
ISR-LLM: Iterative Self-Refined Large Language Model for
Long-Horizon Sequential Task Planning

Zhehua Zhou1, Jiayang Song1, Kunpeng Yao2, Zhan Shu1 and Lei Ma3,1

Abstract— Motivated by the substantial achievements of
Large Language Models (LLMs) in the field of natural language
processing, recent research has commenced investigations into
the application of LLMs for complex, long-horizon sequential
task planning challenges in robotics. LLMs are advantageous
in offering the potential to enhance the generalizability as task-
agnostic planners and facilitate flexible interaction between
human instructors and planning systems. However, task plans
generated by LLMs often lack feasibility and correctness.
To address this challenge, we introduce ISR-LLM, a novel
framework that improves LLM-based planning through an iter-
ative self-refinement process. The framework operates through
three sequential steps: preprocessing, planning, and iterative
self-refinement. During preprocessing, an LLM translator is
employed to convert natural language input into a Planning
Domain Definition Language (PDDL) formulation. In the plan-
ning phase, an LLM planner formulates an initial plan, which
is then assessed and refined in the iterative self-refinement
step by a validator. We examine the performance of ISR-
LLM across three distinct planning domains. Our experimental
results show that ISR-LLM is able to achieve markedly higher
success rates in sequential task planning compared to state-
of-the-art LLM-based planners. Moreover, it also preserves the
broad applicability and generalizability of working with natural
language instructions.

I. INTRODUCTION

Large Language Models (LLMs) have recently revolution-
ized artificial intelligence by demonstrating unprecedented
abilities in areas such as natural language processing [1],
data analysis [2], code generation [3] and reasoning [4]. Due
to their rich internalized knowledge about the world [5], [6],
LLMs have also garnered considerable attention within the
field of long-horizon sequential task planning [7]. Unlike
short-term robotic planning problems, long-horizon sequen-
tial task planning often involves devising interconnected
actions that are spanned over extended timeframes to achieve
control objectives. Since the execution of actions at one point
in time can greatly impact subsequent actions and outcomes,
long-horizon planning is usually considered a more chal-
lenging problem due to its inherent intricacy in managing
temporal dependencies and combinatorial complexity [8].

The traditional way to address long-horizon sequential task
planning typically relies on first establishing a symbolic and
logic-based representation of the planning problem [9] and

1Zhehua Zhou, Jiayang Song and Zhan Shu are with the University of
Alberta, Canada. Emails: {zhehua1, jiayan13, zshu1}@ualberta.ca

2Kunpeng Yao is with the Swiss Federal Institute of Technology Lausanne
(EPFL), Switzerland. Email: kunpeng.yao@epfl.ch

3Lei Ma is with The University of Tokyo, Japan, and the University of
Alberta, Canada. Email: ma.lei@acm.org

The code related to this work is available at https://github.com/
ma-labo/ISR-LLM.

then employing search-based techniques [10], [11] to find
a feasible solution. However, this method usually requires
the manual specification of symbolic planning domains,
which demands a notable degree of expertise in the field.
Furthermore, many desirable properties of plans, e.g., user
preferences, which can be specified in natural language by
individuals without specialized training, may prove intricate
or even infeasible to encapsulate within formal logic frame-
works. As a result, the adaptability of conventional methods
is constrained, limiting their utility in diverse contexts.

To overcome this limitation, recent studies have started
exploring the potential of utilizing LLMs as task-agnostic
reasoning modules, with the aim of facilitating more gener-
alized and intelligent robotic planning [12], [13]. Leverag-
ing their pre-trained knowledge, these LLM-based planners
are able to effectively comprehend both explicit human-
generated natural language directives and the inherent con-
straints interwoven within planning tasks [14]. This greatly
reduces the necessity for labor-intensive manual rule en-
coding and circumvents the need for intricate specification
of symbolic planning domains [15]. However, as LLMs
are essentially engineered to generate word sequences that
align with human-like context, their efficacy and reliability
in planning are often not guaranteed [16]. This limitation
becomes further pronounced in long-horizon sequential task
planning, where complex action dependencies and extended
temporal considerations introduce additional difficulties that
challenge the planning abilities of LLMs.

Drawing inspiration from recent research that re-
veals the potential for LLM improvements through self-
refinement [17], [18], we propose in this work the Iterative
Self-Refined LLM (ISR-LLM) framework that utilizes the
power of iterative self-refinement to improve planning out-
comes of LLMs. Our framework consists of three steps (see
Fig. 1): (1) Preprocessing, where an LLM translator is em-
ployed to translate the natural language inputs into their re-
spective Planning Domain Definition Language (PDDL) [9]
formulations; (2) Planning, where an LLM planner takes
the translated PDDL problem as input and determines the
action sequence to accomplish the long-horizon sequential
task planning; (3) Iterative self-refinement, where a validator
is used to examine the correctness of the generated action
plan and provide feedback to the LLM planner. Then, based
on the feedback, the LLM planner performs the iterative self-
refinement process to find a revised action plan. We consider
two different types of validators in our approach: an LLM-
based self-validator and an external validator that leverages
auxiliary verification tools.

