
Subequivariant Reinforcement Learning Framework for Coordinated
Motion Control

Haoyu Wang1†, Xiaoyu Tan2†, Xihe Qiu1†∗ and Chao Qu2∗

Abstract— Effective coordination is crucial for motion control
with reinforcement learning, especially as the complexity of
agents and their motions increases. However, many existing
methods struggle to account for the intricate dependencies
between joints. We introduce CoordiGraph, a novel architec-
ture that leverages subequivariant principles from physics to
enhance coordination of motion control with reinforcement
learning. This method embeds the principles of equivariance
as inherent patterns in the learning process under gravity
influence, which aids in modeling the nuanced relationships
between joints vital for motion control. Through extensive
experimentation with sophisticated agents in diverse environ-
ments, we highlight the merits of our approach. Compared
to current leading methods, CoordiGraph notably enhances
generalization and sample efficiency.

I. INTRODUCTION

Reinforcement learning (RL) is a prominent approach
for enabling intelligent agents to acquire skills for intricate
tasks via iterative trial and error[1]. However, managing
the coordinated movements of multiple joints through RL,
especially in agents navigating complex physical environ-
ments like multi-joint robotic systems[2], is challenging[3],
[4]. Traditional RL techniques[5] often address this prob-
lem through the lens of the curse of dimensionality and
training instabilities [6]. Nevertheless, these techniques often
overlook the interactions between joints and the physical
principles prevalent in most agent operating conditions.

Graph neural networks (GNNs) have demonstrated poten-
tial in RL for coordinated motion control by representing
node internal interactions[7], [8]. However, they do have
some challenges prevent the GNN in practical utilization[9].
Specifically, GNNs can occasionally find it difficult to rec-
ognize dynamic symmetries and maintain equivariance in
joint interactions, which can result suboptimal coordination
performance[10]. They also often face challenges in ex-
ploration, limiting their efficiency in discovering rewards
in novel scenarios[11], [12]. Additionally, GNNs typically
require significant training data and time to reach the de-
sired performance[13], which can constrain their practical
adaptability[14].

To intergrete prior knowledge of symmetry-related prior in
the RL-based motion control, many equivariant techniques
have been proposed[15], [16]. However, most of equivari-
ant neural networks are designed under the assumption of

† Both authors contributed equally to this work
* Corresponding author: Xihe Qiu, Chao Qu, qiuxihe@sues.edu.cn,

quchao tequila@inftech.ai
1Haoyu Wang and Xihe Qiu are with Shanghai University of Engineering

Science, Shanghai, China
2Xiaoyu Tan and Chao Qu are with INF Technology (Shanghai) Co., Ltd

specific symmetries in the input graph data. This design
choice can restrict their utility, especially for graph struc-
tures that exhibit global symmetries[17]. In complex graph
datasets, these methods might not accurately capture intricate
symmetry patterns, potentially hindering performance and
generalization[18], [19].

In this study, we propose CoordiGraph, a novel approach
that leverages coordinated subequivariant networks for joint
motion control in reinforcement learning. Our method ad-
dresses the limitations of GNNs and equivariant technique
in coordinating motion control with RL. By incorporating
the concept of subequivariance into the GNNs framework,
CoordiGraph effectively models symmetries and subequivari-
ance within agent joints. This enhances agent performance
and efficiency in cooperative motion learning tasks, as il-
lustrated in Figure 1. Our model ensures the preservation of
input data symmetry and accurately captures subequivariance
properties between joints, enabling agent actions to maintain
symmetry and equivariance.

Fig. 1. Training a humanoid agent in the MuJoCo environment with the
objective of enabling it to transition from an inability to stand to coordinated
joint movements.

Through extensive experiments conducted on diverse rein-
forcement learning control benchmark tasks, we empirically
demonstrate the effectiveness in coordinating agent motion,
showcasing the significant benefits of incorporating sube-
quivariant principles with reinforcement learning in motion
control tasks by achieving improved coordination and learn-
ing efficiency.

