not safe. See Table IV for the reward instead of the success rate.

SEMDP (ours) CPO [8] PPO Lag [9] TRPO Lag [9] SE[41] CVPO[11]
MassPush1 success rate 0.55 0.11 0.01 0.05 0.02 0

cost 0.00 28.00 1.41 0.00 3.01 0.80
PointPush1 success rate 0.84 0.77 0.00 0.08 0.03 0.00

cost 0.00 5.04 8.34 1.39 4.03 4.90
CarPush1 success rate 0.88 0.83 0.02 0.11 0.05 0.01

cost 0.00 14.44 2.28 3.64 0.47 23.5
AntPush1 success rate 0.79 0.02 0.00 0.00 0.00 0.00

cost 0.48 9.35 0.00 0.00 0.00 0.00
PointPush2 success rate 0.57 0.40 0.03 0.02 0.01 0.00

cost 0.00 27.40 4.81 4.73 0.44 17.60
CarPush2 success rate 0.58 0.38 0.01 0.00 0.01 0.00

cost 0.25 41.58 54.02 7.28 1.29 43.62

TABLE II: Evaluation results of our method and ablations.
Each method was trained for 1e7 environment interaction
steps. Experiments with a cost exceeding 10 are marked in
gray to indicate that they are not safe.

SEMDP (ours) SAC + PPO Lag
MassPush1 reward 4.31 14.62

cost 0.00 40.25
PointPush1 reward 5.69 -0.87

cost 0.00 24.16
CarPush1 reward 4.57 0.18

cost 0.00 6.75

trajectory optimizer. We also perform an experiment in which
we modify PPO Lagrangian to incorporate a trained goal-
reaching low-level agent (which we still outperform); see
details in Appendix F.

Do we need a trajectory optimizer? In this ablation, we

attempt to replace the safe trajectory optimizer with a learned
“safe” goal-reaching policy. Instead of using an optimization-
based trajectory optimizer, we use PPO Lagrangian to train
a low-level “safe goal reaching” policy with a reward of
reaching a randomly sampled goal and a cost constraint
of avoiding obstacles. The high-level policy is trained with
SAC, the same as in our method, to output subgoals for
the low-level goal-reaching agent. The intention of this
experiment is to be as similar to our method as possible
but replace the trajectory optimizer with a low-level goal-
reaching agent trained with safe RL. The results of this
experiment can be found in Table II, referred to as “SAC +
PPO Lag.” As can be seen, this method also performs poorly,
demonstrating that a safe trajectory optimizer is needed to
ensure safety; training a cost-aware low-level agent with PPO
Lagrangian is not sufficient to obtain safe performance.

2849

Ours

TRPO Lag

Ours

TRPO Lag

t

Fig. 4: We set up a real-robot environment similar to the Safety Gym Push task. The fingertip of the Franka robot (pink) is
used to push the box (black) toward the goal (green). It needs to avoid hazards (red) and avoid getting stuck at the pillar
(blue). Each row shows four frames of a single episode. We compare our method with TRPO Lagrangian, which has the
best performance among the baselines based on the simulation experiments.

TABLE III: Results of the real robot experiment. While both
methods have 0 cost in the real world, our method achieves
a higher success rate and reward than the baseline.

Method Succ rate reward cost
SEMDP (ours) 8/10 1.33 0

TRPO Lag 0/10 0.22 0

D. Real-Robot Experiments

We use a real-robot version of the Push task for evaluation,
using a Franka Panda gripper. The details of the experiments
are shown in Appendix. R. In this experiment, the fingertip
of the gripper moves in a plane to push the box toward the
goal. As in the simulation setup, the robot also needs to avoid
hazards and try not to get stuck by the pillar. The real robot
experiment is shown in Fig. 4. An episode is considered
successful if the robot is able to push the box into the goal
region within 60 time steps.

We compare our method with TRPO Lagrangian. We
evaluate each method with 10 different layouts; evaluating
each layout with both our method and the baseline. The
results are shown in Table III. Both methods are safe in
the real world, but our method has a much higher success
rate and reward. The reasons for the failure of our method
include timing out or getting stuck around the obstacles. For
the TRPO Lagrangian baseline, the robot is able to move
towards the box but is not successful in pushing the box to

the goal, which also matches its performance in simulation.

