The Application of Branch-Like Fractal Geometries on the Design of Shell and Tube Heat Exchange Equipment: A CFD Study of the Shell-Side Performance

Daniel Sebastia-saez1, Harvey Arellano-garcia1

  • 1University of Surrey



Poster Session


11:45 - 12:20 | Wed 24 Apr | Veleiros | WeS1

Poster A

09:00 - 10:20 | Thu 25 Apr | Hallway | ThSS

All Posters Session

Full Text


Nature has provided some of the most ingenious and elegant solutions to complex problems over millions of years of refining through evolution. The adaptation of Nature´s solutions to engineering problems is a recent trend which has opened opportunities for improvement in many areas ranging from Architecture to Chemical Engineering. In particular, the use of fractal geometries on heat exchangers is a recent design trend. Recent investigations highlight the benefit of implementing fractal-based geometries on the tube side of shell and tube heat exchangers. A complete evaluation of such devices by assessing the performance of the shell side has not been undertaken, though. Here, we present a systematic numerical assessment of the shell side of a tree-like shaped heat exchanger. Key performance parameters, i.e. temperature change, pressure drop and coefficient of performance, are obtained and compared to those of a straight tube, in order to fully understand the potential of the application of fractal-based shapes to the design of heat exchangers.

Additional Information

No information added


No videos found