II. RELATED WORK

A. Reinforcement Learning on Motion Control

Reinforcement learning is a method of learning optimal
strategies by interacting with the environment, using reward
signals to guide the actions of an agent and maximize cumu-
lative rewards[20]. It has applications in domains like robot
control and game AI[21]. The goal is to find the best policy
that maximizes the agent’s cumulative rewards. Various
algorithms have been proposed in the field of reinforcement

2024 IEEE International Conference on Robotics and Automation (ICRA 2024)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 2112

learning for motion control[22], including deep reinforce-
ment learning methods like Deep Q-Network for training
agents in Atari games[23]. Evolution Strategies have been
used to train agents for complex behaviors like walking and
running[24], [25]. Transfer learning from simulated to real
environments has also been achieved. Genetic algorithms and
particle swarm optimization[26], [27] have been used to opti-
mize coordinated movements among different components of
agents[28], [29]. Hierarchical approaches, where higher-level
policies guide lower-level policies[30], have been successful
in tasks requiring hierarchical organization, such as multi-
agent navigation and cooperative transportation[31], [32].

B. Coordinating Joint Movements for Graph

Graph neural networks (GNN) are widely used in rein-
forcement learning to model interactions between entities in
a graph structure[33]. GNN leverage information propagation
through edges and nodes to capture precise dependencies
between agents in coordinated tasks[34], [35]. Variants such
as graph convolutional network aggregate information from
neighboring agents, enabling localization and recognition
of temporal actions[36]. Graph attention networks assign
weights to features based on relevance, accurately predicting
future trajectories by representing positions and relationships
as a graph[37]. GraphSAGE uses sampling strategies to pro-
cess information from fixed-sized agent neighborhoods[38],
achieving better generalization capabilities regardless of
graph size and structure[39], [40].

C. Advancements in Subequivariant Techniques

Subequivariant neural networks is an extension of neural
Networks that handles symmetry and subequivariance[41].
Subequivariant network enhances the learning capability
of traditional neural Networks by introducing the concept
of subequivariance. It builds upon the idea of equivariant
graph neural networks (EGNN) that handle graph data with
symmetry[42]. EGNN achieves this by designing graph
convolution operations with symmetry and preserving the
symmetry properties of the input graph during learning.
Researchers have also explored other improvement measures,
such as graph matching networks (GMN) that handle local
symmetry by applying equivariance operations like rotation
and translation[43]. Leveraging subgraph information and
incorporating equivariance into cross-domain graph neural
networks has shown effective generalization to unseen target
domains[44]. Other studies have also investigated reinforced
learning[45] and low-dimensional feature extraction[46] in
the context of equivariant graph neural networks[47].

III. METHODOLOGY

We define the state space S as an n-dimensional vector
representing the state of each joint: S = [s1,s2, . . . ,sn].

Designing between Agents and Environment The agent,
modeled as a discrete graph structure, can perform actions
within a certain range, such as applying force or torque [48].
The action space A is an n-dimensional vector representing
the actions of each joint: A = [a1,a2, . . . ,an]. By designating

the body node as the coordinate system, the joint nodes
represent the degrees of freedom between them. For example,
Walker2d-v2, the root node determines the agent’s position
in MuJoCo.

The policy function π maps the state space S to a proba-
bility distribution over the action space A. π(a|s) represents
the probability of selecting action a given state s. The
value function V estimates the expected return under state
s, denoted as V (s) mapping the state space S to the state
value.

Subequivariant Learning Networks We design our
model to explore equivariant properties by incorporating
external fields, such as gravity, in a reasonable manner. It
decomposes the graph structure into subgraphs based on
equivariant properties and propagates equivariant information
between these subgraphs to handle graph feature data across
different joints of an intelligent agent, as shown in Figure 2.

h(l+1)
i = σ

(
∑

j∈N(i)
f (h(l)i ,h(l)j ,Ei j)

)
, (1)

here h(l)i represents the feature representation of the central
node i in the l-th layer, N(i) denotes the neighboring nodes
of the central node i, f is the aggregation function, and Ei j
represents the external field information between the central
node i and the neighboring node j.

