Postural Responses after Utilization of a Computerized Biofeedback based Intervention Aimed at Improving Static and Dynamic Balance in Traumatic Brain Injury: A Case Study

Rakesh Pilkar, Nibal Arzouni1, Arvind Ramanujam1, Kathleen Chervin1, Karen Nolan

  • 1Kessler Foundation



Contributed Papers (Oral)


Neural and Rehabilitation Engineering


08:00 - 09:30 | Wed 17 Aug | Fantasia B | WeAT2

Postural and Balance


Balance dysfunction is one of the most disabling aspects of Traumatic Brain Injury (TBI). Without rapid transmission and accurate perception of somatosensory inputs, the automatic postural responses required during standing may be delayed or absent after TBI which can lead to instability. Further, the sensitivity level to which environmental perturbations can be detected is also vital, as the central nervous system will only employ balance control strategies when it perceives a change in equilibrium. Such undetectable perturbations, however small they may be, can result in fatal falls, especially after TBI. In this investigation we used a novel computerized biofeedback based (CBB) intervention aimed at improving perception of external perturbations, and static and dynamic balance in a single male participant with severe TBI. We used an adaptive single interval adjustment matrix (SIAM) protocol to determine the perception of perturbation threshold (PPT) at baseline (1 day pre-intervention) and follow up (1 day post-intervention). External perturbations were provided through sinusoidal translations of 0.5 Hz to the base of support in anterior-posterior direction. Outcome measures included PPT, the Berg balance scale (BBS) and bilateral surface electromyography (EMG) of the lower limbs at baseline and follow up. PPT assessment post intervention showed a decrease in PPT, suggesting an improvement in the ability (gain of 0.42 mm) to detect (even smaller) perturbations which were not perceivable prior to the intervention. There was a significant increase in BBS (6 points) at follow up. The participant demonstrated increased muscle activation for the right gastrocnemius, left soleus, right bicep femoris and left vastus lateralis muscles at follow up. This investigation demonstrate the potential use of the CBB intervention for improving interpretation and organization of multisensory information in a task specific environment to improve balance dysfunction post TBI.

Additional Information

No information added


No videos found