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Abstract— The hierarchy of global and local planners is one
of the most commonly utilized system designs in autonomous
robot navigation. While the global planner generates a reference
path from the current to goal locations based on the pre-built
map, the local planner produces a kinodynamic trajectory to
follow the reference path while avoiding perceived obstacles.
To account for unforeseen or dynamic obstacles not present
on the pre-built map, “when to replan” the reference path
is critical for the success of safe and efficient navigation.
However, determining the ideal timing to execute replanning
in such partially unknown environments still remains an open
question. In this work, we first conduct an extensive simulation
experiment to compare several common replanning strategies
and confirm that effective strategies are highly dependent on the
environment as well as the global and local planners. Based on
this insight, we then derive a new adaptive replanning strategy
based on deep reinforcement learning, which can learn from
experience to decide appropriate replanning timings in the given
environment and planning setups. Our experimental results
show that the proposed replanner can perform on par or even
better than the current best-performing strategies in multiple
situations regarding navigation robustness and efficiency.

I. INTRODUCTION

It’s a fact of life that things do not always go as planned.
Whether the unexpected is a minor setback or a major
obstacle, we must be ready to pivot and adjust our plans to
ensure that we can still achieve our goals. The same applies
to navigating autonomous mobile robots (AMRs). In real-
world scenarios such as industrial factories or busy restau-
rants, the environment is filled with unforeseen obstacles or
pedestrians that diverge from the pre-built map. To deal with
such partially uncharted terrain, it becomes imperative to
dynamically replan the pre-planned paths as needed.

In this paper, we delve into the timing of the replanning
feature in the common hierarchical planning framework [1].
Carefully tuning the replanning feature is crucial in practice,
as it can drastically change the behavior of AMRs and can
affect navigation robustness and efficiency. When performed
at the right time, replanning can enable goal-oriented and
reactive motion in the presence of unforeseen and dynamic
obstacles. However, improper replanning, for example, if
done too frequently or infrequently, can also cause the AMRs
to perform inefficient travel (e.g., path oscillation) or even
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get completely stuck, as shown in Fig. 1a1. Despite some
relevant work [2]–[5], an effective replanning strategy –
more specifically when to execute replanning for robust and
efficient navigation in partially uncharted terrain – remains
an open question.

The primary contribution of this work is three-fold. First,
we conduct a comprehensive experiment with simulated
environments and systematically evaluate various replanning
strategies commonly used in ROS 2 Navigation Stack [6]. We
demonstrate that effective strategies are highly dependent on
the map layouts as well as on the global and local planning
algorithms, which implies the fact that the replanning strat-
egy should be carefully designed and tuned for every single
environment and choice of planning algorithm (Section V).

Second, we formulate a task of controlling the replanning
timings for a global planner as a sequential decision-making
problem using a Partially Observable Markov Decision Pro-
cess (POMDP) [7] (Section III). We consider a replanning
controller as a decision maker that determines whether to
replan the reference path at every timestep. The conventional
rule-based replanning strategies can be viewed as policies in
the POMDP, which allows us to compare diverse replanning
strategies in the unified framework.

Finally, based on the aforementioned POMDP, we derive a
Deep Reinforcement Learning (DRL)-based replanning con-
troller (hereafter referred to as DRL replanner) that learns to
decide when to execute replanning for improving navigation
robustness and efficiency in the current situation, as shown
in Fig. 1b (Section IV). The DRL replanner is trained with
a standard DRL algorithm such as a deep Q network [8].
Notably, the DRL replanner can act as a drop-in replacement
for the rule-based replanning strategy in existing hierarchical
planning frameworks. Our extensive experimental results
have demonstrated that the proposed DRL replanner can
achieve navigation that is as robust and efficient as, or
better than, the currently best-performing strategies across
various combinations of global and local planners in floor
environments (Section V). These results have strong im-
plications that well-controlled timing of replanning has the
potential to achieve more robust and efficient navigation on
the existing hierarchical planning frameworks by learning the
environment-specific adaptive replanning strategy.