CoordiGraph introduces an Object-aware Message Passing
mechanism for learning physical interactions between objects
of different shapes. This mechanism handles object proper-
ties, sizes, and shapes, enabling hierarchical modeling and
improving the model’s ability to handle complex interactions.

m(l+1)
i j = g(h(l)i ,h(l)j ,s(l)i ,s(l)j), (2)

m(l+1)
i j represents the object-aware message between the cen-

tral node i and the neighboring node j in the layer of (l+1).
s(l)i and s(l)j represent the shape representations of the central
node i and the neighboring node j in the l-th layer. The
function g integrates node features and shape information,
evolving with subsequent policy updates. Its purpose is to
capture the physical interactions between objects of different
shapes by combining their features and shape information.

m(l)
v = ∑

u∈N(v)

1√
|N(v)||N(u)|

·W (l) ·h(l−1)
u

h(l)v = σ(m(l)
v +W (l)

0 ·h
(l−1)
v)

(3)

It calculates the aggregated message m(l)
v for node v in

the l-th layer by summing the weighted hidden states h(l−1)
u

of its neighboring nodes u. The weights are normalized by
the square root of the product of the degrees of the nodes,
ensuring a balanced influence from different degrees. The
weights are applied through the weight matrix W (l). The
update rule for the hidden state h(l)v of node v in the l-th layer
combines the aggregated message m(l)

v with the previous
hidden state h(l−1)

v using the self-loop weight matrix W (l)
0 .

In the subequivariant neural network model, we introduce
two time-related concepts. Firstly, there is the classical notion

2113

of time, represented by the time step t in the environment.
Additionally, we define the internal propagation step as
τ , which represents the series of steps performed by the
model to determine node actions based on environmental
observations within each time step.

m(t)
uv = f (htu,htv), (4)

here m(t)
uv represents the message vector from node u to node

v, htu and htv denote the state vectors of node u and node v
respectively in propagation step t.

During time step t, each node u performs information
propagation by computing message vectors with its neighbor-
ing node v. By utilizing the state vectors htu and htv of nodes
u and v respectively, node u calculates the message vector
m(t)

uv using the function f . These message vectors update the
node’s state and facilitate further information propagation in
subsequent propagation steps.

h(l+1)
i = g(h(l)i ,h(l−1)

i), (5)

in this equation h(l+1)
i represents the updated feature repre-

sentation of node i in the next layer.
The function g combines the current feature representation

h(l)i with the previous feature representation h(l−1)
i to generate

the updated representation.
To avoid the loss of interaction features and enhance

coordination capabilities between agent joints, we propose
a novel feature representation approach. This approach pre-
serves the properties of vector feature vectors while stacking
them together to retain the interaction information.

ui = vi−
1
N

N

∑
j=1

v j, (6)

vi represents the vector feature vector with index i. We
convert each vector feature vector into a translation-invariant
vector ui by subtracting the average of all feature vectors
1
N ∑

N
j=1 v j from vi. Here, N denotes the number of feature

vectors.

(a)Mujoco (b)Format
Fig. 2. Modeling the environment in MuJoCo, where agents possess multi-
ple hierarchical joints. Simple graph neural networks are insufficient to fully
capture the interaction features among joints. Introducing subequivariance
requires hierarchical classification for different joints, as depicted in this
figure.

Reinforcement Algorithms and Optimization We em-
ploy the proximal policy optimization to update the policy

function parameters for better adaptation to the environment.
The advantage function A, which measures the relative
advantage of each action, is defined as the difference between
the action-value function Q(s,a) and the state-value function
V (s).

A(s,a) = Q(s,a)−V (s) (7)

The objective is to maximize the expected cumulative
reward by adjusting the policy parameters θ .

R(πθ) =
T

∑
t=0

α
tr(st ,at), (8)

α represents the discount factor, t denotes the number of
time steps.

At each time step t, the agent selects an action at based on
the current state st and receives a reward r(st ,at) from the
environment. The environment transitions to the next state
according to the transition probability P(st+1|st).

P(aτ |sτ) = ∏
u∈O

Pu(aτ
u|sτ) (9)

Pu(aτ
u|sτ) =

1√
2πσ2

u
exp
(
(aτ

u−µu)
2

2σ2
u

)
(10)

The agent’s objective is to learn policy parameters θ that
maximize the cumulative reward during interaction with the
environment. This involves continuously updating the policy
parameters through interactions to improve decision-making
and maximize long-term cumulative reward [49].

The proximal policy optimization algorithm aims to max-
imize the advantage function A while constraining policy
changes to ensure stability. The objective function of PPO is
defined as:

θnew = argmax
θ

Eπθold

[
πθ (a|s)

πθold

·Aπθold (s,a)
]
, (11)

θnew represents the updated policy parameters, and θold
represents the old policy parameters. πθ (a|s) is the policy
that selects action a given state s, while πθold represents the
policy based on the old parameters.