2024 IEEE International Conference on Robotics and Automation (ICRA 2024)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 2081

Robotics System

Action Decomposition
by Chain-of-thought

New Plan Generation

LLM PlannerValidator

Planning with LLM PlannerSelf-Refinement

Objective Tasks

Cooking Ball Moving

Blocksworld

Task Description
User

PDDL
Domain File

Preprocessing with LLM Translator

PDDL
Problem FileTranslated PDDL Files

…

Large Language
Model

PDDL Standardized
Encoding Format

Few-Shot
In-Context Learning PDDL

Domain File

PDDL
Problem File

Planning with LLM Planner

Large Language
Model

Pre-execution
Validation

1. Grab the ball

Action 1
Action 2

Action N

…

Action Plan

Self-Refinement

Performance
Analysis

• LLM Validator
• External Validator

Error DetectedFeedback to Planner

Performance Analysis

No Error

Fig. 1: Our proposed ISR-LLM framework. It consists of three steps: preprocessing, planning, and iterative self-refinement.

The contributions of this work are threefold:
• We present ISR-LLM, a novel framework achieved

by integrating a self-refinement mechanism into LLM.
This approach addresses long-horizon sequential task
planning and offers remarkable advancements in both
feasibility and correctness.

• We introduce and evaluate the effectiveness of two types
of validators in providing feedback to the LLM planner
for executing the iterative self-refinement process.

• We highlight the superiority of our proposed framework
in comparison to state-of-the-art methods through com-
prehensive experiments across three diverse planning
domains.

II. RELATED WORK

Long-Horizon Sequential Task Planning In recent robotic
studies, PDDL and Answer Set Programming (ASP) [20]
are often used as the language for representing long-horizon
sequential task planning problems [21]. A prevalent method
employed to tackle these planning tasks is to employ a
search-based or sampling-based algorithm to find a viable
plan [22], [23], [24]. This strategy has been successfully
applied across diverse research domains in robotics, e.g.,
mobile robots [25], autonomous vehicles [26], and robotic
manipulators [27]. However, these approaches rely on a
predetermined symbolic and logical representation of the
planning domain, which usually demands a high level of
expert knowledge for formulation. Moreover, due to the
inherent abundance of potential action options associated
with long-horizon sequential task planning, search-based or
sampling-based strategies may encounter impediments in
such scenarios.
Task and Motion Planning (TAMP) Another important
research problem in robotics is TAMP [28], which combines
high-level task planning and low-level robot motion planning
as a hierarchical planning framework. The focus of TAMP
extends beyond mere task planning to encompass the exe-
cutability of the determined actions, i.e., the actions must be
executable by the robot with a viable motion trajectory that
is subject to both robotic and environmental constraints [29],
[30], [31]. However, how to accurately ground actions gen-
erated by LLMs into feasible robot motions remains a chal-
lenging and ongoing area of research [12], [13]. In this work,
we mainly focus on exploring the task planning capabilities
of LLMs, and reserve the consideration of addressing TAMP
problems for future endeavors.
Action Grounding Recent studies have started utilizing
LLMs as task-agnostic planners [32], [33], [34], [35]. A

multitude of studies have delved into grounding the lan-
guage commands generated by LLMs to executable robotic
actions [12], [13], [36], [15]. For instance, in [12], scores are
assigned to potential actions through a value function, and
the action with the highest likelihood of success is selected.
Although the focus of this work is not the grounding of
actions, these studies illustrate the competencies of LLMs in
addressing diverse robotic planning tasks.
LLM with PDDL Moreover, LLMs are often combined with
PDDL to elevate the performance of LLM-based planners.
In [16], a Blocksworld [37] benchmark is proposed to assess
the LLM’s capability in handling natural language inputs
for planning. However, the results reveal a discouraging
performance of LLMs in long-horizon task planning. In [38],
[39], instead of natural language inputs, planning problems in
PDDL syntax are directly presented to LLMs for generating
action sequences. While this strategy contributes to enhanced
performance, it often demands additional effort and expert
knowledge for composing the corresponding PDDL files.
In [40], LLM is employed not as a planner but rather as
a translator that converts natural language inputs into PDDL
problems, which are subsequently solved using classical
planners. Similar to our self-refinement concept, [41] collects
the error information returned from the execution of the plan
for directing the LLM toward correcting erroneous actions.
However, such a refinement process occurs subsequent to the
action execution phase. Conversely, our approach not only
considers the utilization of an external validator to perform
a similar self-refinement process but also investigates the po-
tential of LLMs for enabling pre-execution action corrections
through self-validation capabilities.

III. PRELIMINARY

Task Planning In this work, we consider the task planning
problem P = ⟨S,A,T,sinit,G⟩ in a setting with discrete and
fully observable states, finite actions, and deterministic tran-
sitions. For each state s ∈ S, an action a ∈ A can be selected
from the set of applicable actions A(s) ⊆ A whose precon-
ditions are fulfilled. The transition function T : S×A → S
determines the next state. sinit ∈ S represents the initial state
and G ⊆ S is a set of goal states. A solution to the planning
problem is a sequential action plan π = (a1,a2, . . . ,an) that
controls the initial state sinit to a goal state. For long-horizon
sequential task planning, the number of actions n tends to
be relatively large. In this work, our primary focus is the
capabilities of LLM in solving the designated task planning
problem, i.e., the feasibility and success rate of planning
rather than the optimality.