II. RELATED WORK
While partitioning complex navigation problems into

global and local planning can increase substitutability and

1See the demo video for more details: https://www.youtube.com/
watch?v=W8nBFKDxsb0
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Fig. 1. Overview of our work. The hierarchical planning framework can partition difficulties between global and local planning. However, depending on
the timing of the global planner’s replanning, negative behaviors can occur (Fig. 1a). Specifically, in partially uncharted terrains that include unforeseen
and dynamic obstacles on the pre-built static map, insufficient replanning frequency causes negative behaviors, i.e., (1) too low a replanning frequency can
cause the robot to get stuck, while (2) excessive replanning can lead to path oscillation. Our objective is to control the timing of replanning adaptively to
enable robust and efficient navigation of AMRs. To achieve this, we propose a replanning controller based on DRL (Fig. 1b). The DRL replanner obtains
an efficient and adaptive replanning strategy by training on the partially uncharted terrains and the hierarchical planning framework as its environment.

reduce computational complexity through parallel process-
ing, it can cause inefficient path replanning such as getting
stuck and path oscillation, as illustrated in Fig. 1a. Existing
approaches to this issue can be broadly categorized into the
following three types:

1) Replanning Timing Strategy: Existing planning sys-
tems typically employ rule-based replanning strategies that
need to be hand-engineered to account for the characteristics
of the environments and planners. Indeed, Murphy et al.
found in their early study that the timing of replanning
could be a salient factor for navigation performance [2].
Since then, various systems that replan at regular time
intervals have emerged [1], and others adopt event-based
rules, such as deviation from the reference path and detecting
stuck [9], [10]. A practical software framework, ROS 2
Navigation Stack [6], provides behavior tree-based tools to
allow engineers to implement various replanning strategies.
However, these manual design approaches require significant
expertise to fine-tune, and it can be challenging to adjust
replanning rules adaptively on the basis of the situation.
This paper focuses for the first time on the evaluation and
improvement of navigation performance through replanning
strategies, which have not been adequately explored.

2) Reference Path Modification: Another approach to re-
ducing inefficient path replanning is to modify the reference
path in accordance with the current situation. For example,
Tordesillas et al. proposed modifying a part of the reference
path when the global planner significantly changes it from the
current one [3]. While path modification is a valid approach,
it highly depends on the nature of the global and local
planners because the method and timing of the modification
need to consider the shape of the reference path and the
tracking performance of the local planner. Other works have
also proposed updating the map dynamically [4], [5], but this
is only effective when all obstacles remain static.

3) Navigation based on DRL: In recent years, DRL
has become a popular approach for point-to-point naviga-
tion [11]. While many studies employ DRL to learn adap-
tive behavior for local planners in short-range navigation,
some recent studies use DRL planners in conjunction with
the reference paths generated by classical global planners
in long-range navigation [12]–[14]. Most of these works,

however, assume a standard periodic replanning of the global
planner [9], [10], [15], [16]. An exception to this norm
is the work by Wang et al., which does not necessitate
replanning but is constrained to environments with a discrete
action space [17]. Our work fundamentally differs from
these approaches in that we propose a DRL-based adaptive
replanning strategy for the global planner. Note that our
approach is not limited to any particular type of local planner
and can be used with a diverse array of planning methods.
This adaptability is a key strength of our approach, allowing
us to provide a flexible and versatile framework.

III. HIERARCHICAL PLANNING FRAMEWORK

Our aim is to optimize the timing of replanning for robust
and efficient navigation of AMRs in partially uncharted
terrain due to unforeseen or dynamic obstacles that were
not present when building an environment map. The re-
planning timing is desirable to be adaptively determined
based on the nature of the hierarchical planning framework
and observations of the robot’s surroundings obtained from
sensors. we first provide an overview of a conventional
hierarchical planning framework with a replanning feature
and then formulate how to control the replanning timings
as a sequential decision-making problem with a partially
observable Markov decision process (POMDP) [7].

A. Global and Local Planners

The typical configuration of a hierarchical planning frame-
work consists of asynchronously operating global planner
and local planner modules as shown in Fig. 1b. The global
planner (represented by fgp) computes a reference path to a
goal pg ∈ R2 from the robot position based on observations
from onboard sensors and a prebuilt map that contains
information about known obstacles and no-entry areas.