Aπθold (s,a) is the advantage function based on the old
policy, which estimates the advantage of selecting action a
in state s relative to the old policy. The objective function
maximizes the expected value of the ratio between the new
and old policies, weighted by the advantage function.

J̃(θ) = Eπθ

[
∞

∑
τ=0

min
(
Âτ rτ(θ), Âτ clip(rτ(θ),1− ε,1+ ε)

)]

−βEπθ

[
∞

∑
τ=0

KL
[
πθ (·|sτ) ∥ πθold(·|s

τ)
]]

−αEπθ

[
∞

∑
τ=0

(
Vθ (sτ)−V (sτ)target)2

]
(12)

The objective of policy updates in PPO is to maximize
the expected ratio of action probabilities, weighted by the
advantage under the old policy. This approach ensures that

2114

the new policy gradually improves its performance while
staying close to the old policy, represented by πθold [50].

Algorithm 1 Total Algorithm
Inputs:Input the state of each joint S, the actions of each
joint A and the policy function π .
Require:Update S and A, extract the feature representation
of the node h(l)i , object-aware message m(l+1)

i j between
the central node and the neighboring node, updated policy
parameters θnew.
Function Designing Agents and Environment(V , A, S)
π ← S,A, maping the policy function π a probability
distribution and representing the probability of selecting
action.
V (s)← S, estimating the expected return under state.
s,r ← π,S,A, agent selects an action from the action
space based on the current state and interacts with the
environment by executing action until finding a policy that
maximizes the expected reward.
Function Subequivariant Learning(h(l)i , h(l)j , t)
Ei j ← hi,h j, representing the external field information
between the central node i and the neighboring node j.
m(l+1)

i j ← h(l)i ,h(l)j , using the equation 2, representing the
object-aware message between the central node i and the
neighboring node j in the layer indexed by (l +1).
m(t)

uv ←m(l+1)
i j , t, f , updating the node’s state and facilitate

further information propagation in subsequent propagation
steps through equation 4.
Function Training and Optimization (st , at , θ , πθ (a|s))
θnew ← θold,πθ (a|s)), the advantage function is used to
estimate the advantage of selecting action at in state st
relative to the old policy through equation 8.

IV. EXPERIMENTS AND SIMULATIONS RESULTS

In this section, we present the results of our experiments
evaluating the effectiveness of the subequivariant-based neu-
ral network in improving agent motion in cooperative rein-
forcement learning tasks. We compare its performance with
traditional graph networks and emphasize the advantages of
integrating second-order invariance into the network archi-
tecture. These experiments cover various benchmark task
environments to evaluate the generalizability and robustness
of our model.

A. Experimental Setup
We selected multiple agents from MuJoCo, including

Hopper-v2, Humanoid-v2[51], HalfCheetah-v2, Centipede-
v1[10], and Walker2d-v2. The goal was to apply reinforce-
ment learning to coordinate the joint movements of these
agents. Tasks such as standing, coordinated joint manipula-
tion, and normal locomotion were designed to test different
aspects of coordination.

Traditional Graph in our experiments uses a network
architecture of [512, 512], a learning rate of 3e-4, a hidden
state size of 256, separate output networks tailored to each
agent’s coordination requirements, and 6 propagation steps.

B. Parameter Architecture and Evaluation Metrics

Experiments used an NVIDIA GeForce RTX 3080 GPU
and an 8-core CPU. Each validation training session lasted
around 16 hours. To ensure fair comparison, we maintained
consistent batch size, training iterations, and performance
metrics. The table I displays the hyperparameter settings for
our modules.

TABLE I
PARAMETER ARCHITECTURE AND EVALUATION METRICS

CoordiGraph Value Tried
Gradient clipping 0.05, 0.1, 0.2
Network Shape [128,128], [256,256], [512,512]
Learning rate 1e-4, 3e-4
Hidden state size 128, 256
Size of Nodes’ Hidden size 32,64,128
Output Network Shared, Separate
Add Skip-connection from / to root Yes, No
Number of Propogation Steps 4,5,6
Matrix embedding size 32×32, 64×64
Learning rate scheduler adaptive, constant

C. Main Results

We adopt a reinforcement learning framework to train
agents in a coordination task. By interacting with the en-
vironment, the agents receive rewards based on their actions
and update their policies using policy gradient methods. We
employ a variant of proximal policy optimization as the
training algorithm, which has been proven effective in multi-
agent reinforcement learning [52].