2082

Step 1: Preprocessing with the
LLM translator

Step 2: Planning with the LLM
planner

Step 3.1: Iterative Self-Refinement
(feedback from self-validator)

Step 3.2: Iterative Self-Refinement
(re-planninig)

Prom
pt to LLM

[Few-shot Example Question]
I have 3 blocks. Initially: Block b1 is on the
table. Block b2 is on the table. Block b3 is on
top of b1. Your goal is to move the blocks such
that they are stacked in the order: b1 on b2, b2
on b3, and b3 on table.
[Few-shot Example Answer]
Domain file:
(define (domain blocksworld)
(:predicates ...)
(:action pickup ...)
...
)
Problem file:
(define (problem threeblocks)
...
)

[Question]
I have 4 blocks. Initially: Block b1 is on top of
b2. Block b2 is on top of b4. Block b3 is on top
of b1. Block b4 is on the table. Your goal is to
move the blocks such that they are stacked in
the order: b2 on b1, b1 on b4, b4 on b3, and
b3 on table.

[Few-shot Example Question]
Domain file:
(define (domain blocksworld)
(:predicates ...)
(:action pickup ...)
...
)
Problem file:
(define (problem threeblocks)
...
)
[Few-shot Example Answer]
We need to build the blocks from bottom to
top.
Third goal: b3 on table
(unstack b3 b1)
(putdown b3)
Second goal: b2 on b3
(pickup b2)
(stack b2 b3)
First goal: b1 on b2
(pickup b1)
(stack b1 b2)
[Question]
Translated PDDL domain and problem files
from step 1

[Few-shot Example Question]
Block initial state:
(on-table b1)
(on-table b2)
(on b3 b1)
Goal state:
(on b1 b2)
(on b2 b3)
(on-table b3)
Examined action sequence:
(unstack b2 b1)
(putdown b2)
...
[Few-shot Example Answer]
Initial: b1 on the table, b2 on the table, b3 on
b1
(unstack b2 b1) result: the action is wrong
since b2 is not on top of b1
analysis stops due to error
Final answer:
No, the action sequence is wrong, it cannot
accomplish the goal.

[Question]
Initial state and goal conditions extracted from
the translated PDDL files from step 1 +
generated action sequence from step 2

[Question]
(Append the previous prompt to the LLM
planner with the feedback obtained from the
validator)
[Few-Shot Example Question from Step 2]
Domain file:
...
Problem file:
...

[Few-shot Example Answer from Step 2]
We need to build the blocks from bottom to
top.
...

[Question from Step 2]
Translated PDDL domain and problem files

[Feedback History from Step 3.1]
(previous feedback)
...
(latest Feedback)
The self-validation suggests an error, please
find a new plan.

[Response of the LLM Translator]
(Translated PDDL domain file)
Domain file:
...
(Translated PDDL problem file)
Problem file:
...

LLM
 R

esponse

[Response of the LLM Planner]
(Generated action sequence)
We need to build the blocks from bottom to
top.
Fourth goal: b4 on table
...
Third goal...

[Response of the LLM Validator]
Initial: b1 on b2, b2 on b4, b3 on b1, b4 on the
table
...
Final answer:
No, the action sequence is wrong, it cannot
accomplish the goal.

[Response of the LLM Planner]
(New action sequence)
We need to build the blocks from bottom to
top.
Fourth goal: b4 on table
...
Third goal...

Fig. 2: Examples of the prompts used in ISR-LLM. The prompt provided to the LLM contains two parts: the few-shot examples (yellow) and the actual
question (blue). The texts shaded with a green color represent the LLM’s responses. Details about all few-shot examples used in this work are given in
the preprint version of this paper [19].

PDDL PDDL is a standardized encoding format designed
for classical planning problems [42]. A planning problem
represented in PDDL syntax consists of two files: a domain
file and a problem file. The domain file embodies the
foundational rules of the planning domain, i.e., the predicates
that represent the state space and the preconditions and
effects of all possible actions. The problem file defines the
available objects within the planning domain, as well as the
initial state and goal conditions. We assume that the natural
language input provided to the LLM should include both
the initial state and the goal conditions, such that the LLM
translator is able to convert it into corresponding PDDL files.
For more details about PDDL, the readers can refer to [9].

IV. ISR-LLM

In this section, we introduce the ISR-LLM framework (see
Fig. 1), which includes three steps: preprocessing, planning,
and iterative self-refinement.