VII. LIMITATIONS AND CONCLUSIONS

The main limitations of our system are the assumptions
mentioned in Sec. IV. Further, even with a safe trajectory
optimizer, it is still hard to guarantee safety in practice, due
to perceptual errors or modeling inaccuracies. In our case, we
also use a learned trajectory-following module which might
not follow the trajectory perfectly; a model-based trajectory
optimizer that takes into account the agent dynamics could
be used here to ensure feasible trajectories. We leave such
an extension of our method for future work.

In conclusion, we propose a hierarchical framework, in
which the RL agent optimizes the reward in a modified MDP
which is embedded with a trajectory optimization algorithm
to ensure safety. We test our method on Safety Gym bench-
marks and a real-robot pushing task, demonstrating better
performance than the baselines in terms of both rewards
and costs. In future work, our framework can be generalized
in that the RL agent can output any parameters that define
the objective for the trajectory optimizer, and the trajectory
optimizer can take any form as long as it is compatible
with the output of the RL policy. We believe our work will
contribute to the field of safe robot learning by demonstrating
the importance of combining RL and trajectory optimization
in safety-constrained optimization tasks.

2850

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[2] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew,
A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas, et al., “Solving
rubik’s cube with a robot hand,” arXiv preprint arXiv:1910.07113,
2019.

[3] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. Mc-
Grew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, et al.,
“Learning dexterous in-hand manipulation,” The International Journal
of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020.

[4] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yo-
gamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 6, pp. 4909–4926, 2021.

[5] H. A. Pierson and M. S. Gashler, “Deep learning in robotics: a review
of recent research,” Advanced Robotics, vol. 31, no. 16, pp. 821–835,
2017.

[6] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 1334–1373, 2016.

[7] E. Altman, Constrained Markov decision processes: stochastic mod-
eling. Routledge, 1999.

[8] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” in International Conference on Machine Learning.
PMLR, 2017, pp. 22–31.

[9] A. Ray, J. Achiam, and D. Amodei, “Benchmarking safe exploration in
deep reinforcement learning,” arXiv preprint arXiv:1910.01708, vol. 7,
2019.

[10] Y. As, I. Usmanova, S. Curi, and A. Krause, “Constrained
policy optimization via bayesian world models,” arXiv preprint
arXiv:2201.09802, 2022.

[11] Z. Liu, Z. Cen, V. Isenbaev, W. Liu, S. Wu, B. Li, and D. Zhao,
“Constrained variational policy optimization for safe reinforcement
learning,” in International Conference on Machine Learning. PMLR,
2022, pp. 13 644–13 668.

[12] T.-H. Pham, G. De Magistris, and R. Tachibana, “Optlayer-practical
constrained optimization for deep reinforcement learning in the real
world,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 6236–6243.

[13] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and
Y. Tassa, “Safe exploration in continuous action spaces,” arXiv
preprint arXiv:1801.08757, 2018.

[14] A. K. Jayant and S. Bhatnagar, “Model-based safe deep reinforcement
learning via a constrained proximal policy optimization algorithm,”
arXiv preprint arXiv:2210.07573, 2022.

[15] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” in Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[16] F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause, “Safe
model-based reinforcement learning with stability guarantees,” arXiv
preprint arXiv:1705.08551, 2017.

[17] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-
based model predictive control for safe exploration,” in 2018 IEEE
Conference on Decision and Control (CDC). IEEE, 2018, pp. 6059–
6066.

[18] D. Ding, K. Zhang, T. Basar, and M. Jovanovic, “Natural policy
gradient primal-dual method for constrained markov decision pro-
cesses,” Advances in Neural Information Processing Systems, vol. 33,
pp. 8378–8390, 2020.

[19] S. Bohez, A. Abdolmaleki, M. Neunert, J. Buchli, N. Heess, and
R. Hadsell, “Value constrained model-free continuous control,” arXiv
preprint arXiv:1902.04623, 2019.

[20] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh,
“A lyapunov-based approach to safe reinforcement learning,” arXiv
preprint arXiv:1805.07708, 2018.