Our experimental results demonstrate that our method
outperforms existing techniques in multi-joint robot control
as shown in Table II. We observe significant improvements
in coordination accuracy, exploration capability, and reward
acquisition. These findings highlight the effectiveness of our
approach in addressing the challenges of the Mujoco multi-
joint robot control problem in Figure 3.

We conducted experiments to compare the performance
of CoordiGraph and traditional graph networks in motion
control tasks using reinforcement learning. The results, as
depicted in the figure, consistently demonstrate the superior
performance of CoordiGraph over traditional graph networks
across all coordination tasks, with a notable advantage in
terms of reward acquisition.

The superior performance of CoordiGraph in coordination
tasks can be attributed to its incorporation of second-order
variance characteristics. By effectively capturing dynamic
variations in symmetry and isotropy within the joints of intel-
ligent agents, CoordiGraph enhances coordination accuracy.
In contrast, traditional graph networks, such as GNN, exhibit
weaker performance in this aspect.

Furthermore, CoordiGraph showcases superior exploration
and coordination capabilities, enabling it to adapt and learn
more effectively in unfamiliar scenarios. In contrast, tradi-
tional graph network demonstrates weaker abilities in explo-
ration and coordination. The advantages of CoordiGraph in
motion control tasks extend beyond reward acquisition. It ex-
cels in accurately predicting actions and joint angle positions

2115

Fig. 3. We conducted large-scale training in a simulated environment, incorporating various environments and agents to ensure the generalizability and
practicality of the model’s performance.

of intelligent agents during task execution, facilitating precise
coordination. This heightened accuracy empowers Coordi-
Graph to adapt more efficiently to complex environments
and task requirements, ultimately enhancing task efficiency.

In the subsequent phase, we use ablation experiments to
demonstrate the superiority of CoordiGraph. By surpassing
existing neural networks in coordinating motion, our model
validates its effectiveness in motion control.

Directionality of Intelligent Agent Motion In our exper-
iments, we trained two CoordiGraph models under differ-
ent environmental conditions: one with directionality con-
straints and one without. Directionality constraints limited
the model’s learning and exploration to specific directions,
while the unconstrained model could learn and explore in all
directions.

We tested both models in the same environment and
compared their performance under different directionality
constraint conditions. By observing the model’s behavior, we
evaluated the adaptability and generalization abilities of the
CentipedeSix and Humanoid environments in Figure 4, pro-
viding insights into the impact of directionality constraints
on learning and performance.

Fig. 4. Results of the dynamics of intelligent agent motion

The results show that the model trained with directionality
constraints outperforms in testing. By focusing on specific
behaviors and optimizing them through trial and error, the
model gains a better understanding of the environment and
takes actions that lead to higher rewards.

In contrast, the model trained without directionality con-
straints faces challenges in optimizing its behavior due to
increased uncertainty and randomness during training. It
may struggle to achieve the same high rewards as when
directionality is controlled.

Imposing directionality constraints allows the model to
concentrate on learning and optimizing specific behaviors,
leading to improved learning outcomes during testing. This
constraint enhances the model’s understanding of the en-
vironment and enables it to take appropriate actions to
maximize rewards.

Fig. 5. Results of comprehensive analysis on the complexity of agents

Complexity of Agents: A Comprehensive Analysis In
this experiment, we increased the structural complexity of
agents by adding more connections in different parts. This
aimed to assess CoordiGraph’s generalization ability under
varying levels of complexity. More connections provided
additional parameters and richer feature representations, en-
abling the model to better understand the environment and
learn complex strategies. We then tested these models with
different complexities in the same environment.

By evaluating the performance and generalization ability
in the same environment, we can understand how Coordi-
Graph performs under different levels of structural complex-
ity in Figure 5. Analyzing agent behavior and contrasting
learning outcomes facilitates evaluating their generalization
capabilities.