A. Preprocessing with LLM Translator

The LLM translator first converts the given natural lan-
guage instructions into a PDDL formulation with domain and
problem files. The rationale for employing such a translator
is grounded in its notable advantages, even though an LLM
planner could be designed to operate directly on natural
language inputs, as demonstrated in [15]. The adoption of
a formal representation, i.e., PDDL, offers twofold benefits
to the subsequent validation process of the generated plan.
Firstly, it enables the usage of existing PDDL validators, e.g.,
VAL [43] or PDDL.lj [44], as the external validator. This
obviates the necessity of developing a custom validator and

thereby saves substantial time and effort. Secondly, rather
than relying solely on language cues, this approach enables
the LLM-based self-validator to acquire a comprehension
akin to a state-machine understanding of the system state.
This, in turn, facilitates a more precise evaluation of the
correctness of the selected actions.

In order to ensure the structural accuracy of the translated
PDDL files, we adopt a technique known as few-shot in-
context learning [1]. This technique involves embedding il-
lustrative examples within the prompt, effectively instructing
the LLM on how to formulate responses to given queries in a
desired manner. Similar to [40], we assume that the domain-
specific knowledge pertinent to each considered planning
task is available in advance and thus include it within
the few-shot examples provided to the LLM translator. An
example of the prompt presented to the LLM translator
for the Blocksworld planning domain (see Sec. V-A for a
detailed explanation about this domain) is shown in Fig. 2.

B. Planning with LLM Planner

Once the natural language input is translated, the LLM
planner takes these PDDL files as inputs and determines
an action sequence aimed at achieving the given task (see
Fig. 1). In addition to few-shot in-context learning, we also
integrate the Chain-of-Thought (CoT) technique [45] into
the prompts provided to the LLM planner. CoT operates
by decomposing the overall problem into intermediate steps,
thus enabling the LLM to tackle complex reasoning problems
that may not be solvable via standard prompting methods. An
illustrative prompt example for the LLM planner is given in
Fig. 2.

2083

C. Iterative Self-Refinement Loop with Validator

With the initial action plan obtained from the previous
step, we perform an iterative self-refinement process to
examine and improve its feasibility and correctness. The
central component of the iterative self-refinement loop is the
validator, as demonstrated in Fig. 1. Through the examination
of the generated action sequence, the validator constructs
feedback, pinpointing any actions considered incorrect, and
subsequently conveys this information to the LLM planner.
Then, based on the feedback, the LLM planner initiates a
self-refinement process to rectify the incorrect action and
devise a new action plan. Note that while the generated action
sequence may contain multiple errors, analyzing actions
subsequent to the initial error is often unnecessary since
the first error could potentially render the foundation of
all ensuing actions fundamentally flawed. Thus, the self-
refinement process is executed iteratively within a loop,
where in each step, the validator stops at the first identified
error. The information concerning this error is then returned,
ensuring that each iterative stage is solely focused on rec-
tifying this detected mistake. The iterative self-refinement
loop persists until either the validator identifies no errors or
a predefined maximum number of iterations is reached. The
action sequence, resulting from the iterative self-refinement
loop, is then accepted as the final generated action sequence.
An example of the prompt provided to the LLM-based self-
validator is shown in Fig. 2, where few-shot learning and
CoT techniques are also employed.

We consider two types of validators: a self-validator, which
employs the LLM to assess the correctness of the generated
action plan, and an external validator, which leverages exter-
nal tools for performing the analysis. It is worth mentioning
that although the external validator is capable of providing
accurate feedback on the feasibility of the generated plan,
its implementation often demands a considerable amount of
effort and may be unavailable for certain tasks. Conversely,
the usage of an LLM as an internal self-validator economizes
both time and effort. However, it has the inherent risk of
possibly yielding imprecise or even erroneous feedback.
The selection of the validator type, therefore, hinges upon
the specific evaluation requirements and the context of the
validation scenario.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We utilize the following three planning domains as bench-
mark problems to evaluate the performance of ISR-LLM.
These domains are derived from existing literature and are
extensively employed in planning research [40], [39], [16].
More details and examples about each planning domain are
presented in the preprint version of this paper [19].

• Cooking: There are n pots and a total of 6 different
ingredients (see Fig. 3a). The robot’s task is to add
ingredients to each pot according to a prescribed recipe.
Each pot possesses its own randomly generated recipe
that includes 2 to 4 different ingredients. However, each

Initial State

Goal Conditions

1 32 4

Pot 1 Pot 2 Pot 3

Pot 1

1 4

Pot 2

21

5 6

Pot 3

3 4

2

5 6

(a) Cooking

Initial State

2

4

1

3

4 3 2

1

Goal Conditions

(b) Blocksworld

Initial State
Room 1 Room 2

Room 3 Room 4

1 3

2

4

Goal Conditions
Room 1 Room 2

Room 3 Room 4

2

4

1 3

(c) Ball Moving

Fig. 3: Three planning domains used in this work.

ingredient may only be retrieved once by the robot, i.e.,
once the robot has picked up an ingredient, it must
distribute it to all pots that require this ingredient as
per their individual recipes.

• Blocksworld: There are n blocks, initially randomly
placed on a table. The objective of the robot is to
assemble these blocks into a stack, adhering to a specific
prescribed order (see Fig. 3b). However, the robot can
only manipulate one block at a time, i.e., any block that
has other blocks situated on top of it is considered fixed.