Specifically, fgp receives the sensor observation and pre-
built map information Mt and robot position pt ∈ R2 at
time t and produces a reference path as the sequence of
2D positions Pr

t+∆td
= {pr

0,p
r
1, . . .} for time t+∆td : Pr

t+∆td
=

fgp(pg,pt ,Mt), where ∆td is the time delay due to the
computation time for global planning. This calculation can
generally become expensive as the size of pre-built maps
increases, and ∆td can be larger than the control interval
∆t. Note that ∆td can be estimated to some extent by using
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Fig. 2. Time transition according to the replanning action.

an any-time algorithm (e.g., any-time A* [18]) because they
are interruptible. In practice, to consider the environmental
change, global planning is performed repeatedly at a low
frequency (˜1 Hz) based on a predefined replanning strategy.

The local planner flp generates a more fine-grained and
collision-free control command with a given control fre-
quency (10 Hz˜) to guide the robot along the reference path.
The control command vcmd

t at time t is calculated from the
the latest reference path Pt∗ , the robot position pt , and the
sensor observation and pre-built map information Mt at time
t, as vcmd

t = flp(Pt∗ ,pt ,Mt), where t∗ is delayed by at most
∆td from time t. The control command vcmd

t updates the
physical motion of the robot for the control interval ∆t.

B. Formulation using POMDP

The replanning of reference paths in the above hierarchical
planning framework can be modeled by a deterministic
POMDP as follows. Let Π = (S,A,O,T,R,Ω,γ) be the
POMDP tuple consisting of state space S, action space
A, observation space O, transition function T : S×A 7→ S,
reward function R : S×A 7→R, observation model Ω : S 7→O,
and discount factor γ ∈ [0,1).

The state sk includes the robot’s status (position, orienta-
tion, and past trajectory), the planners’ status (goal position
and reference path), and the situation regarding surrounding
obstacles at discrete time step k. While the states of the robot
and planners are essentially observable, the surrounding
situation is only partially observable from onboard sensors.
As a result, the DRL replanner can only obtain observations
ok ∈O based on the observation model ok = Ω(sk) described
in Section IV-B. The action ak ∈ A is a binary decision
of whether to replan or not at time step k. Specifically,
A= {arep,anot}, where arep requests the global planner fgp to
compute a new reference path and anot does not, as illustrated
in Fig. 1b.

The state sk transitions to sk+1 with the transition func-
tion T (sk,ak). As the global and local planners run asyn-
chronously and there is a delay due to the computation
time for the global planning to output a new reference path,
the transition function T (sk,ak) needs to consider them. In
the transition function, if the action is not replanning, the
physical world is rolled out by the control command from
the local planner with the current existing reference path at
time step k and returns the state after ∆t, i.e., T (sk,anot)
returns the state at the next time step k+ 1 = t +∆t. If the
action is replanning, the global planner immediately starts
computing a new reference path at time step k. At the
same time, the control command by the local planning rolls
out the physical world based on the existing reference path

until the computation is finished. Then, after computing the
time delay ∆td , the global planner outputs a new reference
path, the local planner outputs a control command using
the updated reference path, and the physical world returns
a new state after ∆t, i.e., T (sk,arep) returns the state at
k + 1 = t + (⌊∆td

∆t ⌋+ 1)∆t, where ⌊ ⌋ is a floor function.
Overall, the interval of time steps in the POMDP is variable
depending on the action, as shown in Fig. 2.

C. Existing Replanning Strategies

In this work, we compare four types of rule-based replan-
ning strategies available in ROS 2 Navigation Stack [6].

• Distance-based strategy determines replanning timings
on the basis of traveled distance, e.g., every drep meters.
That is, if ∆dk ≥ drep, then ak = arep, otherwise ak =
anot, where ∆dk is the difference in travel from the last
replanning and drep is a given parameter.

• Stuck-based strategy decides to execute replans when
the robot stops at the same position for a given ∆tstuck
seconds because the robot is considered to be stuck.

• Time-based strategy performs replanning at every fixed
period of ∆trep seconds. ∆trep should be larger than ∆td
to consider the computation time of global planning.

• Time-with-patience strategy adopts the time-based strat-
egy when the robot is far from the goal (> dpatience) and
changes to stuck-based otherwise (≤ dpatience), expecting
to prevent a large detour near the goal.

Specific parameter settings will be presented in the experi-
ment section. A key point here is that all of these existing
strategies can be viewed as an instance of a hand-designed,
deterministic policy for the aforementioned POMDP, which
takes the current observation as input to decide if replanning
should be done as an action.