2116

TABLE II
RESULTS OF OUR GRAPH NETWORK’S EFFICIENCY

Model Avg Reward
Environment Centipede-Four Humanoid HalfCheetah Centipede-Six Walker2D Hopper Centipede-Ten

CoordiGraph

5792.07 1088.36 7803.52 6325.47 4376.90 3693.25 4395.71
5960.48 998.05 7612.81 6732.12 4685.21 3323.49 4632.08
5868.34 1110.37 7937.41 6538.09 4615.75 3594.31 4801.35
6042.98 1025.48 7452.94 6694.68 4953.14 3774.04 4438.92
5586.42 1101.91 7567.58 6321.57 4831.48 3608.21 4735.86

Traditional Graph

3927.33 938.62 5364.29 4621.44 3683.17 2367.56 3808.19
3643.29 967.53 5646.37 5012.19 3701.21 2965.28 3329.85
4256.83 878.15 5491.42 4832.53 3358.91 2838.71 3894.24
3847.51 908.89 4992.81 5177.47 3401.39 2547.19 3674.52
4168.17 899.76 5513.24 4937.29 3786.58 2636.42 3752.39

The results show that as agents become more complex, the
model’s ability to adapt remains stronger than the baseline.
This suggests that CoordiGraph greatly improve complex
models’ ability to adapt to different environments and tasks.
The model becomes better at understanding the environ-
ment and learning complex strategies. Increased complex-
ity improves generalization, highlighting the advantage of
CoordiGraph in helping complex models adapt to diverse
environments and tasks.

Generalization of Graph Neural Networks We con-
ducted experiments comparing CoordiGraph and traditional
graph network to assess their performance in generalization
and reward acquisition. We tested the models’ ability to adapt
to unfamiliar environments by introducing them to new tasks
and scenarios that were different from the training data. This
allowed us to evaluate how well the models could adapt and
perform in diverse and novel conditions in Figure 6.

(a)CentipedeTen (b)Walker2D (c)HalfCheetah
Fig. 6. Results on the generalization of graph neural networks

Based on our analysis, traditional graph network performs
better in generalization, while CoordiGraph excels in both
generalization and reward acquisition. CoordiGraph demon-
strates superior adaptability and learning in unknown situa-
tions and new tasks, leading to better generalization. It also
outperforms traditional graph network in reward acquisition
by effectively understanding and utilizing reward signals to
maximize rewards, resulting in faster learning and optimized
agent coordination. In contrast, traditional graph network’s
performance in this area is relatively weaker, potentially
leading to inaccurate action selection or suboptimal reward
maximization.

Effects of Subequivariant We conducted experiments to
investigate the impact of subequivariance on graph neural
network models in reinforcement learning. We systematically
removed subequivariant components to assess their effect on

model performance. In motion coordination tasks, joint coor-
dination behavior often exhibits symmetry and equivariance.
Our goal was to understand how introducing subequivariance
affects the model’s ability to capture these characteristics
and improve algorithmic model accuracy and performance
in Figure 7.

(a)Hopper (b)CentipedeFour
Fig. 7. Results on effects of subequivariant

The experimental results show that models with subequiv-
ariance outperform models without subequivariant compo-
nents in terms of coordination accuracy. This emphasizes
the importance of subequivariance in enhancing coordination
task accuracy. Additionally, models with subequivariance
demonstrate better generalization abilities. They can adapt
and learn effectively even in unfamiliar situations and new
coordination tasks, leading to improved generalization. Sube-
quivariance helps the model capture joint relationships and
coordination behaviors more effectively, resulting in more
stable training and control processes.

V. CONCLUSIONS
In this paper, we introduce a novel framework, Coordi-

Graph, which leverages the subequivariant property to ad-
dress the challenges of weak inter-joint coupling in high-
dimensional motion control tasks using reinforcement learn-
ing. Experimental results indicate that CoordiGraph outper-
forms several baseline methods in complex motion control
scenarios. These findings hint at the potential of subequivari-
ance as a method to enhance coordination in intricate motion
control tasks.

VI. ACKNOWLEDGEMENT

This work is supported by the National Natural Science
Foundation of China (62102241) and Shanghai Municipal
Natural Science Foundation (23ZR1425400).

2117

REFERENCES

[1] A. Heuillet, F. Couthouis, and N. Dı́az-Rodrı́guez, “Explainability in
deep reinforcement learning,” KNOWL-BASED. SYST, vol. 214, p.
106685, 2021.

[2] M. Körber et al., “Comparing popular simulation environments in
the scope of robotics and reinforcement learning,” arXiv preprint
arXiv:2103.04616, 2021.

