Local Activation Time Estimation in Fractionated Electrograms of Cardiac Mappings

Bahareh Abdi1, Alle-Jan Van Der Veen1, Natasja De Groot2, Richard Hendriks3

  • 1TU Delft
  • 2Erasmus MC, Rotterdam
  • 3Delft University of Technology



Oral Session


08:30 - 10:00 | Wed 24 Jul | R12 - Level 3 | WeA17

Atrial Fibrillation and Cardiac Electrophysiology

Full Text


In this study, we propose a novel approach for estimation of local activation times (LATs) in fractionated electrograms. Using an electrophysiological tissue model, we first formulate the electrogram array as a convolution of transmembrane currents with a distance kernel. These currents are more local activities and less affected by the heterogeneity in the tissue compared to electrograms. We then deconvolve the distance kernel with the electrograms to reconstruct the transmembrane current. To stabilize the solution of this ill-posed deconvolution, we use spatio-temporal total variation as a regularization. This helps to preserve sharp spatial and temporal deflections in the currents that are of higher importance in LAT estimation. Finally, the maximum negative slope of the reconstructed transmembrane currents are used to estimate the LATs. Instrumental comparison to two reference approaches shows that the proposed approach performs better in estimating the LATs in fractionated electrograms.

Additional Information

No information added


No videos found