IV. ADAPTIVE REPLANNING USING DRL

Although a variety of replanning strategies are available,
it remains unclear which one should be used and how the
parameters should be tuned for a given environment as well
as the choices of global and local planners. While replanning
regularly with time-based and distance-based strategies at the
highest possible frequency can allow the robot to constantly
track the shortest distance path, doing so becomes superflu-
ous if there are not many unforeseen obstacles in the pre-built
map. Too much replanning could also cause path oscillation,
especially when sampling-based global planners are utilized
or the environment has many branching pathways. Moreover,
since the computational cost of global planning increases as
the environment becomes larger, it is important to execute
replanning only when necessary. Adopting a stuck-based
strategy is nonetheless nontrivial, because what can be de-
fined as getting stuck will depend on the performance of local
planners and the dynamics of surrounding obstacles, making
it harder to manually tune the parameters of the strategy.
To this end, we explore the possibility of leveraging deep
reinforcement learning for adapting a replanning strategy to
a given environment as well as the choices of planners.
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A. DRL-based Replanning Controller

We derive a replanning controller that can learn from its
previous navigation experiences to create a better replanning
timing for navigation efficiency and robustness. As illustrated
in Fig. 1b, the replanner’s action is essentially the same
as that of existing replanning strategies, i.e., binary actions
indicating whether or not to execute replanning to produce
a new reference path for the local planner after the current
time step k. In other words, the replanner can potentially be
utilized as a replacement module for the replanning strategy
in existing planning frameworks, thus making it compatible
with various combinations of planners and other modules.

B. Observation Design

We define the observation model Ω to include the status
of surrounding obstacles, the reference path, the past trajec-
tory, and the position of the target goal at time k. These
observations are provided after being transformed onto the
robot coordinate system, where the robot’s forward direction
aligns with the x-axis, thereby implicitly incorporating the
robot pose into the observations. Note that these observa-
tions are also easily accessible in the practical navigation
system. Specifically, the replanner receives an observation
ok = [Sk, P̂

r
k∗ ,Tk,p

g
r ] = Ω(sk), where Sk = {si}ns

i=0 ∈ R2×ns is
the two-dimensional scan positions down-sampled to ns at
time step k, P̂r

k∗ = {pi}
np
i=0 ∈ R2×np is the latest reference

path down-sampled to np at time step k, which is computed
by the global planner, Tk = {ti}nt

i=0 ∈R2×nt is the robot’s past
trajectory downsampled to nt at time step k, which it does to
make the replanner aware of stack and path oscillation situ-
ations. pg

r ∈R2 is the relative position of a given goal. That
is, for our POMDP, O ∈R2×(no+np+nt+1). Specific parameter
settings will be described in the experiment section.

C. Reward Design

Designing an appropriate reward function is a crucial
step to enable reinforcement learning. The reward function
should reflect and quantify the replanner’s objective, that is,
the efficiency (i.e., quick goals) and robustness (i.e., safety,
collision-free) of the navigation in our case. As a unified
metric that involves these criteria, we borrow the idea of
success-weighted by normalized goal time (SGT) [19]. In
the SGT, the score si

sgt of an episode i is defined as follows:

si
sgt =

1i
sucOTi

clip(ATi,αOTiβOTi)
, where OTi =

Li
path

speedmax
, (1)

and 1i
suc is a binary indicator function of success that the

robot reaches the goal without collisions. ATi and OTi denote
the actual and optimal traversal time as an indicator of the
difficulty of the environment, respectively. The clip function
clips AT within αOT and βOT (0 < α < β ) to reduce the
influence of extremely easy or difficult episodes. Li

path is the
optimal (shortest) path length to the goal and is calculated
using the observation at the initial time by the Dijkstra
method. speedmax is a maximal speed of the robot. We can
define the reward function as R(st ,at) = 1pt=pgsi

sgt, where

1pt=pg is a binary function indicating that the robot reaches
the goal. Episodes are terminated when the robot collides or
reaches the goal. Although the SGT in (1) returns a non-zero
score when an episode ends by reaching a given time limit,
the reward at the time limit is zero to avoid conflicts with the
handling of time limits in the bootstrapping of training [20].