[3] G. Chen et al., “Reinforcement learning control for the swimming
motions of a beaver-like, single-legged robot based on biological
inspiration,” ROBOT. AUTON. SYST, vol. 154, p. 104116, 2022.

[4] W. Liu et al., “Distance-directed target searching for a deep visual
servo sma driven soft robot using reinforcement learning,” J. BIONIC.
ENG, vol. 17, pp. 1126–1138, 2020.

[5] P. Ladosz et al., “Exploration in deep reinforcement learning: A
survey,” INFORM. FUSION, vol. 85, pp. 1–22, 2022.

[6] X. Qiu, X. Tan, Q. Li, S. Chen, Y. Ru, and Y. Jin, “A latent batch-
constrained deep reinforcement learning approach for precision dosing
clinical decision support,” Knowledge-Based Systems, vol. 237, p.
107689, 2022.

[7] J. Park et al., “Learning to schedule job-shop problems: representation
and policy learning using graph neural network and reinforcement
learning,” INT. J. PROD. RES, vol. 59, no. 11, pp. 3360–3377, 2021.

[8] S. Chen, X. Qiu, X. Tan, Z. Fang, and Y. Jin, “A model-based hybrid
soft actor-critic deep reinforcement learning algorithm for optimal
ventilator settings,” Information Sciences, vol. 611, pp. 47–64, 2022.

[9] J. Chai and M. Hayashibe, “Motor synergy development in high-
performing deep reinforcement learning algorithms,” IEEE ROBOT.
AUTOM. LET, vol. 5, no. 2, pp. 1271–1278, 2020.

[10] T. Wang et al., “Nervenet: Learning structured policy with graph neural
networks,” in ICLR, 2018.

[11] N. Wu, Y. Xie, and C. Hao, “Ironman: Gnn-assisted design space
exploration in high-level synthesis via reinforcement learning,” in
GLSVLSI, 2021.

[12] C. S. de Witt et al., “Deep multi-agent reinforcement learning
for decentralized continuous cooperative control,” arXiv preprint
arXiv:2003.06709, vol. 19, 2020.

[13] P. Hart and A. Knoll, “Graph neural networks and reinforcement
learning for behavior generation in semantic environments,” in IV.
IEEE, 2020.

[14] C. Shan et al., “Reinforcement learning enhanced explainer for graph
neural networks,” Advances in NIPS, vol. 34, pp. 22 523–22 533, 2021.

[15] C. Blake et al., “Snowflake: Scaling gnns to high-dimensional continu-
ous control via parameter freezing,” in NIPS, 2021, pp. 23 983–23 992.

[16] P. Zhao and Y. Liu, “Physics informed deep reinforcement learning
for aircraft conflict resolution,” IEEE. T. INTELL. TRANSP, vol. 23,
no. 7, pp. 8288–8301, 2021.

[17] G. A. Castillo et al., “Hybrid zero dynamics inspired feedback control
policy design for 3d bipedal locomotion using reinforcement learning,”
in ICRA. IEEE, 2020.

[18] H. Wang et al., “Scientific discovery in the age of artificial intelli-
gence,” Nature, vol. 620, no. 7972, pp. 47–60, 2023.

[19] ——, “Neural-seir: A flexible data-driven framework for precise
prediction of epidemic disease,” Mathematical Biosciences and En-
gineering, vol. 20, no. 9, pp. 16 807–16 823, 2023.

[20] S. Levine and et al., “Offline reinforcement learning: Tutorial, review,
and perspectives on open problems,” arXiv, 2020.

[21] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in
deep reinforcement learning for robotics: a survey,” in IEEE SSCI.
IEEE, 2020.

[22] T. M. Moerland and et al., “Model-based reinforcement learning: A
survey,” FOUND. TRENDS. MACH. LE., vol. 16, no. 1, pp. 1–118,
2023.

[23] F. Moreno-Vera, “Performing deep recurrent double q-learning for atari
games,” in LA-CCI. IEEE, 2019.

[24] M. Grillitsch and M. Sotarauta, “Trinity of change agency, regional
development paths and opportunity spaces,” PROG. HUM. GEOG.,
vol. 44, no. 4, pp. 704–723, 2020.

[25] Z. Li and et al., “Reinforcement learning for robust parameterized
locomotion control of bipedal robots,” in ICRA. IEEE, 2021.