[21] T. Xu, Y. Liang, and G. Lan, “Crpo: A new approach for safe
reinforcement learning with convergence guarantee,” in International
Conference on Machine Learning. PMLR, 2021, pp. 11 480–11 491.

[22] T.-Y. Yang, J. Rosca, K. Narasimhan, and P. J. Ramadge,
“Projection-based constrained policy optimization,” arXiv preprint
arXiv:2010.03152, 2020.

[23] M. Likhachev, G. J. Gordon, and S. Thrun, “Ara*: Anytime a* with
provable bounds on sub-optimality,” Advances in neural information
processing systems, vol. 16, 2003.

[24] S. Koenig and M. Likhachev, “Dˆ* lite,” Aaai/iaai, vol. 15, pp. 476–
483, 2002.

[25] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” The international journal of robotics re-
search, vol. 17, no. 7, pp. 760–772, 1998.

[26] T. Howell, N. Gileadi, S. Tunyasuvunakool, K. Zakka, T. Erez, and
Y. Tassa, “Predictive sampling: Real-time behaviour synthesis with
mujoco,” arXiv preprint arXiv:2212.00541, 2022.

[27] T. A. Howell, S. L. Cleac’h, K. Tracy, and Z. Manchester, “Calipso:
A differentiable solver for trajectory optimization with conic and
complementarity constraints,” arXiv preprint arXiv:2205.09255, 2022.

[28] T. A. Howell, S. Le Cleac’h, S. Singh, P. Florence, Z. Manchester,
and V. Sindhwani, “Trajectory optimization with optimization-based
dynamics,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp.
6750–6757, 2022.

[29] M. Bhardwaj, B. Boots, and M. Mukadam, “Differentiable gaussian
process motion planning,” in 2020 IEEE international conference on
robotics and automation (ICRA). IEEE, 2020, pp. 10 598–10 604.

[30] K. Li and J. Malik, “Learning to optimize,” arXiv preprint
arXiv:1606.01885, 2016.

[31] B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter, “Differen-
tiable mpc for end-to-end planning and control,” Advances in neural
information processing systems, vol. 31, 2018.

[32] M. Vlastelica, S. Blaes, C. Pinneri, and G. Martius, “Risk-averse zero-
order trajectory optimization,” in 5th Annual Conference on Robot
Learning, 2021.

[33] M. Schrum, M. J. Connolly, E. Cole, M. Ghetiya, R. Gross, and
M. C. Gombolay, “Meta-active learning in probabilistically safe opti-
mization,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp.
10 713–10 720, 2022.

[34] F. Xia, C. Li, R. Martı́n-Martı́n, O. Litany, A. Toshev, and S. Savarese,
“Relmogen: Integrating motion generation in reinforcement learning
for mobile manipulation,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2021, pp. 4583–4590.

[35] Y. Jiang, F. Yang, S. Zhang, and P. Stone, “Integrating task-motion
planning with reinforcement learning for robust decision making in
mobile robots,” arXiv preprint arXiv:1811.08955, 2018.

[36] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR,
2018, pp. 1861–1870.

[37] T. D. Barfoot, C. H. Tong, and S. Särkkä, “Batch continuous-time
trajectory estimation as exactly sparse gaussian process regression.”
in Robotics: Science and Systems, vol. 10. Citeseer, 2014, pp. 1–10.

[38] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots, “Continuous-
time gaussian process motion planning via probabilistic inference,”
The International Journal of Robotics Research, vol. 37, no. 11, pp.
1319–1340, 2018.

[39] S. Wright, J. Nocedal, et al., “Numerical optimization,” Springer
Science, vol. 35, no. 67-68, p. 7, 1999.

[40] L. Pineda, T. Fan, M. Monge, S. Venkataraman, P. Sodhi, R. Chen,
J. Ortiz, D. DeTone, A. Wang, S. Anderson, et al., “Theseus:
A library for differentiable nonlinear optimization,” arXiv preprint
arXiv:2207.09442, 2022.

[41] H. Yu, W. Xu, and H. Zhang, “Towards safe reinforcement learning
with a safety editor policy,” arXiv preprint arXiv:2201.12427, 2022.

[42] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

2851