D. Learning Algorithm

To train the replanning controller, a DRL algorithm that
can handle binary actions would be sufficient. We opt to
use the popular deep Q-network (DQN) [8] algorithm that
approximates the Q-function with a deep neural network (Q-
network) and obtains an optimal policy that maximizes the
Q-values.

A key point here is that the actual timing at which
replanning is necessary appears only sparsely during a long
travel. In other words, most of the gathered experiences,
i.e., transitions, may not necessarily be useful for learning
appropriate replanning timings. To address this issue, we
employ a prioritized experience replay (PER) buffer [21]
that gives different weights for each experience in the loss
function based on its priority. Specifically, we use the priority
pk based on the difference of Q-values between whether or
not replanning was performed,

pk = ∥Qθ (sk,arep)−Qθ (sk,anot)∥. (2)

Here, higher differences indicate that replanning at the
corresponding timing makes the SGT better (or worse),
and thus should be emphasized more in the replay buffer.
This definition of priority is more intuitive and effective
than the conventional priority based on TD-error (i.e., pk =
∥Qθ (sk,ak)− (Ri(sk,ak)+ γ maxa Qτ

θ−(sk+1,a))∥), as will be
shown empirically in our experimental results.

V. EXPERIMENTS

We conduct a comprehensive simulation study to system-
atically evaluate the existing planning strategies presented in
Sec. III-C and the DRL replanner proposed in Sec. IV.

A. Environment Setup

We developed three navigation environments in continuous
action space with different numbers of no-entry areas for the
robot (nine, 16, and 25 uniformly lined regions sized 1.5,
1.0, and 0.5 meters, respectively; see Fig. 3). In each layout,
dynamic obstacles and unforeseen static obstacles appears.
The robot’s objective is to reach a given goal while avoiding
collisions with these obstacles and detouring around the no-
entry areas. While the no-entry areas are encoded in the
pre-built map used in the planners, the obstacles are not.
To enable the dynamic obstacles to be widely distributed
throughout the field, we assume that the dynamic obstacles
can move over the no-entry areas.

The behavior of the dynamic obstacles is modeled as a
social force model (SFM) [22] or reactive stop model (RSM),
which predicts its motion for several (e.g. 3) seconds as
a point mass model and stops in the case of a collision.
SFM simulates an agent that recognizes and avoids the robot,
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Fig. 3. Selected simulation results. In Fig. 3a, the stuck-based and time-based replanning strategies had difficulties in dealing with dynamic obstacles,
while the proposed DRL replanner avoided them efficiently, resulting in reaching the goal about six seconds faster than the time-based replanning. In Fig.
3b, the stuck-based and time-based replanning strategies failed to reach the goal due to the movement of dynamic obstacles, while the proposed DRL
replanner reached the goal by replanning at key points and adapting to the situation.

while RSM simulates an agent that does not avoid the robot.
These models are selected for each obstacle and represent
the dynamics that the obstacle may or may not yield to the
robot. In these cases, where all dynamic obstacles give the
robot the way based on the SFM, the robot does not need
to replan and detour to reach the goal. However, such cases
are rare in the real world.

To evaluate how our approach generalizes to various
obstacle settings, we spawn ten dynamic or unforeseen
static obstacles with random initial positions, velocities, and
dynamics models for each episode. The layout of the no-
entry areas is fixed during both training and evaluation.

B. Setup of Robot and Planners

We simulate a circular wheeled robot (radius: 1.0 m). The
robot follows the non-holonomic kinematics of the differen-
tial wheeled model with a maximum velocity (1.0 m/s) and
angular velocity (1.0 rad/s) at each control interval ∆t = 0.1
s. The initial and goal positions are sampled randomly from
one of the corners of the environment.

As the hierarchical planning system described in Sec. III,
we implemented Dijkstra, rapidly-exploring random tree*
(RRT*) [23], and probabilistic roadmaps (PRM) [24] as
the global planners, and implemented the dynamic window
approach (DWA) [25] and sampling-based model predictive
control (MPC) [26] as the local planners that compute the
velocity command of the robot. Although these modules gen-
erally run asynchronously, we process them synchronously
for reproducibility. That is, the time delay of the global
planning described in Sec. III is reproduced as a given
constant time: ∆td = 1 s.