[26] A. K. Lakshmanan et al., “Complete coverage path planning using
reinforcement learning for tetromino based cleaning and maintenance
robot,” AUTOMAT. CONSTR., vol. 112, p. 103078, 2020.

[27] Y. Li et al., “Constrained motion planning of free-float dual-arm
space manipulator via deep reinforcement learning,” AEROSP. SCI.
TECHNOL., vol. 109, p. 106446, 2021.

[28] W. Wang et al., “A pso-optimized fuzzy reinforcement learning method
for making the minimally invasive surgical arm cleverer,” IEEE
ACCESS, vol. 7, pp. 48 655–48 670, 2019.

[29] Y. Zhou, B. Li, and T. R. Lin, “Maintenance optimisation of multicom-
ponent systems using hierarchical coordinated reinforcement learning,”
RELIAB. ENG. SYST. SAFE., vol. 217, p. 108078, 2022.

[30] M. Schilling and A. Melnik, “An approach to hierarchical deep rein-
forcement learning for a decentralized walking control architecture,”
in BICA. Springer International Publishing, 2019.

[31] H. Fu et al., “Deep multi-agent reinforcement learning with discrete-
continuous hybrid action spaces,” arXiv, 2019.

[32] S. Li et al., “Deep implicit coordination graphs for multi-agent
reinforcement learning,” arXiv, 2020.

[33] J. Cai et al., “Jolo-gcn: mining joint-centered light-weight information
for skeleton-based action recognition,” in WACV, 2021.

[34] Z. Tu et al., “Joint-bone fusion graph convolutional network for semi-
supervised skeleton action recognition,” IEEE. T. MULTIMEDIA.,
2022.

[35] P. Ding and J. Yin, “Towards more realistic human motion prediction
with attention to motion coordination,” IEEE. T. CIRC. SYST. VID.,
vol. 32, no. 9, pp. 5846–5858, 2022.

[36] J. Zhang et al., “Graph-aware transformer for skeleton-based action
recognition,” VISUAL. COMPUT., pp. 1–12, 2022.

[37] Y. Shao et al., “Graph attention network-based multi-agent reinforce-
ment learning for slicing resource management in dense cellular
network,” IEEE T. VEH. TECHNOL, vol. 70, no. 10, pp. 10 792–
10 803, 2021.

[38] H. Dai et al., “Cooperative path planning of multi-agent based on
graph neural network,” in CCDC. IEEE, 2022.

[39] J. Jiang et al., “Graph convolutional reinforcement learning,” arXiv
preprint arXiv:1810.09202, 2018.

[40] D. Gammelli et al., “Graph neural network reinforcement learning for
autonomous mobility-on-demand systems,” in CDC. IEEE, 2021.

[41] J. Han et al., “Learning physical dynamics with subequivariant graph
neural networks,” in NIPS, 2022, pp. 26 256–26 268.

[42] V. G. Satorras, E. Hoogeboom, and M. Welling, “E (n) equivariant
graph neural networks,” in ICML. PMLR, 2021.

[43] W. Huang et al., “Equivariant graph mechanics networks with con-
straints,” arXiv, 2022.

[44] J. Yu, J. Liang, and R. He, “Finding diverse and predictable subgraphs
for graph domain generalization,” arXiv, 2022.

[45] H. Wang et al., “Equivariant and stable positional encoding for more
powerful graph neural networks,” arXiv, 2022.

[46] T. Fu et al., “Reinforced genetic algorithm for structure-based drug
design,” in NIPS, vol. 35, 2022, pp. 12 325–12 338.

[47] N. Dym and S. J. Gortler, “Low dimensional invariant embeddings for
universal geometric learning,” arXiv, 2022.

[48] K. Arulkumaran et al., “Deep reinforcement learning: A brief survey,”
IEEE SIGNAL. PROC. MAG., vol. 34, no. 6, pp. 26–38, 2017.

[49] N. Le et al., “Deep reinforcement learning in computer vision: a
comprehensive survey,” ARTIF. INTELL. REV., pp. 1–87, 2022.

[50] R. Nian, J. Liu, and B. Huang, “A review on reinforcement learning:
Introduction and applications in industrial process control,” COMPUT.
CHEM. ENG., vol. 139, p. 106886, 2020.

[51] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in IROS. IEEE, 2012.

[52] M. Carroll et al., “On the utility of learning about humans for human-
ai coordination,” in NIPS, 2019.

2118

