Efficient Task Assignment for Crowd-Powered Rebalancing in Bike Sharing Systems

Yifan Xu1, Guanghui Wang2, Jun Tao3, Jianping Pan1

  • 1University of Victoria
  • 2Nanjing University of Posts and Telecomm
  • 3Southeast University



Regular Session


11:00 - 12:00 | Mon 28 Oct | Gallery Room 3 | MoC-T10

Regular Session on Public Transportation Management (I)

Full Text


Bike Sharing Systems (BSSs), serving the cycling trips, have become an important alternative for addressing the last mile problem in city Intelligent Transportation Systems (ITSs). However, it is difficult to achieve a desired quality of service due to the unbalanced distribution of station inven- tory, which is caused by dynamic usage patterns. Different from conventional redistribution strategies performed by trucks or trailers, we propose a Prediction-Based Task Assignment (PBTA) scheme to outsource the rebalancing tasks to crowds so as to decrease the maintenance and labor cost. The Long Short-Term Memory (LSTM) is first utilized to predict the future fill-levels of the bike stations. Then, the rebalancing problem is reformulated as a maximum weighted bipartite matching problem, which is solved by the Hungarian method in polynomial time. Extensive simulations with real-world bike- sharing datasets are conducted to show the effectiveness of the proposed scheme.

Additional Information

No information added


No videos found