C. Replanning Strategy Setup

We implemented the rule-based replanning strategies with
manually tuned parameters as described in Sec. III-C, with
drep = 1 m, ∆tstuck = 3 s, ∆trep = 1 s, and dpatience = 3 m. We
also trained the proposed DRL replanner. The observation
space dimension described in Sec. IV-B is 62, with ns = 20,
np = 5, and nt = 5. The DRL replanner was trained using
the DQN algorithm described in Sec. IV-D, using stable-
baselines3 [27]. We used the Adam optimizer to train the
Q-network, which features a network architecture consisting
of a multi-layer perceptron with hidden layers of [128,128],
a learning rate of 0.0001, a batch size of 128, a buffer size

of 100k, and a discount factor γ of 0.99 over 100k timesteps
(spanning 1k episodes).

D. Evaluation Metrics

To evaluate the effectiveness of our RL-based replanning
compared to the rule-based strategies, we simulated 100 trials
of the navigation. The following five metrics are used for a
quantitative evaluation of the navigation performance:

• SR: The success rate over 100 trials, where success is
defined as the robot reaching the goal without collision.

• CR: The collision rate over 100 trials.
• SGT: The SGT in (1) (α = 4,β = 8).
• SPL: The average success-weighted normalized path

length defined as SPL = 1
N ∑

N
i=0

1i
sucALi

max(ALi,OLi)
, where N

is the number of trials (N = 100), 1i
suc is a binary

indicator function of success, and AL and OL denote
the actual and optimal traversal length as an indicator
of the difficulty of the environment, respectively. The
SPL evaluates the navigation’s efficiency with respect
to the traveled distance.

• NR: The number of replanning over 100 trials.

E. Experimental Results

1) Quantitative Comparisons: Table I lists the quantita-
tive evaluation results of 100 trials for each map layout with
Dijkstra and DWA planners. Overall, we confirmed that the
baseline strategies, i.e., distance-based, stuck-based, time-
based, and time w/ patience, show quite different tendencies
for each environment. The stuck-based strategy demonstrates
a consistently lower number of replanning operations (NR)
and consequently outperforms the other methods in terms of
SPL (i.e., shorter travel distance on average) in the easiest
environment with a lower number of no-entry areas (N =
9). For more complicated environments with N = 16,25,
the distance-based and time-based strategies become more
robust and efficient. This is arguable because these methods
periodically perform replanning to refine the reference path.
Nevertheless, these results come at the cost of an increase in
the number of replanning operations–in other words, more
computational resources are required. In contrast, the DRL
replanner, which learns from its experiences to seek better-
replanning timings, works comparably well or sometimes
substantially better than the other rule-based strategies in
each environment. For the N = 9 environment, the DRL
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TABLE I
SIMULATION RESULTS

No. of no-entry areas 9 16 25
Metrics SR↑ CR↓ SGT↑ SPL↑ NR↓ SR↑ CR↓ SGT↑ SPL↑ NR↓ SR↑ CR↓ SGT↑ SPL↑ NR↓

No replan 33 11 0.461 0.330 – 27 10 0.439 0.270 – 24 4 0.418 0.240 –

Distance-based 66 13 0.529 0.572 2202 62 12 0.509 0.547 2186 82 12 0.561 0.705 1995
Stuck-based 67 12 0.511 0.619 914 64 13 0.493 0.605 739 71 6 0.482 0.658 818
Time-based 64 15 0.527 0.570 3063 70 10 0.538 0.615 3076 79 12 0.562 0.688 2671

Time w/ patience 64 15 0.529 0.570 2953 70 10 0.540 0.615 2956 79 12 0.564 0.688 2558

DRL replanner (ours) 64 10 0.532 0.567 1361 77 4 0.563 0.668 2577 87 6 0.600 0.751 2066

SR, CR, SGT, SPL, and NR mean success rate [%], collision rate [%], success rate weighted goal time, success rate weighted path length, and the number
of replanning operations, respectively. SGT and SPL show the time and path efficiency of the navigation. Dijkstra and DWA planners are used for global
and local planners in the training and evaluation.