• Ball Moving: There are n balls, initially randomly dis-
tributed among 4 rooms (see Fig. 3c). The robot needs
to relocate the balls to their predefined goal rooms, with
the constraint that it can hold no more than one ball at
a time.

For all three planning domains, we investigate two specific
cases with n = 3 and n = 4, to examine the influence of
the number of objects, which is directly correlated with the
complexity of the task, on the performance of the proposed
ISR-LLM framework. Furthermore, to evaluate the impacts
of various LLMs on the planning outcomes, we employ
two LLMs, namely GPT3.5 and GPT4, and compare their
capabilities in task planning within the ISR-LLM framework.

For each planning task, we evaluate three different meth-
ods: (1) LLM-direct, which is the baseline approach grounded
in [39], [38], [16]. It leverages the LLM to formulate an
action plan directly from the given PDDL input. To ensure
a fair comparison with ISR-LLM, we utilize the LLM
translator to convert natural language inputs into PDDL files
in this method. (2) ISR-LLM-self, which employs the ISR-
LLM framework with an LLM-based self-validator; (3) ISR-
LLM-external, which incorporates an external validator to
generate feedback for ISR-LLM. In order to mitigate the

2084

TABLE I: Success rate of ISR-LLM in different planning domains.

GPT3.5 GPT4
Planning Domain LLM-direct ISR-LLM-self ISR-LLM-external LLM-direct ISR-LLM-self ISR-LLM-external

Cooking n = 3 47% 67% 100% 100% 100% 100%
n = 4 40% 53% 63% 100% 100% 100%

Blocksworld n = 3 20% 37% 70% 43% 60% 97%
n = 4 10% 17% 53% 40% 60% 80%

Ball Moving n = 3 33% 50% 70% 93% 100% 100%
n = 4 17% 27% 57% 90% 93% 97%

influence of existing PDDL validators and focus on analyzing
the performance of ISR-LLM, we implement our own custom
external validators in this work. It evaluates whether the
preconditions for each action are satisfied and provides
feedback on any errors. More implementation details are
available on the Github page of this paper.

We randomly generate 30 unique cases with varying
initial states and goal conditions for each planning task. The
maximum number of iterations allowed for self-refinement is
set at 10. The success rates of task accomplishments for the
three aforementioned methods are recorded. All experiments
are conducted on a laptop equipped with an Intel® Core™

i7-10870H CPU.

B. Performance of ISR-LLM

The results of the experiments are summarized in Table I.
In the cases utilizing GPT3.5, the proposed ISR-LLM frame-
work demonstrates a notable enhancement in success rates
across all planning domains when compared to the baseline
approach. While the LLM-based self-validator contributes to
an approximate 15% increase in performance, the external
validator can further amplify the success rate by roughly
40% to 50%.

The success rates are also influenced by task complexity,
as indicated by the number of objects. Increases in object
numbers correspond to decreased success rates in the Cook-
ing, Blocksworld, and Ball Moving domains for all three
approaches. This trend reflects the increased difficulty in
rectifying erroneous actions as the planning horizon extends.
Moreover, the success rate varies among planning domains.
Compared to the Cooking and Ball Moving domains, the
Blocksworld domain, which demands more sophisticated
logical thinking, demonstrates lower success rates. Never-
theless, the proposed ISR-LLM is still able to improve the
planning outcomes within this domain.

It can also be observed that GPT4 greatly outperforms
GPT3.5, corroborating the common assertion that GPT4
possesses a markedly superior reasoning capability. The
baseline method, i.e., LLM-direct, when coupled with GPT4,
is able to achieve a success rate exceeding 90% in the
Cooking and the Ball Moving domains, where ISR-LLM
also maintains this high-performance level. However, in the
more logically complex Blocksworld domain, GPT4 demon-
strates diminished performance using the baseline approach.
Nevertheless, the employment of ISR-LLM also elevates the

TABLE II: Success rate of ISR-LLM with and without the LLM translator
in Blocksworld (n = 3) with GPT3.5.

Method With LLM Translator Without LLM Translator
LLM-direct 20% 13%

ISR-LLM-self 36% 16%
ISR-LLM-external 70% 63%

success rate for this domain, with the self-validator contribut-
ing an increase of about 20%, and the external validator
enhancing it by more than 40%. Interestingly, the influence
of the number of objects appears to be less pronounced when
GPT4 is utilized. This may be attributed to GPT4’s enhanced
reasoning capabilities, which facilitate more effective logical
thinking and thereby mitigate the impact of the number of
objects on the results.

