Bounded-Error Estimator Design with Missing Data Patterns Via State Augmentation

Syed Hassaan1, Qiang Shen1, Sze Zheng Yong1

  • 1Arizona State University



Regular Session


10:00 - 12:00 | Wed 10 Jul | Room 404 | WeA13

Observers for Nonlinear Systems I

Full Text


In this paper, we present a bounded-error estimator that achieves equalized recovery for discrete-time time-varying affine systems subject to missing data. By augmenting the system state estimate with a Luenberger-like observer error, we formulate the equalized recovery estimator design problem as a semi-infinite optimization problem, and leverage tools from robust optimization to solve it. Due to the design freedom introduced by the Luenberger-like observer, we can place the eigenvalues of the augmented system to desired locations, which results in a more optimal intermediate level in the equalized recovery problem than existing approaches in the literature. Furthermore, as an extension of the proposed equalized recovery estimator, we consider missing data in the estimator design, where a fixed-length language is used to specify the allowable missing data patterns. Simulation examples involving an adaptive cruise control system are given to demonstrate the equalized recovery performance of the proposed estimator.

Additional Information

No information added


No videos found