TABLE II
COMPARISON OF PERFORMANCE BY PLANNERS

GP LP Method SR CR SGT SPL NR

Dijkstra DWA
Stuck-based 64 13 0.493 0.605 739
Time-based 70 10 0.538 0.615 3076

DRL 77 4 0.563 0.668 2577

Dijkstra MPC
Stuck-based 70 10 0.434 0.483 298
Time-based 75 8 0.487 0.560 2181

DRL 82 8 0.502 0.601 1582

PRM DWA
Stuck-based 66 10 0.537 0.617 808
Time-based 72 13 0.542 0.623 2958

DRL 74 7 0.570 0.647 2293

RRT* DWA
Stuck-based 65 10 0.473 0.537 661
Time-based 57 6 0.446 0.441 3758

DRL 58 5 0.445 0.443 2801

GP and LP are global and local planners, respectively.

replanner was slightly outperformed by the stuck-based
strategy but still able to perform on par with the remaining
baselines with much fewer replanning operations.

2) Qualitative Results: Figure 3 visualizes some selected
navigation results with the stuck-based and time-based strate-
gies as well as the DRL replanner. Each method shows its
own unique behavior. For example, with the stuck-based
strategy in Fig. 3a, the robot simply waited until a dynamic
obstacle near the start point was out of the way, and then per-
formed the replanning around the goal by getting stuck at the
static obstacle. In contrast, the time-based strategy periodi-
cally updated the reference path, but this sometimes resulted
in path oscillation, as shown in Fig. 3a. This happens when
the frequency of replanning is unnecessarily high compared
to the actual need. Figure 3b shows a more challenging case
where both stuck-based and time-based replanning failed. In
contrast, the DRL replanner was able to learn to adapt its
replanning strategy to the given environments and performed
replanning only when necessary. In fact, fewer replanning
operations were performed in less congested areas, resulting
in overall shorter travels compared to the stuck-based and
time-based strategies.

3) Results with Different Planners: Table II lists the
results of the Dijkstra–MPC, PRM–DWA, and RRT*–DWA
combinations of global and local planners, in addition to
the Dijkstra–DWA reported in the previous section. We
confirmed that the proposed DRL replanner could learn
to adapt to the choice of planners, except when RRT*
was used. A possible reason for the degraded performance
with RRT* is its stochastic nature, which does not give
exactly consistent paths when replanning, regardless of the

TABLE III
COMPARISON OF RESULTS WITH RL ALGORITHMS

RL algorithm SR CR SGT SPL NR
w/o PER 69 12 0.514 0.595 2396

w/ PER-TDerror 69 9 0.541 0.608 2414
w/ PER-Qerror (ours) 77 4 0.563 0.668 2577

Dijkstra and DWA planners are used on the 16-pillar map.

current observation. This would make learning the replanning
strategy harder than when combined with the other global
planners. Note that PRM can produce a consistent path once
the roadmap is generated by sampling, making it a better
choice when a sampling-based global planner is required for
larger environments.

4) Ablation Study: Finally, Table III compares other RL
techniques that were not used in the proposed method.
Specifically, we investigated how the overall performances
change if the prioritized experience replay was not used
(w/o PER) or if the priority was determined using TD
error (w/ PER-TDerror). Although the number of replanning
operations (NR) was almost the same, there was a substantial
difference in the success rate (SR) and consequently in
other metrics such as SGT and SPL. These findings suggest
that changes in Q-value can function as a salient clue for
replanning, and using them as the priority of experiences
leads to more efficient training of the replanning controller.

VI. CONCLUSION AND LIMITATIONS

This paper is the first to delve into when to replan the refer-
ence path in a common hierarchical planning framework. We
propose the DRL-based solution that addresses inefficiencies
caused by the conventional rule-based replanning strategy.
Our simulation results demonstrate that the proposed DRL-
based replanning strategy achieves similar or better efficiency
than the other rule-based strategies in the spaces with branch-
ing pathways and dynamic obstacles. We believe that these
results have strong implications for designing replanning
strategies in autonomous robot navigation. In this study, we
used simple pre-built map layout to highlight the effect of
unforeseen and dynamic obstacles. Despite the promising
results, applying the DRL strategy in real-world scenarios
remains challenging due to the diversity of the map layouts
and the uncertainty in observations. Future work will aim
to enhance our DRL strategy to increase its robustness in
real-world, including testing within complex map layouts and
improving adaptability to ensure its practical effectiveness.
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