Self-Optimizing Control of an Air Source Heat Pump

Zhongfan Zhao1, Yaoyu Li, Timothy Salsbury, Carlos F. Alcala2, John House

  • 1Univ. of Texas at Dallas
  • 2Johnson Controls, Inc.

Details

Category

Invited Session

Sessions

10:00 - 12:00 | Wed 10 Jul | Franklin 7 | WeA07

Control & Energy Management of Building Systems

Full Text

Abstract

Self-optimizing Control (SOC) is a method for finding appropriate controlled variables for which implementation of feedback control yields nearly-optimal operation regardless of variation in disturbances. The Jacobian estimation process in conventional SOC rely on an offline analysis of large amounts of steady-state data, which can be difficult in practice. In this paper, we propose a new SOC procedure enabled by extremum-seeking control (ESC). First, by presenting periodic disturbance dither into the plant model, the Jacobian estimation can be carried out with the dither-demodulation process in multivariable ESC, and then the null-space method is used to find the optimal sensitivity matrix. The ESC can then be used to find the optimum setpoint value for the controlled variable from the previous step. The proposed method is compared with conventional SOC using a Modelica-based dynamic simulation of an air-source heat pump (ASHP) system.

Additional Information

No information added

Video

No videos found