C. Influence of the LLM Translator

We also evaluate the influence of the LLM translator
using the Blocksworld domain with n = 3 and GPT3.5 as
an example, as this case demonstrates where the efficacy of
ISR-LLM is most obvious. By omitting the LLM translator
and directly utilizing natural language input, we compare
the success rates of task planning and present the results in
Table II. It can be observed that while the LLM translator
slightly improves the planning performance of the baseline
approach, the self-validator greatly benefits from the transla-
tor, showing a 20% increase in the success rate. The reason
could be that the translated PDDL files offer a symbolic
and logical representation of the planning domain, thereby
allowing the LLM to form a more concrete understanding
of the system state, as opposed to relying solely on lin-
guistic cues. In contrast, the performance of the external
validator remains relatively consistent, irrespective of the
presence of the LLM translator. This consistency arises from
our custom validator’s ability to provide accurate feedback,
whether PDDL formulations are employed or not. However,
as previously mentioned, introducing translated PDDL files
enables the usage of existing PDDL validators, potentially
saving substantial time and effort needed for implementing
a custom validator.

D. Grounding the Actions

Although it is beyond the scope of this work, we further
demonstrate that the generated action plan can be directly
grounded into feasible robot actions when paired with a
suitable motion planner. This highlights another advantage of

2085

Fig. 4: Grounding of actions in the Blocksworld domain with four blocks. Initially, block b2 (red), b3 (green), b4 (pink) are on the table, and block b1
(blue) is on top of block b2. The goal is to stack the blocks in the given order: b4 on b1, b1 on b3, b3 on b2, and b2 on the table. The detailed execution
of actions can be viewed in the supplementary video. The simulation is conducted in NVIDIA Omniverse Isaac Sim [46].

employing the LLM translator within the ISR-LLM frame-
work, as the use of PDDL formulation ensures that each
generated action conforms to a predefined definition and
structure. Consequently, this simplifies the task of the motion
planner in converting the action plan into executable robot
movements. Figure 4 illustrates this grounding process, using
an example from the Blocksworld domain with four blocks
(see also the supplementary video). Here, a pick-and-place
controller is employed to execute the four different types
of actions, assuming the robot knows the locations of the
blocks.

VI. DISCUSSION

Self-Validator and External Validator Generally, the ex-
ternal validator is capable of providing feedback to a degree
of precision that identifies the exact action in which an error
resides. Conversely, the self-validator usually only provides
an overarching estimation regarding the correctness of the
entire generated action plan. As a consequence, the external
validator often leads to superior performance, as precise
feedback can greatly facilitate the correction of erroneous
actions. However, this does not guarantee that the LLM
can fully comprehend this feedback and rectify the errors,
resulting in persistent issues despite the accurate external
validator’s inputs.
Planning Domains The planning capabilities of LLMs are
influenced by the inherent characteristics of the planning
domains. As observed from our experimental results, LLMs
appear to excel in planning tasks that focus on adhering
to specific instructions, such as Cooking, or performing
repeated actions with identifiable patterns, e.g., Ball Moving.
Conversely, when the planning tasks demand more complex
logical thinking, as seen in the Blocksworld domain, their
performance tends to diminish. The reason could be that
LLMs are essentially trained to generate word sequences
that mirror human-like thought processes, which suits tasks
requiring instruction or pattern following. However, when
critical logical reasoning becomes a vital component of the
task, the inherent reasoning abilities of the LLMs become
more important.
Limitations One general limitation of the state-of-the-art
LLM-based planners - also in our proposed ISR-LLM frame-
work - is that the overall success rate often fails to exceed
that of traditional search-based planners. However, as an
initial exploratory work, we demonstrate the potential of
utilizing LLM as a versatile and task-agnostic planner. This
has the possibility to significantly facilitate the deployment

of various robotic systems across diverse scenarios and
minimize the required effort in planning system design.
Moreover, the planning abilities of the ISR-LLM framework
may see substantial improvements through refinements in
the underlying reasoning capabilities of the LLMs. Another
limitation stems from the inherent randomness within LLMs,
complicating assurances such as correctness or constraint
satisfaction in the generated action plan. While LLMs offer
promising capabilities, their application in safety-critical
tasks requires careful consideration to ensure reliability.

VII. CONCLUSION

In this paper, we explore the potential of leveraging LLMs
for long-horizon sequential task planning based on natural
language input. To improve the correctness of the gener-
ated action plan, we introduce the ISR-LLM framework,
which employs an iterative self-refinement approach for
automatic plan revisions. This framework consists of three
steps. First, an LLM translator converts the natural language
input into a PDDL formulation, represented by PDDL files.
Second, using these translated PDDL files, an LLM planner
formulates an initial action plan. Third, an iterative self-
refinement loop is initiated, wherein either an LLM-based
self-validator or an external validator provides feedback on
the correctness of the action plan, allowing the LLM planner
to make necessary revisions to the action plan. Through
extensive experiments across three diverse planning domains,
we demonstrate that ISR-LLM surpasses the performance of
existing state-of-the-art LLM-based planners in long-horizon
sequential task planning. While maintaining the flexibility
and generalizability to work with natural language input,
our ISR-LLM framework consistently achieves high success
rates in task accomplishments. For future work, we plan to
incorporate motion planning within the current ISR-LLM
framework, aiming to facilitate reliable and efficient task and
motion planning across various robotic application scenarios.

