Resource-Aware Control in a Hyperconnected World with Applications to Cooperative Driving

Maurice Heemels1

  • 1Eindhoven University of Technology



Semiplenary Session


08:30 - 09:30 | Mon 17 Dec | Sparkle East | MoSP1

Lecture by Maurice Heemels

Full Text


Computer and communication technologies are rapidly developing leading to an increasingly networked and wireless world. This raises new challenging questions in the context of networked control systems, especially when the computation, communication and energy resources for control are limited. To efficiently use the available resources it is desirable to limit the control actions to instances when the system really needs attention. Unfortunately, classical time-triggered control schemes are based on performing sensing and actuation actions periodically in time (irrespective of the state of the system) rather than when the system actually needs attention. This points towards the consideration of event-triggered control as an alternative and (more) resource-aware control paradigm, as it seems natural to trigger control actions by well-designed events involving the system's state, output or any other locally available information: "To act or not to act, that is the question in event-triggered control." The objectives of this talk are to introduce the basics in the field of resource-aware control for distributed and multi-agent systems and to discuss recent advances and open questions. The focus will be on event-triggered control, although we will also touch upon self-triggered control as an alternative paradigm for resource-aware feedback control. We will show that various forms of hybrid systems, combining continuous and discrete dynamics, play instrumental roles in the analysis and the design of event-triggered and self-triggered controllers. The main developments will be illustrated in the context of cooperative driving exploiting wireless communication. The effects of delays, packet losses and (denial-of-service) attacks on the event-triggered cooperative adaptive cruise control (CACC) strategies for vehicle platooning will be discussed and experimental results will be presented.

Additional Information

No information added


No videos found