Combination of Signal Segmentation Approaches Using Fuzzy Decision Making

Hamed Azami, Javier Escudero1

  • 1University of Edinburgh

Details

Category

Contributed papers (Oral)

Theme

01. Biomedical Signal Processing

Sessions

08:30 - 10:00 | Wed 26 Aug | Amber 2 | 1.2

Empirical Mode Decomposition

Abstract

Segmentation is an important stage in signal analysis, and its performance evaluation plays a significant role in the efficiency of the subsequent steps, such as extraction of descriptive features and classification. There are a large number of approaches to segment signals. The performance of each of them remarkably varies when the signal changes. In this present study, two novel algorithms, which use the probability and fuzzy concepts, are proposed to combine several well-known existing signal segmentation approaches. The simulation results confirm the efficiency of the proposed approaches using the synthetic and real electroencephalogram signals.

Additional Information

No information added

Video

No videos found