ACKNOWLEDGEMENT

This work was supported in part by the Canada First
Research Excellence Fund as part of the University of
Alberta’s Future Energy Systems research initiative, Amii
RAP Grant, Canada CIFAR AI Chairs Program, the Natu-
ral Sciences and Engineering Research Council of Canada
(NSERC No.RGPIN-2021-02549, No.RGPAS-2021-00034,
and No.DGECR-2021-00019), as well as JST-Mirai Pro-
gram Grant No.JPMJMI20B8, JSPS KAKENHI Grant
No.JP21H04877, No.JP23H03372.

2086

REFERENCES

[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in Neural Information Processing
Systems, vol. 33, pp. 1877–1901, 2020.

[2] M. Agrawal, S. Hegselmann, H. Lang, Y. Kim, and D. Sontag, “Large
language models are zero-shot clinical information extractors,” arXiv
preprint arXiv:2205.12689, 2022.

[3] P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs.
experience: Evaluating the usability of code generation tools powered
by large language models,” in Chi Conference on Human Factors in
Computing Systems Extended Abstracts, 2022, pp. 1–7.

[4] E. Zelikman, Y. Wu, J. Mu, and N. Goodman, “Star: Bootstrapping
reasoning with reasoning,” Advances in Neural Information Processing
Systems, vol. 35, pp. 15 476–15 488, 2022.

[5] F. Petroni, T. Rocktäschel, P. Lewis, A. Bakhtin, Y. Wu, A. H. Miller,
and S. Riedel, “Language models as knowledge bases?” arXiv preprint
arXiv:1909.01066, 2019.

[6] J. Davison, J. Feldman, and A. M. Rush, “Commonsense knowledge
mining from pretrained models,” in Conference on Empirical Methods
in Natural Language Processing and the International Joint Confer-
ence on Natural Language Processing, 2019, pp. 1173–1178.

[7] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley, “A survey
of multi-objective sequential decision-making,” Journal of Artificial
Intelligence Research, vol. 48, pp. 67–113, 2013.

[8] V. N. Hartmann, A. Orthey, D. Driess, O. S. Oguz, and M. Toussaint,
“Long-horizon multi-robot rearrangement planning for construction
assembly,” IEEE Transactions on Robotics, vol. 39, no. 1, pp. 239–
252, 2022.

[9] P. Haslum, N. Lipovetzky, D. Magazzeni, C. Muise, R. Brachman,
F. Rossi, and P. Stone, An introduction to the planning domain
definition language. Springer, 2019, vol. 13.

[10] W. Zhang, State-space search: Algorithms, complexity, extensions, and
applications. Springer Science & Business Media, 1999.

[11] S. Edelkamp and S. Schrödl, Heuristic search: theory and applica-
tions. Elsevier, 2011.

[12] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman et al., “Do as i
can, not as i say: Grounding language in robotic affordances,” arXiv
preprint arXiv:2204.01691, 2022.

[13] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng,
J. Tompson, I. Mordatch, Y. Chebotar et al., “Inner monologue:
Embodied reasoning through planning with language models,” arXiv
preprint arXiv:2207.05608, 2022.

[14] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents,” in International Conference on Machine Learning. PMLR,
2022.

[15] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg, “Text2motion:
From natural language instructions to feasible plans,” arXiv preprint
arXiv:2303.12153, 2023.

[16] K. Valmeekam, A. Olmo, S. Sreedharan, and S. Kambhampati, “Large
language models still can’t plan (a benchmark for llms on planning
and reasoning about change),” arXiv preprint arXiv:2206.10498, 2022.

[17] A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe,
U. Alon, N. Dziri, S. Prabhumoye, Y. Yang et al., “Self-refine: Itera-
tive refinement with self-feedback,” arXiv preprint arXiv:2303.17651,
2023.

[18] J. Huang, S. S. Gu, L. Hou, Y. Wu, X. Wang, H. Yu, and J. Han, “Large
language models can self-improve,” arXiv preprint arXiv:2210.11610,
2022.

[19] Z. Zhou, J. Song, K. Yao, Z. Shu, and L. Ma, “Isr-llm: Iterative
self-refined large language model for long-horizon sequential task
planning,” arXiv preprint arXiv:2308.13724, 2023.

[20] G. Brewka, T. Eiter, and M. Truszczyński, “Answer set programming
at a glance,” Communications of the ACM, vol. 54, no. 12, pp. 92–103,
2011.

[21] Y.-q. Jiang, S.-q. Zhang, P. Khandelwal, and P. Stone, “Task planning
in robotics: an empirical comparison of pddl-and asp-based sys-
tems,” Frontiers of Information Technology & Electronic Engineering,
vol. 20, pp. 363–373, 2019.

[22] J. Levine and D. Humphreys, “Learning action strategies for planning
domains using genetic programming,” in Workshops on Applications
of Evolutionary Computation. Springer, 2003, pp. 684–695.

[23] J. Segovia-Aguas, S. Jiménez, and A. Jonsson, “Generalized planning
as heuristic search,” in International Conference on Automated Plan-
ning and Scheduling, vol. 31, 2021, pp. 569–577.

[24] B. J. Cohen, S. Chitta, and M. Likhachev, “Search-based planning for
manipulation with motion primitives,” in International Conference on
Robotics and Automation. IEEE, 2010, pp. 2902–2908.

[25] S. Zhang, F. Yang, P. Khandelwal, and P. Stone, “Mobile robot
planning using action language with an abstraction hierarchy,” in
International Conference on Logic Programming and Nonmonotonic
Reasoning. Springer, 2015, pp. 502–516.

[26] Y. Ding, X. Zhang, X. Zhan, and S. Zhang, “Task-motion planning
for safe and efficient urban driving,” in International Conference on
Intelligent Robots and Systems. IEEE, 2020, pp. 2119–2125.

[27] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Pddlstream:
Integrating symbolic planners and blackbox samplers via optimistic
adaptive planning,” in International Conference on Automated Plan-
ning and Scheduling, vol. 30, 2020, pp. 440–448.

[28] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kael-
bling, and T. Lozano-Pérez, “Integrated task and motion planning,”
Annual Review of Control, Robotics, and Autonomous Systems, vol. 4,
pp. 265–293, 2021.

[29] M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning.” in International
Joint Conference on Artificial Intelligence, 2015, pp. 1930–1936.

[30] D. Driess, O. Oguz, and M. Toussaint, “Hierarchical task and motion
planning using logic-geometric programming (hlgp),” in RSS Work-
shop on Robust Task and Motion Planning, 2019.

[31] X. Zhang, Y. Zhu, Y. Ding, Y. Jiang, Y. Zhu, P. Stone, and S. Zhang,
“Symbolic state space optimization for long horizon mobile manip-
ulation planning,” in 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2023, pp. 866–872.

[32] P. Sharma, A. Torralba, and J. Andreas, “Skill induction and planning
with latent language,” arXiv preprint arXiv:2110.01517, 2021.

[33] S. Li, X. Puig, C. Paxton, Y. Du, C. Wang, L. Fan, T. Chen, D.-A.
Huang, E. Akyürek, A. Anandkumar et al., “Pre-trained language mod-
els for interactive decision-making,” Advances in Neural Information
Processing Systems, vol. 35, pp. 31 199–31 212, 2022.

[34] A. Zeng, M. Attarian, B. Ichter, K. Choromanski, A. Wong, S. Welker,
F. Tombari, A. Purohit, M. Ryoo, V. Sindhwani et al., “Socratic
models: Composing zero-shot multimodal reasoning with language,”
arXiv preprint arXiv:2204.00598, 2022.

[35] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay,
D. Fox, J. Thomason, and A. Garg, “Progprompt: Generating situated
robot task plans using large language models,” in International Con-
ference on Robotics and Automation. IEEE, 2023, pp. 11 523–11 530.

[36] Y. Ding, X. Zhang, C. Paxton, and S. Zhang, “Task and motion
planning with large language models for object rearrangement,” arXiv
preprint arXiv:2303.06247, 2023.

[37] J. Slaney and S. Thiébaux, “Blocks world revisited,” Artificial Intelli-
gence, vol. 125, no. 1-2, pp. 119–153, 2001.

[38] T. Silver, V. Hariprasad, R. S. Shuttleworth, N. Kumar, T. Lozano-
Pérez, and L. P. Kaelbling, “Pddl planning with pretrained large
language models,” in NeurIPS 2022 Foundation Models for Decision
Making Workshop, 2022.

[39] T. Silver, S. Dan, K. Srinivas, J. B. Tenenbaum, L. P. Kaelbling, and
M. Katz, “Generalized planning in pddl domains with pretrained large
language models,” arXiv preprint arXiv:2305.11014, 2023.

[40] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, and P. Stone,
“Llm+ p: Empowering large language models with optimal planning
proficiency,” arXiv preprint arXiv:2304.11477, 2023.

[41] S. S. Raman, V. Cohen, E. Rosen, I. Idrees, D. Paulius, and S. Tellex,
“Planning with large language models via corrective re-prompting,”
arXiv preprint arXiv:2211.09935, 2022.

[42] C. Aeronautiques, A. Howe, C. Knoblock, I. D. McDermott, A. Ram,
M. Veloso, D. Weld, D. W. SRI, A. Barrett, D. Christianson et al.,
“Pddl— the planning domain definition language,” Technical Report,
1998.

[43] R. Howey, D. Long, and M. Fox, “Val: Automatic plan validation,
continuous effects and mixed initiative planning using pddl,” in
International Conference on Tools with Artificial Intelligence. IEEE,
2004, pp. 294–301.

[44] T. Zhi-Xuan, “Pddl. jl: An extensible interpreter and compiler interface
for fast and flexible ai planning,” Ph.D. dissertation, Massachusetts
Institute of Technology, 2022.

2087

[45] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V.
Le, D. Zhou et al., “Chain-of-thought prompting elicits reasoning in
large language models,” Advances in Neural Information Processing
Systems, vol. 35, pp. 24 824–24 837, 2022.

[46] NVIDIA, “Nvidia isaac sim,” 2021. [Online]. Available: https:
//developer.nvidia.com/isaac-sim

2088

